High Performance Mass Spectrometry - American Chemical Society

as a function of temperature as the components of interest volatilize ... particular components of complex mixtures, the savings in the cost of ...
0 downloads 0 Views 2MB Size
6 Organic Trace Analysis Using Direct Probe Sample Introduction and High Resolution Mass Spectrometry WILLIAM F. HADDON Western Regional Research Center, U.S. Department of Agriculture, Albany, CA 94710

Many interesting problems in organic trace analysis are inaccessible to combined gas chromatographymass spectrometry (GC/MS). For example, a recent treatise on the analysis of organic pollutants in water points out that between 80 and 90 percent of the extractable organic compounds in polluted water f a i l , even after derivitization, to pass through a gas chromatographic column (1). One approach for introducing less volatile compounds into the mass spectrometer in a highly purified state is the use of a liquid chromatograph coupled directly to the mass spectrometer (2,3,4). However, as an alternative to utilizing chromatographic separation prior to analysis, we can consider the mass spectrometer itself as an analytical instrument which is capable in itself of performing highly efficient separations, based, for example, on mass or energy differences of generated ions or on selective ionization, as well as precise identification and quantitation, based on reference mass spectra obtained separately on known compounds. This use of a mass spectrometer for combined separation-identification functions might be called "mass spectrometer-mass spectrometer" (MS/MS) analysis, with the direct probe serving as the vehicle for sample introduction. A number of laboratories have reported results using this approach, and the methods used to achieve selectivity in complex mixtures have included field ionization (5), chemical ionization (6,7), negative chemical ionization (8,9), collisional activation (10), mass-analyzed ion kinetic energy (11), and high resolution electron ionization (EI) (12-15) techniques. This report describes the use of the high resolution EI method in which particular ions are monitored as a function of temperature as the components of interest volatilize ©0-8412-0422-5/78/47-070-097$10.00/0

98

HIGH PERFORMANCE MASS SPECTROMETRY

from t h e d i r e c t i n t r o d u c t i o n p r o b e . The term h i g h r e s o l u t i o n s e l e c t e d i o n m o n i t o r i n g (SIM) i s used t o d e s c r i b e t h i s type o f experiment ( 1 6 ) , and the i o n abundance p r o f i l e r e c o r d e d as a f u n c t i o n o f t e m p e r a t u r e i s c a l l e d an e x a c t mass fragmentogram. In many o r g a n i c t r a c e a n a l y s i s p r o b l e m s , the p r e p a r a t i o n o f h i g h l y p u r i f i e d samples amenable t o low r e s o l u t i o n mass s p e c t r a l i d e n t i f i c a t i o n r e q u i r e s ex­ tensive e f f o r t . Employing i n c r e a s e d mass r e s o l u t i o n t o a c h i e v e h i g h e r s e l e c t i v i t y can reduce the e x t e n t o f sample p u r i f i c a t i o n s i g n i f i c a n t l y i n many c a s e s , and r e c e n t examples o f GC-high r e s o l u t i o n SIM f o r b o t h b i o f l u i d a n a l y s i s (17,18) and e n v i r o n m e n t a l m o n i t o r i n g (19) a r e i l l u s t r a t i v e . In many l a b o r a t o r i e s concerned w i t h a n a l y z i n g p a r t i c u l a r components o f complex m i x t u r e s , the s a v i n g s i n t h e c o s t o f sample p r e p a r a t i o n made p o s s i b l e by the a v a i l a b i l i t y o f h i g h r e s o l u t i o n SIM c a p a b i l i t y may j u s t i f y the h i g h e r i n i t i a l c o s t o f a s u i t a b l e h i g h r e s o l u t i o n mass s p e c t r o m e t e r . Furthermore, s m a l l r a d i u s ( 6 - i n c h o r l e s s ) m a g n e t i c s e c t o r mass s p e c t r o ­ meters h a v i n g b o t h the f a s t scan r a t e s r e q u i r e d by GC/MS a p p l i c a t i o n s and the c a p a b i l i t y f o r h i g h r e s o ­ l u t i o n (10-20,000) o p e r a t i o n w i t h good s e n s i t i v i t y a r e becoming a v a i l a b l e c o m m e r c i a l l y . On a t l e a s t one s m a l l r a d i u s i n s t r u m e n t o f t h i s t y p e , image c u r v a t u r e c o r ­ r e c t o r s have been employed t o enhance the h i g h r e s o ­ l u t i o n p e r f o r m a n c e , and f u r t h e r improvements i n r e s o ­ l u t i o n and s e n s i t i v i t y f o r these s m a l l r a d i u s i n s t r u ­ ments w i l l u n d o u b t e d l y be f o r t h c o m i n g . Two examples d e s c r i b e d below from the f i e l d s o f c l i n i c a l and f o o d c h e m i s t r y i l l u s t r a t e the u t i l i t y o f t h e h i g h r e s o l u t i o n d i r e c t probe method f o r t r a c e analysis. In a d d i t i o n , p e s t i c i d e s i n human t i s s u e have been measured a t h i g h r e s o l u t i o n on a p h o t o - p l a t e equipped mass s p e c t r o m e t e r (Γ5), and s i m i l a r h i g h r e s o l u t i o n methods have been employed t o measure p e s t i ­ c i d e s i n f o o d samples (9) and b i o f l u i d s (8) u s i n g n e g a t i v e c h e m i c a l i o n i z a t i o n , and t o q u a n t i t a t e drug m e t a b o l i t e s r a p i d l y i n b l o o d plasma (7.) u s i n g c h e m i c a l i o n i z a t i o n mass s p e c t r o m e t r y . These papers c o n t a i n e x c e l l e n t d e s c r i p t i o n s o f the p r a c t i c a l problems o f p r e p a r i n g samples and q u a n t i t a t i n g the r e s u l t s . Experimental H i g h r e s o l u t i o n SIM o p e r a t i o n can be a c h i e v e d on a m a g n e t i c s e c t o r mass s p e c t r o m e t e r by i n c o r p o r a t i n g a s w i t c h e d v o l t a g e d i v i d e r c i r c u i t , or by employing c o m p u t e r - d r i v e n power s u p p l i e s .

6. HADDON

99

Organic Trace Analysis

The o v e r - a l l e l e c t r o n i c s t a b i l i t y n e c e s s a r y f o r q u a n t i t a t i v e work depends on t h e p r e c i s i o n r e q u i r e d and on t h e mass r e s o l u t i o n s e l e c t e d f o r t h e a n a l y s i s . These s t a b i l i t y r e q u i r e m e n t s c a n be d e r i v e d from t h e G a u s s i a n c u r v e o f F i g u r e 1, w h i c h r e p r e s e n t s a mass s p e c t r a l peak. The 10 p e r c e n t v a l l e y d e f i n i t i o n o f mass s p e c t r o m e t e r r e s o l u t i o n c o r r e s p o n d s t o t h e o r d i ­ n a t e v a l u e a t a d i s t a n c e 2.44 σ from t h e c e n t e r o f t h e peak (5 p e r c e n t o f maximum h e i g h t f o r a s i n g l e p e a k ) , where σ i s t h e s t a n d a r d d e v i a t i o n o f t h e c u r v e . The o v e r - a l l i n s t r u m e n t s t a b i l i t y , S, i n p a r t s p e r m i l l i o n (ppm) f o r a p a r t i c u l a r a n a l y s i s i s 6

S = (a /2.44)(10 /R) U) where σ i s the number o f s t a n d a r d d e v i a t i o n s t o t h e o r d i n a t e a t t h e r e q u i r e d p e r c e n t a c c u r a c y , and R i s t h e mass r e s o l u t i o n (Μ/ΔΜ, 10 p e r c e n t v a l l e y d e f i n i t i o n ) x

T a b l e I . Mass S p e c t r o m e t e r S t a b i l i t y i n P a r t s p e r M i l l i o n Necessary f o r Q u a n t i t a t i v e High R e s o l u t i o n S e l e c t e d Ion M o n i t o r i n g . Resolution

Desired Q u a n t i t a t i v e Accuracy

(Percent):

99

95

90

80

16.

45.

61.

89.

9.8

27.

36.

53.

10,000

4.9

13.

18.

26.

15,000

3.3

9.0

12.

18.

20,000

2.4

6.7

9.2

2.7

3.6

3,000 5,000

50,000

.98

C a l c u l a t e d from Eq. 1. 'Μ/ΔΜ based on 10 p e r c e n t v a l l e y

13. 5.

definition.

T a b l e I l i s t s t y p i c a l c a l c u l a t e d v a l u e s o f S. These v a l u e s show t h a t q u a n t i t a t i v e p r e c i s i o n o f 90 p e r c e n t o r g r e a t e r s h o u l d be e a s i l y a c h i e v e d on most commercial mass s p e c t r o m e t e r s w h i c h have been d e s i g n e d f o r a c ­ c u r a t e mass measurement a p p l i c a t i o n s . When o n l y one o r two peaks need t o be m o n i t o r e d , t h e c i r c u i t r y o f an e x i s t i n g peak matcher c a n be modi­ f i e d t o m o n i t o r b o t h peaks by s w i t c h i n g between peak t o p s . (2,19) On one w i d e l y used commercial h i g h r e s o ­ l u t i o n i n s t r u m e n t , t h i s i s done by d i s c o n n e c t i n g t h e peak matcher scan c o i l s ( 2 ) . A l t e r n a t i v e l y , r e p e t i t i v e

100

HIGH PERFORMANCE MASS SPECTROMETRY

s c a n s o v e r narrow mass ranges can be u t i l i z e d , but a t reduced s e n s i t i v i t y . An advantage o f t h i s l a t t e r dynamic method o f r e c o r d i n g d a t a i s t h a t the peak p r o f i l e information i s continuously a v a i l a b l e during the e x p e r i m e n t . An i n c r e a s e beyond two c h a n n e l s can be a c h i e v e d w i t h o u t a computer system by i n c o r p o r a t i n g a s w i t c h a b l e v o l t a g e d i v i d e r c i r c u i t (13) (20) ( 2 1 ) . I t i s imp o r t a n t f o r a c i r c u i t o f t h i s type to employ samplea n d - h o l d a m p l i f i e r s f o r each c h a n n e l t o p r o v i d e cont i n u o u s o u t p u t s i g n a l s s u i t a b l e f o r d r i v i n g an o s c i l l o g r a p h i c or m u l t i p l e pen r e c o r d e r . Computer-Controlled Power S u p p l i e s f o r H i g h R e s o l u t i o n SIM. A d e d i c a t e d computer can p e r f o r m b o t h d a t a c o l l e c t i o n and i n s t r u m e n t c o n t r o l f u n c t i o n s f o r h i g h r e s o l u t i o n SIM when used i n c o n j u n c t i o n w i t h a programmable power s u p p l y f o r the mass s p e c t r o m e t e r a c c e l e r a t i n g and e l e c t r i c s e c t o r v o l t a g e s . The computer p r o v i d e s some a d d i t i o n a l b e n e f i t s over a h a r d - w i r e d system: The number o f mass c h a n n e l s can be l a r g e and can be changed d u r i n g the a n a l y s i s ; the f r a c t i o n o f t i m e a t a p a r t i c u l a r mass v a l u e can be v a r i e d a c c o r d i n g t o the e x p e c t e d abundance o f the peak; and the s y s t e m , when s u i t a b l y programmed, can sweep s h o r t mass r e g i o n s t o p r o v i d e peak p r o f i l e i n f o r m a t i o n w h i c h can be used b o t h t o a s c e r t a i n the degree o f i n t e r f e r e n c e from i s o b a r i c i o n s near the e l e m e n t a l c o m p o s i t i o n o f i n t e r e s t , and t o make a u t o m a t i c p e r i o d i c a d j u s t m e n t s o f the a c c e l e r a t i n g v o l t a g e t o compensate f o r d r i f t i n voltages. F i g u r e 2 shows the programmed power s u p p l y c i r c u i t r y u s e d i n our l a b o r a t o r y f o r h i g h r e s o l u t i o n SIM on a CEC 21-110A d o u b l e - f o c u s s i n g mass s p e c t r o m e t e r . Many o f the e l e c t r o n i c and programming d e t a i l s , i n c l u d i n g c h o i c e o f s u i t a b l e power s u p p l y u n i t s , a r e from the Washington U n i v e r s i t y system o f Holmes f221 f o r low r e s o l u t i o n SIM. In the USDA system a s i n g l e programmer (D/A c o n v e r t e r ) w i t h a 1 - v o l t o u t p u t d r i v e s a p a i r o f power s u p p l i e s i n s e r i e s , one w i t h a v o l t a g e g a i n o f 100 (KEPCO OPS-2000, Kepco, I n c . , F l u s h i n g , N.Y.) f o l l o w e d by a second w i t h a g a i n of -1 (KEPCO NTC2000). These power s u p p l i e s d i r e c t l y r e p l a c e the e l e c t r i c s e c t o r s u p p l y f o r m e r l y used w i t h the i n s t r u ment. The 21-110 r e q u i r e s p l u s and minus 375 v o l t s f o r n o m i n a l 8 kv. o p e r a t i o n . We d e r i v e a f i x e d p o r t i o n o f t h i s v o l t a g e from the i n t e r n a l r e f e r e n c e s u p p l y o f the OPS-2000 t h r o u g h R and R , and a v a r i a b l e p o r t i o n from the D/A c o n v e r t e r (DATEL DAC-169, 16 b i t p r e c i s i o n , D a t e l Systems, I n c . , Canton, Ma.) t h r o u g h R i . The 2

3

6. HADDON

101

Organic Trace Analysis

KEPCO

NTC-2000

100 (EA+E.)

0 to +1000V

INV (IN) E (0 to +1V or 0 to +10V) A

SPC-16 D/A

CONVERTER INTERFACE 16-BIT LATCH

LOGIC SIGNALS

DATEL DAC-169 16 BIT D/A CONVERTER

-100 EA +EI] 0 to -1000V

Rl

NULL

WNr-

KEPCO OPS-2000

10KÛ

R2

10KÛ

+6.2V REF

Figure 2. Programmed power supply interface for CEC 21-110 mass spectrometer

102

HIGH PERFORMANCE MASS SPECTROMETRY

s e t t i n g o f R d e t e r m i n e s the f r a c t i o n o f f i x e d v o l t a g e a c c o r d i n g to the r e q u i r e m e n t s o f mass range and p r e c i s i o n . For a t e n p e r c e n t mass r a n g e , each d i g i t a l s t e p o f the programmed v o l t a g e c o r r e s p o n d s t o a 1.5 ppm change i n mass. The r e l a t i o n s h i p between mass and v o l t a g e o u t p u t f o r programmed a c c e l e r a t i n g v o l t a g e o p e r a t i o n i s 3

where m i s the mass i n f o c u s a t the c o l l e c t o r w i t h the D/A c o n v e r t e r a t 0 v o l t s , or d i g i t a l b i t s e t t i n g , r e q u i r e d t o ' ? o c u s mass m. ~Eq. 2 i s d e r i v e d from the mass s p e c t r o m e t e r e q u a t i o n by w r i t i n g a c c e l e r a t i n g v o l t a g e as a sum o f the a c c e l e r a t i n g v o l t a g e a t m p l u s the added v o l t a g e from the D/A c o n v e r t e r and a p p l i e s to b o t h s i n g l e and d o u b l e focussing sector instruments. F i g u r e 3 shows t h a t a l i n e a r r e l a t i o n s h i p i s o b t a i n e d f o r Eq. 2 f o r the 21110 mass s p e c t r o m e t e r m o d i f i e d as i n F i g u r e 2 over the mass range 293-331. V a l u e s of D/A c o n v e r t e r v o l t a g e w h i c h f o c u s p a r t i c u l a r e x a c t masses can be d e t e r m i n e d by l o c a t i n g i n t e r n a l r e f e r e n c e p e a k s , t y p i c a l l y d e r i v e d from p e r f l u o r o k e r o s e n e (PFK), and u t i l i z i n g them t o d e r i v e the s l o p e and i n t e r c e p t by l e a s t squares f i t to Eq. 2. A l t e r n a t i v e l y , the s p e c t r o m e t e r can be s e t to the c e n t e r o f a known peak, w h i c h g i v e s m directly, and k can be c a l c u l a t e d by m a n u a l l y l o c a t i n g one or more a d d i t i o n a l r e f e r e n c e peaks as V j j / a i s v a r i e d . The computer can be programmed to a d j u s t the app l i e d a c c e l e r a t i n g v o l t a g e d u r i n g an e x p e r i m e n t t o compensate f o r i n s t a b i l i t i e s i n the mass s p e c t r o m e t e r by sweeping a s i n g l e r e f e r e n c e peak p e r i o d i c a l l y , and c h a n g i n g the v o l t a g e a t each m/e a c o n s t a n t amount t o c o r r e c t f o r s h i f t s i n peak c e n t r o i d , a l t h o u g h t h e r e a r e s m a l l e r r o r s i n t h i s p r o c e d u r e because mass and v o l t a g e a r e not l i n e a r l y r e l a t e d (Eq. 2 ) . Feedback c o n t r o l o f t h i s type a l l o w s the use o f l e s s e x p e n s i v e power supp l i e s , w h i c h o f t e n have e x c e l l e n t s h o r t term s t a b i l i t y but p o o r e r l o n g term or t e m p e r a t u r e s t a b i l i t y (2_2) . M i c r o p r o c e s s o r - b a s e d SIM modules are becoming a v a i l a b l e , and one c o m m e r c i a l system s u i t a b l e f o r h i g h r e s o l u t i o n measurement i n c l u d e s a peak s t a b i l i z i n g c a p a b i l i t y and the f a c i l i t y f o r m o n i t o r i n g up to 8 m/ev a l u e s ( 2 3 ) . As w i t h a l l SIM c i r c u i t s l i m i t e d t o peak s w i t c h i n g , the one drawback r e l a t i v e to a computerbased system i s t h a t peak p r o f i l e i n f o r m a t i o n i s not e a s i l y o b t a i n e d . A s o l u t i o n to t h i s p r o b l e m i s to devote t h r e e c h a n n e l s o f the peak s e l e c t o r t o the same peak, one a t the c e n t e r , and two a t the 10 p e r c e n t 0

0

0

6. HADDON

Organic Trace Analysis

103

3.6 3.4 -

y/ 293 299 / #

#

3.3 -

0

/

0.2

0.4

0.6

# 3

0.8

°°

1.0

VD/A, VOLTS

Figure 3. Mass-voltage relationship for programmed accelerating voltage operation of 21110 mass spectrometer. M = m/e value focused at collector. V = voltage output of D/A converter. D/A

104

HIGH PERFORMANCE MASS SPECTROMETRY

i n t e n s i t y p o i n t s on the h i g h and low mass s i d e o f the peak. Three e x a c t mass fragmentograms c o i n c i d e n t i n t i m e ( t e m p e r a t u r e ) and h a v i n g 1:10:1 i n t e n s i t y r a t i o s c o n f i r m the absence o f i n t e r f e r i n g i s o b a r i c i o n s d u r i n g the a n a l y s i s ( 2 4 ) . Applications Aflatoxin Analysis. I n our l a b o r a t o r y we have measured s m a l l amounts o f a f l a t o x i n s i n foods and f e e d s , and i n the b i o f l u i d s o f e x p e r i m e n t a l a n i m a l s (25-27). A f l a t o x i n s are metab­ o l i t e s o f the mold A s p e r g i l l u s F l a v u s , and one o f the metabolites, a f l a t o x i n B i , i s of p a r t i c u l a r i n t e r e s t because i t i s a n a t u r a l l y o c c u r r i n g c a r c i n o g e n w h i c h i s sometimes p r e s e n t a t up to s e v e r a l p a r t s - p e r - b i l l i o n (ppb) i n some a g r i c u l t u r a l p r o d u c t s (28-30). The s t r u c t u r e s and p a r t i a l EI mass s p e c t r a o f s i x a f l a ­ t o x i n s are shown i n F i g u r e 4, and the mass s p e c t r a o f about 50 a d d i t i o n a l m y c o t o x i n s a r e a v a i l a b l e e l s e w h e r e (3JL). P u r i f i c a t i o n and subsequent t r a n s f e r o f a f l a ­ t o x i n s i n t o the mass s p e c t r o m e t e r i s d i f f i c u l t because the compounds a r e u n s t a b l e when h i g h l y p u r i f i e d , bond s t r o n g l y t o g l a s s s u r f a c e s , and cannot be s e p a r a t e d by gas chromatography. These f a c t o r s r e s t r i c t the use o f low r e s o l u t i o n mass s p e c t r a l a n a l y s i s f o r s t r u c t u r a l l y s p e c i f i c v e r i f i c a t i o n or q u a n t i t a t i o n of a f l a t o x i n s . The use o f h i g h r e s o l u t i o n SIM on p a r t i a l l y p u r i f i e d a f l a t o x i n c o n t a i n i n g m i x t u r e s i n t r o d u c e d v i a the d i r e c t probe s i g n i f i c a n t l y l o w e r s the l i m i t s o f d e t e c t i o n f o r mass s p e c t r a l a n a l y s i s o f t h e s e compounds, and has the a d d i t i o n a l advantage t h a t p r i o r i s o l a t i o n p r o c e d u r e s can be s i m p l i f i e d (12) . By u s i n g h i g h r e s o l u t i o n SIM we have d e t e c t e d a f l a t o x i n s B i and Mi i n e x p e r i m e n t a l m i l k samples a t 19 and 140 ppb, r e s p e c t i v e l y . An a n a l y t i c a l e x t r a c t i o n scheme f o r o b t a i n i n g p a r t i a l l y p u r i f i e d a f l a t o x i n s from f r e e z e - d r i e d m i l k and s u i t a b l e f o r use i n c o n j u n c t i o n w i t h h i g h r e s o l u t i o n mass s p e c t r a l a n a l y s i s i s shown i n F i g u r e 5. E x t r a c t A c o n t a i n s a l l o f the a f l a t o x i n s . In e x t r a c t s Β and C, w h i c h are more h i g h l y p u r i f i e d , a f l a t o x i n s B i and Mi a r e p a r t i a l l y s e p a r a t e d because of d i f f e r e n c e s i n p a r t i t i o n c o e f f i c i e n t s i n the e x t r a c t i o n s o l v e n t s (32). H i g h r e s o l u t i o n SIM d a t a f o r e x t r a c t s A and C a r e shown i n F i g u r e s 6 and 7. These d a t a o f i n t e n s i t y vvs. mass r e p r e s e n t scans o v e r 0.3 amu f o r each a p p r o p r i a t e i n t e g r a l m/e a t mass r e s o l u t i o n o f 7,000. The m i d d l e s c a n f o r e x t r a c t A ( F i g . 6 ) , w h i c h was r e c o r d e d a t the t e m p e r a t u r e o f maximum r a t e o f v o l a t i l i z a t i o n o f the a f l a t o x i n s , shows the Mi m o l e c u l a r i o n a t m/e 328, the

6. HADDON

Organic Trace Analysis

105

M-16 i o n o f Mi and m o l e c u l a r i o n o f B i (same e l e m e n t a l c o m p o s i t i o n , C i H i 0 ) a t m/e 312, and the M-29 i o n o f Mi a t m/e 299. The abundance r a t i o [M] ·/[M-29] agrees w i t h i n e x p e r i m e n t a l e r r o r w i t h t h e r a t i o o f t h e s e peaks i n t h e r e f e r e n c e low r e s o l u t i o n mass spectrum o f a f l a t o x i n Mi shown i n F i g u r e 4 and c o n f i r m s t h e absence o f i n t e r f e r e n c e a t a r e s o l u t i o n o f 7000 f o r this particular extract. Figure 7 gives equivalent d a t a f o r e x t r a c t C o b t a i n e d from t h e same sample o f f r e e z e - d r i e d m i l k . The a d d i t i o n a l peak a t m/e 314 i s from 12 ng a f l a t o x i n B , added as an i n t e r n a l s t a n d a r d . The abundance r a t i o s between a f l a t o x i n i o n s a t m/e 312 and 328 i n t h e s e scans r e f l e c t t h e d e c r e a s e d amount o f a f l a t o x i n B f o r e x t r a c t C w h i c h r e s u l t e d from s o l v e n t p a r t i t i o n i n g during extraction. Thus f o r e x t r a c t A ( F i g . 6) t h e i n t e n s i t y r a t i o o f C i H i 0 t o C i H i 0 i s 0.32, compared t o 0.06 f o r pure Mi (see F i g . 4 e ) , but f o r e x t r a c t C ( F i g . 7) t h e r a t i o i s 0.092, w h i c h i n d i c a t e s l e s s a f l a t o x i n B , as e x p e c t e d . The methodo l o g y t o q u a n t i t a t e t h e compounds i s c u r r e n t l y b e i n g developed. A n o t a b l e f e a t u r e o f t h e d i r e c t probe method f o r a f l a t o x i n a n a l y s i s i s an enhancement o f s e n s i t i v i t y w h i c h o c c u r s when p a r t i a l l y p u r i f i e d samples o f a f l a t o x i n a r e r u n on t h e mass s p e c t r o m e t e r , r e l a t i v e t o measurements on h i g h l y p u r i f i e d samples. Apparently, t h i s i s because b o n d i n g t o t h e s u r f a c e o f t h e sample c o n t a i n e r s i s s u b s t a n t i a l l y reduced i n a complex mixt u r e f o r t h e s e compounds. The d a t a o f F i g u r e 8 i l l u s t r a t e t h i s enhancement o f s e n s i t i v i t y f o r a f l a t o x i n B i added t o an e x t r a c t o f p o o l e d human u r i n e s . The c u r v e s o f F i g . 8 a r e e x a c t mass fragmentograms, r e c o r d e d d u r i n g r a p i d t e m p e r a t u r e programming o f t h e d i r e c t probe from about 50°C t o 250°C, w i t h the mass s p e c t r o m e t e r tuned t o the m o l e c u l a r i o n o f B , m/e 312.0635, a t 7000 r e s o l u t i o n . A c o m p a r i s o n o f t h e response o b t a i n e d i n c u r v e A o f F i g . 8 f o r 1.3 ng p u r e B i w i t h t h a t o f c u r v e D, o b t a i n e d from 0.03 ng B i added t o the u r i n e e x t r a c t , i l l u s t r a t e t h e 1 0 0 - f o l d enhancement o f s e n s i t i v i t y f o r d e t e c t i n g a f l a t o x i n s B i i n a complex m i x t u r e . The s e n s i t i v i t y enhancement i s somewhat g r e a t e r f o r a f l a t o x i n M i , f o r w h i c h n e g l i g i b l e response i s o b t a i n e d f o r 30 ng o f p u r i f i e d compound, compared t o a s i g n a l t o background r a t i o o f b e t t e r than 100 f o r 13 ng i n t r o d u c e d i n a m i x t u r e , as shown i n F i g s . 6 and 7. Q u a n t i t a t i v e H i g h R e s o l u t i o n SIM f o r A n a l y z i n g P u r i n e s i n B l o o d and T i s s u e . Q u a n t i t a t i v e d i r e c t probe measurements a t t h e 2100 ppm l e v e l f o r f i v e p u r i n e components o f human b l o o d 7

2

6

+

+

2

x

7

2

6

7

x

x

2

7

106

HIGH PERFORMANCE MASS SPECTROMETRY

L

OCM

228 241 1

f*

I Η

1

1'·

256 269

17

u

6

3

284

L

I ι h *f ' Γ I 'Ί » Π /

"12

γ

1

280

320

I

1

ι· ι ' ι · ι • ι '

I «

360

Μ/1

American Chemical Society

Figure 4a, b, c. 70 eV mass spectra of aflatoxins

HADDON

Organic Trace Analysis

200

240

210

320

360

400

320

360

400

M/E

200

240

210

M/E American Chemical Society

Figure 4d, e, /. 70 eV mass spectra of aflatoxins

108

HIGH PERFORMANCE MASS SPECTROMETRY

FREEZE DRIED MILK

1:1 MeOH-H0 2

Residue (discard)

primary extract 3 vol. CHC1, Combined CHCI3 extracts (Extract A)

MeOH-H0 phase 2

(discard)

evaporate residue re-dissolve in 1:1 MeOH-H0 2

MeOH-H0 phase (Μ + Β ) 2

χ

Skelly F. phase (discard)

χ

Skelly F. MeOH-H0 phase 2

1 vol. Benzene

Γ Benzene extract (Extract B) (80% Β 10% M ) χ >

MeOH-H0 phase 2

X

3 vol. CHC1,

I —

Combined CHCI3 extracts (Extract C)

MeOH-H0 phase 2

(20% B

l f

90% Η ) χ

(discard) Association of Official Analytical Chemists, Inc.

Figure 5. Analytical extraction of aflatoxins B and M from freeze-dried milk t

t

HADDON

Organic Trace Analysis

, 104 MV

2800 MV

, 171 MV

65 MV

U 649 MV.

402 MV

5 6 1

M

V

>CO

iy SU MV

ι 502 MV

ι 563 MV

ι 888 MV

I

BKGD

299

314

312

328

MASS Association of Official Analytical Chemists, Inc.

Figure 6. High resolution SIM scans of intensity in millivolts (mV) vs. mass for 13 ng aflatoxin M and 1.7 ng aflatoxin B in 100fig dried milk extract A. Direct introduction probe temperature increases from A to C. t

t

HIGH PERFORMANCE MASS SPECTROMETRY

512 MV

217 MV

157 MV

M,

- 5 MV

730 MV Mi

il 262 MV

1671 MV

ι 683 MV Mi

B (STD) 2

- 6 MV

BKGD

299

312

314

328

MASS Association of Official Analytical Chemists, Inc.

Figure 7. High resolution SIM scans of intensity in millivolts (mV) vs. mass for extract C. 12.4 ng aflatoxin B (mass 314) added as internal standard. Direct probe temperature increases from A to B. 2

6. HADDON

Organic Trace Analysis

111

and t i s s u e have been r e p o r t e d by Snedden and P a r k e r u s i n g h i g h r e s o l u t i o n SIM (13) ( 3 3 ) . The h i g h r e s o l u t i o n mass s p e c t r a l a n a l y s i s f o r t h e p u r i n e s p r o v i d e d q u a n t i t a t i v e measurement o f h y p o x a n t h i n e ( I ) , x a n t h i n e ( I I ) , u r i c a c i d ( I I I ) , a l l o p u r i n o l (IV) and p u r i n o l (V) (see F i g u r e 9 ) , w h i c h a r e i m p o r t a n t i n t h e s t u d y and t r e a t m e n t o f gout. The use o f h i g h r e s o l u t i o n mass s p e c t r o m e t r y made p o s s i b l e a c c u r a t e a n a l y s i s a t t h e s e l e v e l s w i t h o u t p r e - p u r i f i c a t i o n o f t h e samples. More r e c e n t l y t h e same group has used h i g h r e s o l u t i o n mass s p e c t r o m e t r y t o q u a n t i t a t e o e s t r o g e n and p r o g e s t e r o n e i n human o v a r i a n t i s s u e a t 10-50 ppm, a g a i n u s i n g p r o c e d u r e s t h a t r e q u i r e no c h e m i c a l s e p a r a t i o n o r d e r i v i t i z a t i o n p r i o r t o mass s p e c t r a l a n a l y s i s ( 1 4 ) . To i n s u r e t h a t t h e i r method i s v a l i d , t h e a u t h o r s r e c o r d e d a h i g h r e s o l u t i o n spectrum o f t h e m i x t u r e t o be a n a l y z e d a t t h e chosen r e s o l u t i o n , i n t h i s case 20,000, and compared t h e abundances o f c h a r a c t e r i s t i c mass peaks i n t h e e x p e r i m e n t a l sample w i t h those i n t h e h i g h r e s o l u t i o n r e f e r e n c e spectrum o f t h e pure compound. F i g u r e 10 i l l u s t r a t e s t h e e x c e l l e n t agreement o b t a i n e d a t f i v e o f t h e s i x masses examined f o r I I I i n human muscle t i s s u e . S i m i l a r experiments w i t h the o t h e r p u r i n e s o f F i g u r e 9 y i e l d e d a s e t o f masses a p p r o p r i a t e f o r a n a l y z i n g I-V t o g e t h e r . I n t e g r a t i n g t h e s e l e c t e d i o n p r o f i l e s ( e x a c t mass fragmentograms) a t f i v e masses as a f u n c t i o n o f temp e r a t u r e gave a s e t o f r e l a t i v e peak a r e a s . These peak a r e a s were r e l a t e d t o t h e r e l a t i v e amounts o f I-V u s i n g a s e t o f f i v e l i n e a r s i m u l t a n e o u s e q u a t i o n s and r e sponse c o e f f i c i e n t s d e v e l o p e d from runs on p u r i f i e d compounds, a c c o r d i n g t o e s t a b l i s h e d p r o c e d u r e s o f q u a n t i t a t i v e mass s p e c t r o m e t r y ( 3 4 ) . The i n t r o d u c t i o n o f a c c u r a t e l y weighed (mg amounts) samples f a c i l i t a t e d the c a l c u l a t i o n o f a b s o l u t e c o n c e n t r a t i o n s . An e v a l u a t i o n o f t h e s e n s i t i v i t y and measurement e r r o r f o r t h e a n a l y s i s r e v e a l s t h a t d i f f e r e n t methods o f sample p r e p a r a t i o n g i v e d i f f e r e n t q u a n t i t a t i v e p r e cision. F i g . 11 shows t h a t t h e b e s t r e s u l t s were o b t a i n e d u s i n g powdered samples o f d e s s i c a t e d b l o o d and muscle t i s s u e . D e p o s i t i n g t h e samples on t h e d i r e c t probe s u r f a c e ( g o l d ) by e v a p o r a t i o n o f an aqueous s o l u t i o n gave s i g n i f i c a n t l y lower p r e c i s i o n f o r a g i v e n sample amount, a p p a r e n t l y because o f i n t e r a c t i o n s between t h e sample and t h e s u r f a c e o f t h e probe f o r t h e more p o l a r compounds. When a l e s s p o l a r s u b s t a n c e , c a f f e i n e , was a n a l y z e d , t h e r e was no dependence o f p r e c i s i o n on t h e method o f p r e p a r i n g t h e sample, as shown i n F i g . 11.

112

HIGH PERFORMANCE MASS SPECTROMETRY

>

0

t

100 T

TIME, SEC. Association of Official Analytical Chemists, Inc.

Figure 8. Exact mass fragmentogram for C H 0 (aflatoxin Bi molecular ion, m/e 312.0635): A, 1.65 ng B from reference solution; B, blank, extract B; C, urine extract plus 0.13 ng B ; D, urine extract plus 0.030 ng B . î7

t)t

6

t

t

t

XXf Ν Η

CT

XXX Η

Η

Η

III

Ο

όσ

Η

Ν

Ν Μ

IV

Ο

XX}

CT

ΗΝ

ϋ Η

V

H C\

Λ^ 3

1

3 CH*

V[ American Chemical Society

Figure 9. Structures of purines analyzed by high resolution SIM: I, hypoxanthine; II, xanthine; III, uric acid; IV, allopurinol; and V, oxipurinol.

27

(») 66

66 22

29 19

20

ΙΟΟ

ΙΟΟ

American Chemical Society

94

90

Figure 10. Partial high resolution mass spectrum of substances evaporated from human muscle, showing peaks attributable to uric acid. ( a) Relative intensities of uric acid peaks from muscle; (b) relative intensities of sam peaks from uric acid; (c) nominal mass of multiplet.

25

loi

114

HIGH

PERFORMANCE

MASS

SPECTROMETRY

American Chemical Society

Figure 11. Dependence of analytical precision of high resolution SIM results on concentration and diluent for caffeine, hypoxanthine, xanthine, and uric acid in solution and solid mixtures

6.

115

Organic Trace Analysis

HADDON

Discussion The mass s p e c t r o m e t e r i s w e l l s u i t e d t o t r a c e a n a l y s i s o f the t y p e d i s c u s s e d h e r e f o r two r e a s o n s : The p r o c e s s o f i o n p r o d u c t i o n by the mass s p e c t r o m e t e r i s g e n e r a l l y l i n e a r o v e r many o r d e r s o f magnitude o f sample c o n c e n t r a t i o n ; and the s e l e c t i v i t y o f the method can be e x t r e m e l y g r e a t when e i t h e r h i g h mass r e s o l u ­ t i o n , a s e l e c t i v e i o n i z a t i o n method, or a c o m b i n a t i o n of t h e s e a r e employed t o e f f e c t s e p a r a t i o n between d i f f e r e n t components o f m i x t u r e s . The wide dynamic range n e c e s s a r y f o r q u a n t i t a t i o n i s w e l l accomodated by electron multiplier detection. Photoplate detection w i l l be g e n e r a l l y l e s s s u i t a b l e f o r t r a c e a n a l y s i s problems o f t h i s n a t u r e because of extensive blackening of the p h o t o g r a p h i c p l a t e near i n t e n s e l i n e s , and nonl i n e a r i t y of response. The a f l a t o x i n s a r e f a v o r a b l y a n a l y z e d by h i g h r e s o l u t i o n SIM i n complex m i x t u r e s i n p a r t because o f t h e i r low r a t i o o f hydrogen t o c a r b o n , w h i c h l e a d s t o an e x a c t mass v a l u e below the masses o f o t h e r sub­ stances, p r i m a r i l y l i p i d s , t y p i c a l l y present i n food e x t r a c t s . Many o t h e r e n v i r o n m e n t a l p o l l u t a n t s i n ­ c l u d i n g h a l o g e n a t e d p e s t i c i d e s and many o f the common m y c o t o x i n s (35.) have comparable o r g r e a t e r mass d e f e c t s and s h o u l d be amenable t o a n a l y s i s by t h i s method. We have f r e q u e n t l y o b s e r v e d peaks below the e x a c t mass p o s i t i o n s o f the a f l a t o x i n s , as shown f o r the scans a t m/e 299 and 312 o f F i g u r e 6. These peaks may a r i s e from h a l o g e n a t e d p e s t i c i d e c o n t a m i n a n t s . High reso­ l u t i o n SIM may be a v a l u a b l e complement t o GC/MS and t o n e g a t i v e c h e m i c a l i o n i z a t i o n t e c h n i q u e s (8_,_9) f o r such compounds. Surface e f f e c t s . I n t e r a c t i o n s w i t h the s u r f a c e o f cont a i n e r s used t o i n t r o d u c e samples v i a the d i r e c t probe can a f f e c t d e t e c t i o n l i m i t s a d v e r s e l y , and an under­ s t a n d i n g o f s u r f a c e e f f e c t s appears to be i m p o r t a n t f o r f u l l y u t i l i z i n g the method i n t r a c e a n a l y s i s . In a d e t a i l e d s t u d y o f s u r f a c e i n t e r a c t i o n s f o r s m a l l pep­ t i d e s , Friedman (36-38) d e s c r i b e s the r a t e o f v o l a t i ­ l i z a t i o n (dn/dt) o f a pure compound from a s u r f a c e by the e q u a t i o n %

H

= N Ae" o

E / R T

(3)

where N i s the number o f sample m o l e c u l e s i n i t i a l l y on the s u r f a c e , A i s a f r e q u e n c y f a c t o r , and the exponen­ t i a l term e ~ ' g i v e s the f r a c t i o n o f m o l e c u l e s a t t e m p e r a t u r e Τ w i t h s u f f i c i e n t energy t o overcome s u r ­ face bonding. Ε i s the a c t i v a t i o n energy f o r removing 0

E

R T

116

HIGH

PERFORMANCE

MASS

SPECTROMETRY

a m o l e c u l e from the s u r f a c e . A h i g h r a t e o f v o l a t i l i z a t i o n i s r e a l i z e d by i n c r e a s i n g N , f o r example by d i s p e r s i n g the sample by e v a p o r a t i o n from s o l u t i o n and by r e d u c i n g E, by u s i n g an i n e r t d i r e c t probe s u r f a c e . The enhanced s e n s i t i v i t y f o r a f l a t o x i n s i n mixt u r e s t h a t we o b s e r v e i s c o n s i s t e n t w i t h Friedman's model f o r s u r f a c e v o l a t i l i z a t i o n . Apparently other compounds c o d e p o s i t e d from s o l u t i o n a l o n g w i t h the a f l a t o x i n s e i t h e r occupy a c t i v e s i t e s on the sample tubes p r e f e r e n t i a l l y , o r s h i e l d the a f l a t o x i n s from them, r e s u l t i n g i n more e f f i c i e n t v o l a t i l i z a t i o n a r i s i n g from a r e d u c t i o n i n E. The c u r v e s o f measurement e r r o r f o r the p u r i n e s ( F i g . 1 1 ) , w h i c h i n d i c a t e lower p r e c i s i o n f o r more p o l a r compounds, a r e s u g g e s t i v e o f s u r f a c e i n t e r a c t i o n s ^ but the i n t e r p r e t a t i o n i s l e s s o b v i o u s , because d i s p e r s i n g the compounds over the g o l d s u r f a c e o f the sample probe a c t u a l l y l o w e r e d the p r e c i s i o n o f the a n a l y s i s . The p r e s e n c e o f h i g h concent r a t i o n s of i n o r g a n i c s a l t s probably accounts f o r t h i s e f f e c t f o r the p u r i n e s . I n Friedman's s t u d y o f s m a l l peptide v o l a t i l i z a t i o n , traces of i n o r g a n i c s a l t s l o w e r e d the r a t e o f v o l a t i l i z a t i o n s u b s t a n t i a l l y a t a given temperature (38). The s u r f a c e e f f e c t p r o b l e m i s an i m p o r t a n t a r e a f o r f u r t h e r study. I t has been s u g g e s t e d r e c e n t l y t h a t a r e d u c t i o n i n s u r f a c e b o n d i n g e x p l a i n s the s p e c t r a o b t a i n e d from " n o n - v o l a t i l e " compounds a b s o r b e d on a c t i v a t e d (surface-prepared) tungsten emitter wires u s i n g f i e l d d e s o r p t i o n mass s p e c t r o m e t r y (39,40.). M i n i m i z i n g s u r f a c e i n t e r a c t i o n s appears p r o m i s i n g as a g e n e r a l method t o enhance s e n s i t i v i t y f o r mass s p e c t r a l a n a l y s i s of l e s s v o l a t i l e substances. Of c o u r s e , i t i s i m p o r t a n t t o r e c o g n i z e t h a t the c h e m i c a l i n s t a b i l i t y o f a p a r t i c u l a r s u b s t a n c e may be s i g n i f i c a n t l y d e c r e a s e d r e l a t i v e t o i t s s t a b i l i t y i n a s o l u t i o n or s o l i d sample m a t r i x ; f o r example, a f l a t o x i n s d i s p e r s e d on a s u r f a c e show g r e a t l y enhanced r e a c t i v i t y to UV l i g h t . Ion Source C o n t a m i n a t i o n . C o n t a m i n a t i o n o f the i o n s o u r c e , w h i c h may o c c u r r a p i d l y i n some c a s e s , can a p p r e c i a b l y r e d u c e the s e n s i t i v i t y o f the method. T h i s f a c t o r must be weighed w i t h the advantages o f u s i n g the d i r e c t probe when a l t e r n a t i v e GC/MS p r o c e d u r e s a r e a p p l i c a b l e . The r a p i d i t y o f s o u r c e c o n t a m i n a t i o n v a r i e s w i d e l y i n the few examples r e p o r t e d . Snedden and P a r k e r e x p e r i e n c e d l e s s t h a n 20 per c e n t d e c l i n e i n s e n s i t i v i t y i n s i x months o f p u r i n e a n a l y s i s ( 1 3 J . C o n v e r s e l y , Dougherty (8.) found t h a t s e n s i t i v i t y f o r p o l y c h l o r i n a t e d b i p h e n y l (PCB) d e t e c t i o n was s e v e r e l y r e d u c e d a f t e r r u n n i n g t e n samples o f u n p u r i f i e d human u r i n e e x t r a c t . M i n i m a l s o l v e n t e x t r a c t i o n and column 0

6.

HADDON

Organic Trace Analysis

117

chromatography p r i o r t o d i r e c t probe a n a l y s i s s o l v e d t h i s p r o b l e m , as i t has i n our l a b o r a t o r y f o r a f l a t o x i n a n a l y s i s . Other approaches t o r e d u c i n g i o n source c o n t a m i n a t i o n may be a p p l i c a b l e i n some c a s e s . F o r example, i t s h o u l d be p o s s i b l e t o m e c h a n i c a l l y v e n t t h e v o l a t i l i z e d sample away from t h e i o n i z a t i o n chamber u n t i l t h e temperature o f v o l a t i l i z a t i o n f o r t h e compounds o f i n t e r e s t i s reached (see F i g . 8 ) , t h e r e b y reducing the q u a n t i t y o f m a t e r i a l which enters the i o n source. Chemical B i n d i n g E f f e c t s . The c h e m i c a l s t a t e o f t h e sample c a n a f f e c t i t s v o l a t i l i t y . A comparison o f the q u a n t i t a t i v e mass s p e c t r a l measurements f o r u r i c a c i d i n b l o o d plasma w i t h t h e c o n c e n t r a t i o n v a l u e s o b t a i n e d by e n z y m a t i c a n a l y s i s s u g g e s t s t h a t t h e mass s p e c t r o meter d e t e c t s o n l y t h e u r i c a c i d w h i c h i s bound l o o s e l y t o b l o o d p r o t e i n s , and n o t t h e u r i c a c i d i n s o l u t i o n , w h i c h may e x i s t p r i m a r i l y as t h e sodium s a l t . These d a t a , w h i c h must be c o n s i d e r e d p r e l i m i n a r y , suggest t h a t mass s p e c t r a l a n a l y s i s , when p e r f o r m e d w i t h o u t p r i o r sample t r e a t m e n t , may i n d i c a t e i n d i r e c t l y t h e e x t e n t o f c h e m i c a l b i n d i n g f o r s m a l l m o l e c u l e s i n some cases. Conclusions High r e s o l u t i o n s e l e c t e d i o n m o n i t o r i n g measurements on samples i n t r o d u c e d on t h e d i r e c t probe c a n p r o v i d e a c c u r a t e and h i g h l y s p e c i f i c q u a l i t a t i v e and q u a n t i t a t i v e i n f o r m a t i o n about compounds p r e s e n t i n t r a c e amounts. T h i s m i x t u r e a n a l y s i s method i s app l i c a b l e t o some compounds w h i c h cannot be s e p a r a t e d by gas chromatography because o f low v o l a t i l i t y o r chemical instability. The h i g h e s t s e n s i t i v i t i e s a r e obt a i n e d f o r s u b s t a n c e s h a v i n g l a r g e mass d e f e c t s and t h i s embraces a number o f c l a s s e s o f compounds, i n c l u d i n g h a l o g e n a t e d p e s t i c i d e s and m y c o t o x i n s , w h i c h a r e o f p a r t i c u l a r i n t e r e s t i n e n v i r o n m e n t a l and f o o d c h e m i s t r y . M a g n e t i c s e c t o r mass s p e c t r o m e t e r s h a v i n g s u f f i c i e n t e l e c t r o n i c s t a b i l i t y f o r a c c u r a t e mass measurement c a n be m o d i f i e d f o r a c c u r a t e q u a n t i t a t i v e h i g h r e s o l u t i o n s e l e c t e d i o n m o n i t o r i n g measurements.

References 1. Keith, L.H., in Identification and Analysis of Organic Pollutants in Water, L.H. Keith, ed. (Ann Arbor Science Publishers, Ann Arbor) 1976, p. iii. 2. McFadden, W.H., Schwartz, H.L. and Evans, S., J. Chromatogr. (1976) 122, 389.

118

3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.

HIGH

PERFORMANCE

MASS

SPECTROMETRY

Arpino, P.J., Dawkins, B . J . , and McLafferty, F.W., J. Chromatogr. Sci. (1974) 12, 574. Carroll, D.I., Dzidic, I., Stillwell, R.N., Haegele, K.D. and Horning, E.C., Anal. Chem. (1975) 47, 2369. Sphon, J.Α., Dreifuss, P.A. and Schulten, H.R., J. Assoc. Official Anal. Chemists, (1977) 60, 73. Hunt, D.F. and Ryan III, J.F., Anal. Chem., (1972) 44, 1306. Weinkam, R.J., Rowland, M. and Meffin, P . J . , Biomed. Mass Spectrom. (1977) 4, 42. Dougherty, R.C. and Piotrowska, K., Proc. Nat'l. Acad. Sci. USA, (1976) 73, 1777. Dougherty, R.C. and Piotrowska, K., J. Assoc. Official Anal. Chemists, (1976) 59, 1023. Levson, K. and Schulten, H.R., Biomed. Mass Spec­ trom. (1976) 3, 137. Soltero-Rigau, E. Kruger, K.L. and Cooks, R.G., Anal. Chem. (1977) 49, 435. Haddon, W.F., Masri, M.S., Randall, V.G., Elsken, R.H., and Meneghelli, B . J . , J. Assoc. Official Anal. Chemists (1977) 60, 107. Snedden, W. and Parker, R.B., Anal. Chem. (1971) 43, 1651. Snedden, W. and Parker, R.B., Biomed. Mass Spec­ trom. (1976) 3, 275. Hutzinger, O., Jamieson, W.D., and Safe, S., Nature (London) (1974) 252, 698. Fenselau, C., Anal. Chem. (1977) 49, 563A. Millington, D.S., Buoy, M.E., Brooks, G., Harper, M.E. and Griffiths, Κ., Biomed. Mass Spectrom. (1975) 2, 219. Millington, D.S., J. Steroid Biochem. (1975) 6, 239. Evans, K.P., Mathias, Α., Mellor, Ν., Silvester, R. and Williams, A.E., Anal. Chem. (1975) 47, 821. Gallegos, E . J . , Anal. Chem. (1975) 47, 1150. Hammar, C.G., and Hessling, R., Anal. Chem. (1971) 43, 298. Holmes, W.F., Holland, W.H., Shore, B.L., Bier, D.M. and Sherman, W.R., Anal. Chem. (1973) 45, 2063. Vacuum Generators, Ltd., Altrincham, Cheshire, England. Millington, D.S., personal communication. Haddon, W.F., Wiley, M. and Waiss, A.C., Anal. Chem. (1971) 43, 268. Masri, M.S., J. Am. Oil Chem. Soc. (1970) 47, 61. Masri, M.S., Haddon, W.F., Lundin, R.E., and Hseih, D.P.H., J. Agric. Food Chem. (1974) 22, 512.

6.

HADDON

Organic Trace Analysis

119

28. Wilson, B.J. and Hayes, A.W. in Toxicants Oc­ curring in Foods, National Academy of Sciences, Washington, D.C., pp. 372-423 (1973). 29. Heildelberger, C., Annu. Rev. Biochem. (1975) 44, 79. 30. Ong, T.M., Mutat. Res. (1975) 32, 35. 31. Aflatoxin Mass Spectral Data Bank, Pohland, A.E. and Sphon, J.Α., ed., U.S. Food and Drug Adm., Bureau of Foods, Division of Chem. and Phys., Washington, D.C. 32. Masri, M.S., Page, J.R., and Garcia, V.G., J . Assoc. Official Anal. Chemists (1969) 52, 641. 33. Parker, R.B., Snedden, W., and Watts, R.W.E., Biochem. J . (1969) 115, 103. 34. Kiser, Introduction to Mass Spectrometry and Its Applications, Prentice-Hall, Inc., Englewood Cliffs (1965), p. 216. 35. Kingston, D.G.I., J. Assoc. Official Anal. Chemists (1976) 59, 1016. 36. Beuhler, R . J . , Flanigan, E., Greene, L . J . and Friedman, L . , Biochem. and Biophys. Res. Commun. (1972) 46, 1082. 37. Beuhler, R.J., Flanigan, E., Greene, L . J . and Friedman, L . , Biochem. (1974) 13, 5061. 38. Beuhler, R.J., Flanigan, Ε., Greene, L . J . and Friedman, L . , J . Am. Chem. Soc. (1974) 96, 3990. 39. Soltman, B., Sweeley, C.C. and Holland, J.F., Anal. Chem. (1977) 49, 1164. 40. Hunt, D.F., Shabanowitz, J . and Botz, F.K., Anal. Chem. (1977) 49, 1160. RECEIVED December 30, 1977