8 Analytical Applications of Postive and Negative Ion
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
Chemical Ionization Mass Spectrometry DONALD F. HUNT and SATINDER K. SETHI Department of Chemistry, University of Virginia, Charlottesville, VA 22901
As early as 1916 Dempster (1) observed an ion at m/e=3, which was correctly identified as H3 . By 1925 it was well established that this ion was produced by a secondary process resulting from c o l l i s i o n between ion (H+2) and neutral species ( H ) in the mass spectrometer ion source. Studies of such ion molecule c o l l i s i o n s were largely neglected u n t i l 1952, when interest was revived by the observation of the ion, CH+5 formed by the reaction, (2) +
2
.
CH+4 + C H —-> CH+5 + CH.3. 4
The b i r t h of Chemical Ionization Mass Spectrometry (CIMS) took place when Field (3) and Munson (3a) realized that an ion such asCH+5could ionize sample molecules by transferring a proton to them in the gas-phase. Such an ionization process is t o t a l l y different from ionization of a molecule by removal of an electron, as is done in most other mass spectrometric methods. Here it is a chemical reaction between the primary ion (reagent ion) and the sample molecule which is responsible for ionization of the sample. It is possible to control both the energetics of sample ion formation as well as the type of structural information obtained in the resulting mass spectrum. Different CI reagents undergo different ion-molecule reactions with the same sample molecule, and each ion-molecule reaction affords different structural information about the sample in question. Ion molecule reactions have been developed to identify different organic functional groups and to differentiate, primary, secondary and t e r t i a r y alcohols (4), 1 ° , 2 ° . and 3° amines (5), c y c l i c alkanes from ©0-8412-0422-5/78/47-070-150$10.00/0 Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
8.
HUNT
A N D SETHI
Positive and Negative Ion Chemical Ionization
151
o l e f i n s ( 4 ) , s u l p h u r c o n t a i n i n g a r o m a t i c s from nons u l p h u r c o n t a i n i n g a r o m a t i c s , (6) and even i n some cases the o x i d a t i o n s t a t e o f the heteroatom i n polya r o m a t i c h y d r o c a r b o n s (7) . R e c e n t l y t h e r e have been a t t e m p t s t o d i s t i n g u i s h s t e r e o i s o m e r s i n t h e gas-phase u s i n g o p t i c a l l y a c t i v e r e a g e n t gases ( 8 ) . In a d d i t i o n t o an e f f i c i e n t t e c h n i q u e f o r t h e p r o d u c t i o n o f a wide v a r i e t y o f p o s i t i v e i o n s , CI i s a l s o an e x c e l l e n t method f o r g e n e r a t i n g n e g a t i v e l y charged sample i o n s . Due t o t h e l a r g e c o n c e n t r a t i o n o f t h e r m a l o r near t h e r m a l energy e l e c t r o n s , produced d u r i n g i o n i z a t i o n o f t h e CI r e a g e n t gas, t h e r e s o n a n c e e l e c t r o n c a p t u r e mechanism o p e r a t e s e f f i c i e n t l y t o produce l a r g e c o n c e n t r a t i o n s o f n e g a t i v e sample i o n s under CI c o n d i t i o n s . A d e s c r i p t i o n o f o u r i n i t i a l r e s e a r c h e f f o r t i n n e g a t i v e i o n CI w i l l be p r e s e n t e d l a t e r i n the chapter. P a r t i c u l a r l y noteworthy i s the development o f methodology w h i c h f a c i l i t a t e s s i m u l taneous d e t e c t i o n o f b o t h p o s i t i v e and n e g a t i v e i o n s on a q u a d r u p o l e mass s p e c t r o m e t e r (6). In a d d i t i o n t o t h e above work we have a l s o r e c e n t l y d e v e l o p e d methodology f o r o b t a i n i n g CI mass s p e c t r a o f n o n v o l a t i l e s a l t s and t h e r m a l l y l a b i l e m o l e c u l e s , under CI c o n d i t i o n s u s i n g q u a d r u p o l e i n s t r u m e n t s w i t h f i e l d d e s o r p t i o n e m i t t e r s as s o l i d probes b u t i n t h e absence o f an e x t e r n a l l y a p p l i e d f i e l d (9). We have a l s o demonstrated t h a t a c c u r a t e mass measurements ( NHÎ
ΔΗ = -127 K c a l / m o l e ; P.A.(Crit) - 127 ΔΗ = -207 K c a l / m o l e ;
show t h a t r e a c t i o n w i t h Ht w i l l
P.A. (NHt) = 207
produce p r o t o n a t e d
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
154
HIGH
PERFORMANCE
MASS
SPECTROMETRY
sample i o n , [ M + H ] , h a v i n g 26 Kcal/mole more energy than those g e n e r a t e d by p r o t o n t r a n s f e r from CH+. Due t o v e r y h i g h p r o t o n a f f i n i t y o f ammonia, the NHi* w i l l o n l y t r a n s f e r a p r o t o n t o m o l e c u l e s w h i c h a r e more b a s i c t h a n ammonia. A c c o r d i n g l y , the NH^ i o n f i n d s u t i l i t y as a r e a g e n t f o r s e l e c t i v e l y i o n i z i n g b a s i c components i n a m i x t u r e o f o r g a n i c compounds. In many c a s e s e x t e n s i v e f r a g m e n t a t i o n o f the sample i s d e s i r a b l e i n o r d e r t o o b t a i n as much s t r u c t u r a l i n f o r m a t i o n as p o s s i b l e . F r a g m e n t a t i o n under EI i s due t o h i g h i n t e r n a l energy o f the m o l e c u l a r i o n a l t h o u g h the f r e e r a d i c a l c h a r a c t e r o f Mt lowers a c t i v a t i o n energy f o r many o t h e r w i s e i n a c c e s s i b l e decomp o s i t i o n pathways. F o r t u n a t e l y E l - t y p e s p e c t r a can be o b t a i n e d under CI c o n d i t i o n s by u s i n g p o w e r f u l one e l e c t r o n o x i d i z i n g agents l i k e N j * . The n i t r o g e n r a d i c a l c a t i o n formed by e l e c t r o n impact on N2 gas a t 1 torr
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
+
N* + e(80eV)
-> N *
+ N* + e
AB + NÎ'
•+ A B '
AB + N*
+ AB
2
+
+ e
+ N
2
+ N
2
(1) ΔΗ - -(2-8)eV
+ e
(2)
ΔΗ - -(0-3)eV
(3)
can t r a n s f e r 2-8eV o f energy t o the sample m o l e c u l e (AB) d u r i n g the i o n i z a t i o n s t e p ( E q - 2 ) . Extensive f r a g m e n t a t i o n o f the r e s u l t i n g Mt i o n r e s u l t s and a spectrum i d e n t i c a l t o t h a t produced by EI methodology i s o b t a i n e d . M e t a s t a b l e (N*) can a l s o i o n i z e the sample as shown i n ( E q - 3 ) . S e l e c t i v e Reagent Gases f o r P o s i t i v e Ion CIMS Argon-Water : When an argon-water m i x t u r e i s employed as the CI r e a g e n t gas, the s p e c t r a o b t a i n e d e x h i b i t f e a t u r e s c h a r a c t e r i s t i c o f b o t h c o n v e n t i o n a l EI and B r o n s t e d a c i d CI s p e c t r a (T4) . Use o f t h i s reagent gas m i x t u r e i s p a r t i c u l a r l y v a l u a b l e when an i o n c h a r a c t e r i s t i c o f the sample m o l e c u l a r weight and abundant fragment i o n s c h a r a c t e r i s t i c o f m o l e c u l a r s t r u c t u r e a r e b o t h r e q u i r e d t o s o l v e the a n a l y t i c a l problem a t hand. E l e c t r o n bombardment o f A r / H 0 (20/1) a t 1 t o r r produces i o n s a t m/e 4 0 ( A r ) , 8 0 ( A r J ) , and 1 9 ( H 0 ) as w e l l as a p o p u l a t i o n o f m e t a s t a b l e argon n e u t r a l s (Ar*). P r o t o n t r a n s f e r from H 0 t o a sample m o l e c u l e i s u s u a l l y o n l y s l i g h t l y e x o t h e r m i c and seldom r e s u l t s i n e x t e n s i v e f r a g m e n t a t i o n o f the r e s u l t i n g M+l i o n . In c o n t r a s t e l e c t r o n t r a n s f e r from sample t o A r i s h i g h l y e x o t h e r m i c (4-6eV) and p r o d u c e s from the sample 2
+
+
3
+
3
+
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
8.
HUNT
Positive and Negative Ion Chemical Ionization
A N D SETHI
155
an energy r i c h r a d i c a l c a t i o n w h i c h s u f f e r s fragment a t i o n t o produce a E l - t y p e s p e c t r u m . The a b i l i t y t o r e c o r d b o t h E I - and C l - t y p e s p e c t r a i n a s i n g l e s c a n i s p a r t i c u l a r l y u s e f u l when t h e maximum s t r u c t u r a l i n f o r m a t i o n p o s s i b l e i s d e s i r e d and t h e q u a n t i t y o f sample a v a i l a b l e f o r analysis i s only s u f f i c i e n t f o r a s i n g l e e x p e r i m e n t . A m i x t u r e o f n i t r o g e n and w a t e r a f f o r d s s p e c t r a i d e n t i c a l t o t h o s e o b t a i n e d w i t h argon and w a t e r as t h e CI r e a g e n t . F o r t h e purpose o f c o m p a r i son, c o n v e n t i o n a l EI and C I ( A r - H 0 ) s p e c t r a o f d i - n p e n t y l a m i n e a r e shown i n F i g u r e 1. R e a c t i o n o f t h e amine w i t h H 0 a f f o r d s a s i n g l e i o n [ M + l ] . I n cont r a s t t h e EI spectrum d i s p l a y s a r e l a t i v e l y weak molecular ion. 2
+
+
3
Deuterium o x i d e : When D 0 i s employed as t h e CI r e a g e n t , a l l a c t i v e hydrogens a t t a c h e d t o N,S, o r 0 atoms i n an o r g a n i c sample undergo exchange d u r i n g t h e l i f e time o f t h e sample i n t h e i o n s o u r c e o f t h e mas s spectrometer. A r o m a t i c hydrogens have a l s o been shown t o undergo exchange {IS). I f t h e mol. wt. o f t h e sample i s a l r e a d y known from p r e v i o u s C l f C H O s p e c t r a , t h e number o f a c t i v e hydrogens i n t h e m o l e c u l e can be c o u n t e d by i n s p e c t i o n o f t h e mol. wt. r e g i o n o f t h e CI (D 0) spectrum. D i f f e r e n t i a t i o n o f 1°, 2°, and 3° amines i s e a s i l y a c c o m p l i s h e d i n t h i s manner (5>) . I n the CI ( D 0 ) spectrum o f 6 - k e t o e s t r a d i o l ( F i g u r e 2 ) , the M+l peak o b s e r v e d i n t h e w a t e r CI s p e c t r a a t m/e=287 i s s h i f t e d t o m/e=290. T h i s l a t t e r i o n c o r responds t o d - k e t o e s t r a c T i o l + D and r e s u l t s from exchange o f t h e two a c t i v e hydrogen atoms i n t h e d i o l f o l l o w e d by d e u t e r a t i o n . 2
#
2
2
+
2
Ammonia E l e c t r o n bombardment o f ammonia g e n e r a t e s NHÎ a l o n g w i t h ( N H ) H and (NH ) H+. These i o n s f u n c t i o n as weak B r o n s t e d a c i d s and w i l l o n l y p r o t o n a t e s t r o n g l y b a s i c s u b s t a n c e s l i k e amides ( 1 6 ) , amines (17) , and some a , 3 - u n s a t u r a t e d k e t o n e s (Γ8Γ) . The r e s u l t i n g sample i o n s seldom undergo f r a g m e n t a t i o n because o f t h e low e x o t h e r m i c i t y a s s o c i a t e d w i t h p r o t o n t r a n s f e r r e a c t i o n s ( F i g u r e 3 a ) . A l d e h y d e s , k e t o n e s , e s t e r s , and a c i d s , w h i c h a r e n o t s u f f i c i e n t l y b a s i c tô a c c e p t a p r o t o n from NH+, show i o n s i n C I ( N H ) s p e c t r a r e s u l t i n g from t h e e l e c t r o p h i l i c attachment o f NH^ t o t h e molec u l e CFigure 3b) ( 1 9 ) . A n o t h e r i n t e r e s t i n g a s p e c t o f CI (NH ) r e s e a r c h i s the f i n d i n g t h a t ammonia can be employed as a r e a g e n t gas f o r t h e d i r e c t a n a l y s i s o f o r g a n i c s i n w a t e r . The +
3
2
3
3
3
3
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
HIGH
100*
1 El
sort 30,
44
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
SPECTROMETRY
43. 58
70.
IOO-f
it!
MASS
1UDT
MWI57
ο CI
PERFORMANCE
,157 *f 158
43
50i
44 301
1561
158, 20
60
"V·
100
—ι— 140
170
Figure 1. EI and CI (N +H 0) mass spectra of di-n-pentylamine. The intensity of reagent ions is 50 to 100 times greater than as shown. 2
2
IOC
Analytical Chemistry
Figure 2. CI (H 0) and CI (D 0) mass spectra of 6-ketoestradiol. The inten sity of reagent ions is 50 to 100 times greater than as shown. 2
2
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
8.
HUNT
A N D SETHI
157
Positive and Negative Ion Chemical Ionization
ammonium i o n i s n o t s u f f i c i e n t l y a c i d i c t o p r o t o n a t e w a t e r . A c c o r d i n g l y , o r g a n i c s i n water c a n be s e l e c t i v e l y i o n i z e d when ammonia i s employed as t h e CI reagent gas. The NH+ i o n c a n a l s o be used as s t e r e o c h e m i c a l probe o f o r g a n i c s t r u c t u r e s . S i m p l e a l c o h o l s a r e n o t i o n i z e d under CI (NH ) c o n d i t i o n s . I n c o n t r a s t , d i o l s i n w h i c h t h e two h y d r o x y l groups c a n s i m u l t a n e o u s l y form i n t r a m o l e c u l a r hydrogen bonds t o t h e NH+ i o n a r e i o n i z e d (20). D i f f e r e n t i a t i o n o f t r a n s d i a x i a l d i o l s from t h e 3 T e q u a t o r i a l o r a x i a l - e q u a t o r i a l isomers i s e a s i l y a c c o m p l i s h e d by CI (NH ) mass s p e c t r o m e t r y (7) (Figure 3c). L i k e ammonia, methylamine, i s a l s o a u s e f u l r e agent gas. Aldehydes and k e t o n e s r e a c t w i t h CH NH i n t h e CI s o u r c e t o form p r o t o n a t e d S c h i f f bases ( 2 1 ) . The r e a c t i o n i s q u i t e s e n s i t i v e t o t h e s t e r i c e n v i r o n ment o f t h e c a r b o n y l group ( 7 ) .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
3
3
3
3
N i t r i c O x i d e : N i t r i c o x i d e i s one o f t h e most v e r s a t i l e r e a g e n t gases f o r p o s i t i v e i o n CIMS. E l e c t r o n bombardment o f n i t r i c o x i d e a f f o r d s NO w h i c h f u n c t i o n s as an e l e c t r o p h i l e , h y d r i d e a b s t r a c t o r , and one e l e c t r o n o x i d i z i n g agent toward o r g a n i c samples. Depending on t h e type o f o r g a n i c f u n c t i o n a l groups p r e s e n t , any o r a l l o f t h e above r e a c t i o n s may be o b s e r v e d . We f i n d t h a t n i t r i c o x i d e CI s p e c t r a a r e p a r t i c u l a r l y u s e f u l f o r i d e n t i f y i n g organic f u n c t i o n a l groups i n sample m o l e c u l e s , f o r d i f f e r e n t i a t i n g o l e f i n s from c y c l o a l k a n e s , and f o r f i n g e r p r i n t i n g h y d r o c a r b o n mixtures. Of p a r t i c u l a r i n t e r e s t i s t h e f i n d i n g t h a t CI (NO) s p e c t r a c a n be employed t o d i f f e r e n t i a t e p r i mary, s e c o n d a r y , and t e r t i a r y a l c o h o l s . N i t r i c o x i d e CI s p e c t r a o f t e r t i a r y a l c o h o l s c o n t a i n o n l y ( M - 1 7 ) i o n s formed by a b s t r a c t i o n o f t h e h y d r o x y l group t o form n i t r o u s a c i d . S p e c t r a o f s e c o n d a r y a l c o h o l s e x h i b i t three i o n s ; ( M - l ) , which corresponds t o a p r o t o n a t e d k e t o n e ; ( M - 1 7 ) ; and (M-2+30) . The l a t t e r i o n i s g e n e r a t e d by t h e o x i d a t i o n o f t h e a l c o h o l f o l lowed by a d d i t i o n o f N 0 t o t h e r e s u l t i n g k e t o n e . Spectra o f primary alcohols also e x h i b i t ions corr e s p o n d i n g t o ( M - l ) and (M-2+30) . I n a d d i t i o n , however, an i o n , ( M - l ) , u n i q u e f o r p r i m a r y a l c o h o l s i s o b s e r v e d . T h i s i o n i s p r o d u c e d by h y d r i d e a b s t r a c t i o n from C i o f t h e a l d e h y d e formed on o x i d a t i o n o f t h e p r i m a r y a l c o h o l . F i g u r e s 4 a , b, c show CI(NO) s p e c t r a of three isomers o f pentanol. +
+
+
+
+
+
+
+
+
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
158
HIGH
Scheme:
PERFORMANCE
MASS
SPECTROMETRY
NO* as a S e l e c t i v e CI Reagent.
TERTIARY ALCOHOLS: +
(R) C-OH
R C (M-17)
3
3
SECONDARY ALCOHOLS: Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
+
(R) CH-0H - ^ - * ( R ) C - 0 H — K R ) aC=0 i i ^ ( R ) C 0 * N 0 (M-l) (M-2+30) +
2
2
2
+
-*(R) CH
+
2
(M-17)
+
PRIMARY ALCOHOLS: +
RCH -0H —
^RC H-OH
2
(M-l)
^RCH=0 —
^ΗΟ···ΝΟ
+
(M-2+30)
+
+
+
->RC =0 (M-3)
+
D i f f e r e n t i a t i o n o f o l e f i n s and c y c l o a l k a n e s h a v i n g the same M. W. i s a l s o e a s i l y a c c o m p l i s h e d u s i n g n i t r i c o x i d e as r e a g e n t . Spectra of cycloalkanes e x h i b i t only an [ M - l ] i o n s whereas those o f o l e f i n s c o n t a i n b o t h [M-l]+ and [M+30] i o n s ( 1 9 ) . The l a t t e r s p e c i e s r e s u l t s from e l e c t r o p h i l i c a d d i t i o n o f N 0 t o t h e double bond ( F i g u r e 4d, e ) . CI(NO) s p e c t r a o f h y d r o carbons c l o s e l y resemble those o b t a i n e d under f i e l d i o n i z a t i o n c o n d i t i o n s . Over 80% o f t h e i o n c u r r e n t i n CI(NO) s p e c t r a o f most h y d r o c a r b o n s i s c a r r i e d by t h e [ M - l ] i o n . T h i s s i t u a t i o n stands i n sharp c o n t r a s t t o t h a t o b t a i n e d under e i t h e r EI o r C I ( C H O c o n d i t i o n s , where e x t e n s i v e f r a g m e n t a t i o n o f h y d r o c a r b o n m o l e c u l e i s observed. In a d d i t i o n t o t h e above r e s u l t s , i t i s p o s s i b l e to use CI(NO) s p e c t r a t o i d e n t i f y many f u n c t i o n a l groups i n o r g a n i c m o l e c u l e s . Spectra of a c i d s , alde hydes and k e t o n e s show M+30, M-17; M+30, M - l ; and M+30 i o n s r e s p e c t i v e l y . One drawback t o t h e use o f n i t r i c o x i d e as a CI r e a g e n t i s t h a t i t i s a s t r o n g o x i d i z i n g agent and t h e r e f o r e r a p i d l y d e s t r o y s h o t m e t a l f i l a ments used t o produce t h e beam o f i o n i z i n g e l e c t r o n s . To overcome t h i s p r o b l e m we have d e v e l o p e d a Townsend e l e c t r i c discharge ( f i l a m e n t l e s s ) source f o r producing a beam o f i o n i z i n g e l e c t r o n s o r i o n s ( 6 ) . +
+
+
+
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
+
8.
HUNT
159
Positive and Negative Ion Chemical Ionization
A N D SETHI
160 180 Figure 3. CI (NH ) mass spectra of: (a) triethylamine, (b) cyclohexanone, (c) Ό-(-) ribose. The intensity of reagent ions is 50 to 100 times greater than as shown. S
locr 8
10eV)
Resonance e l e c t r o n capture Dissociative electron capture
+
•A~+B +e
Ion p a i r p r o d u c t i o n
+
A +B"+e W i t h the e x c e p t i o n o f a s m a l l p o p u l a t i o n o f low energy secondary e l e c t r o n s produced under EI c o n d i t i o n s d u r i n g p o s i t i v e sample i o n f o r m a t i o n , most of the e l e c t r o n s a v a i l a b l e under EI c o n d i t i o n s p o s s e s s energy i n e x c e s s o f lOeV. A c c o r d i n g l y , most n e g a t i v e sample i o n s are produced by e i t h e r i o n - p a i r f o r m a t i o n o r by d i s s o c i a t i v e e l e c t r o n c a p t u r e mechanisms, and most o f the sample i o n c u r r e n t i s c a r r i e d by low mass f r a g m e n t s , s p e c i e s l i k e O , HO", C l " and CN~, e t c . Ions of t h i s type p r o v i d e l i t t l e s t r u c t u r a l i n f o r m a t i o n about the sample m o l e c u l e i n q u e s t i o n . In c o n t r a s t t o the above s i t u a t i o n , Wurman and Sauer (23») showed t h a t the t h e r m a l i z a t i o n o f e l e c t r o n s can o c c u r i n a f r a c t i o n o f m i c r o - s e c o n d i n the p r e s e n c e o f gases l i k e methane and iso-butane. The r e s u l t i n g l a r g e p o p u l a t i o n o f t h e r m a l e l e c t r o n s makes r e s o n a n c e e l e c t r o n c a p t u r e the dominant mechanism f o r f o r m a t i o n o f n e g a t i v e i o n s under CI c o n d i t i o n s . Once formed the n e g a t i v e l y charged sample i o n s s u f f e r up t o s e v e r a l hundred s t a b i l i z i n g c o l l i s i o n s w i t h n e u t r a l r e a g e n t gas m o l e c u l e s b e f o r e they e x i t the i o n i z a t i o n chamber. U n l i k e the r e s u l t s o b t a i n e d by h i g h energy e l e c t r o n i m p a c t , s p e c t r a r e c o r d e d under CI c o n d i t i o n s e x h i b i t abundant m o l e c u l a r anions (M-) f o r many t y p e s of molecules. F u r t h e r , t h o s e m o l e c u l e s t h a t fragment under n e g a t i v e i o n CI c o n d i t i o n s g e n e r a l l y do so by e l i m i n a t i o n o f s m a l l m o i e t i e s from the p a r e n t a n i o n . S i n c e the s t r u c t u r a l f e a t u r e s w h i c h s t a b i l i z e a negat i v e charge on an o r g a n i c m o l e c u l e are not u s u a l l y the same as t h o s e t h a t s t a b i l i z e a p o s i t i v e c h a r g e , e l e c t r o n c a p t u r e n e g a t i v e i o n CI s p e c t r a t e n d t o p r o v i d e s t r u c t u r a l i n f o r m a t i o n complementary t o t h a t a v a i l a b l e i n the p o s i t i v e i o n mode. 1
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
8.
HUNT
Positive and Negative Ion Chemical Ionization
A N D SETHI
Perhaps t h e most e x c i t i n g f e a t u r e o f n e g a t i v e i o n CIMS i s t h e f i n d i n g t h a t t h e s e n s i t i v i t y a s s o c i a t e d w i t h i o n f o r m a t i o n by e l e c t r o n c a p t u r e i n t h e CI s o u r c e can be 100-1.000 t i m e s g r e a t e r t h a n t h a t a v a i l a b l e by any p o s i t i v e i o n methodology. T h i s r e s u l t s u g g e s t s t h a t n e g a t i v e i o n CIMS w i l l soon become t h e method o f c h o i c e f o r t h e q u a n t i t a t i o n o f many o r g a n i c s i n complex m i x t u r e s by GCMS. Key t o t h e s u c c e s s o f t h e n e g a t i v e i o n t e c h n i q u e i s t h e development o f c h e m i c a l d e r i v a t i z a t i o n procedures which f a c i l i t a t e i n t r o d u c t i o n o f groups i n t o t h e sample under a n a l y s i s t h a t enhance b o t h f o r m a t i o n o f m o l e c u l a r a n i o n s , M , by e l e c t r o n c a p t u r e and s t a b i l i z a t i o n o f t h e r e s u l t i n g M toward unde s i r a b l e fragmentation. Preliminary studies indicate t h a t p e n t a f l u o r o b e n z a l d e h y d e and p e n t a f l u o r o b e n z o y l c h l o r i d e a r e e x c e l l e n t reagents f o r t h i s purpose. R e a c t i o n o f t h e s e two r e a g e n t s w i t h p r i m a r y amines and phenols f a c i l i t a t e s d e t e c t i o n o f these c l a s s e s o f compounds a t t h e femtogram ( 1 0 ~ g) l e v e l by n e g a t i v e i o n GC-CIMS methodology ( T a b l e I ) . 1
1
1 5
TABLE J_.
Detection L i m i t s f o r D e r i v a t i v e s of Primary Amines and Phenols
Compound
GCMS D e t e c t i o n L i m i t 10 χ 1 0 "
Signal/Noise
1 5
g
4/1
5
g
4/1
P e n t a f l u o r o b e n z o y l amphetamine
>)TMS
Κ*-
Pentafluorobenzylidene dopamine-bis-trimethyl s i l y l CO-C F 6
1
5
ether
20 χ 10
1 5
g
6
Δ ' -Tetrahydrocannabinol pentafluorobenzoate
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
4/1
161
HIGH
162
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
P u l s e d P o s i t i v e and N e g a t i v e
PERFORMANCE
Ion CI
MASS
SPECTROMETRY
(PPINICI):
S i m u l t a n e o u s r e c o r d i n g o f p o s i t i v e and n e g a t i v e i o n CI mass s p e c t r a on F i n n i g a n Model 3200 and Model 3300 q u a d r u p o l e mass s p e c t r o m e t e r s i s a c c o m p l i s h e d by p u l s i n g the p o l a r i t y o f the i o n source p o t e n t i a l (±110V) and f o c u s i n g l e n s p o t e n t i a l (±10-20V) a t a r a t e o f 10 kHz as i l l u s t r a t e d i n F i g u r e 5. Under t h e s e con d i t i o n s , p a c k e t s o f p o s i t i v e and n e g a t i v e i o n s a r e e j e c t e d from the i o n - s o u r c e i n r a p i d s u c c e s s i o n and e n t e r the q u a d r u p l e mass f i l t e r . U n l i k e the magnetic i n s t r u m e n t s , i o n s o f i d e n t i c a l m/e, but d i f f e r e n t p o l a r i t y , t r a v e r s e the quadrupoTe f i e l d w i t h e q u a l f a c i l i t y and e x i t the r o d s a t the same p o i n t . Detec t i o n o f i o n s i s a c c o m p l i s h e d s i m u l t a n e o u s l y by two continuous diode m u l t i p l i e r s operating w i t h f i r s t dynode p o t e n t i a l s o f o p p o s i t e p o l a r i t y . The r e s u l t i s t h a t p o s i t i v e and n e g a t i v e i o n s a r e r e c o r d e d s i m u l t a n e o u s l y as d e f l e c t i o n s i n o p p o s i t e d i r e c t i o n on a c o n v e n t i o n a l l i g h t beam o s c i l l o g r a p h . E l e c t r o n C a p t u r e - EI Type S p e c t r a : As n o t e d e a r l i e r when N or argon i s used as r e a g e n t gas, the p o s i t i v e i o n CI s p e c t r a are essen t i a l l y i d e n t i c a l to t h a t o b t a i n e d under EI c o n d i t i o n s . In the n e g a t i v e i o n mode, sample i o n s a r e formed by e l e c t r o n capture. N e g a t i v e i o n s are not produced from n i t r o g e n or a r g o n under CI c o n d i t i o n s . U s i n g PPINICI t e c h n i q u e w i t h N as a r e a g e n t gas we can s i m u l t a n e o u s l y d e t e c t and r e c o r d EI type s p e c t r a on the p o s i t i v e i o n t r a c e and i o n s produced by resonance e l e c t r o n c a p t u r e on the n e g a t i v e i o n t r a c e . S i n c e the s t r u c t u r a l f e a t u r e s t h a t s t a b i l i z e p o s i t i v e and n e g a t i v e fragment i o n s a r e not u s u a l l y the same, the above methodology p e r m i t s one t o s i m u l t a n e o u s l y r e c o r d spec t r a w h i c h c o n t a i n complementary s t r u c t u r a l i n f o r m a t i o n . An example o f t h i s case ( F i g u r e 6a) i s the ΕΙ-EC spec trum o f a m y t a l . 2
2
E l e c t r o n Capture - Bronsted
A c i d Type S p e c t r a :
I f methane o r i s o b u t a n e i s used as r e a g e n t gas f o r PPINICIMS, B r o n s t e d a c i d type CI s p e c t r a a r e produced on the p o s i t i v e i o n t r a c e and e l e c t r o n c a p t u r e s p e c t r a a r e g e n e r a t e d on the n e g a t i v e i o n t r a c e . N e g a t i v e i o n s d e r i v e d from methane o r i s o b u t a n e are not o b s e r v e d i n t h i s mode o f o p e r a t i o n .
Gross; High Performance Mass Spectrometry: Chemical Applications ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
8.
HUNT
5
PPN1-C1
POS EM
RODS RODS
U
ooooo*
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 28, 2016 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch008
163
Positive and Negative Ion Chemical Ionization
A N D SETHI
-•1600V I600V
H ~I
- - -++ + - -
^
^ „ „ u ,i LB 0
NE G EM •V 1 6 0 0 V
2 ION "^LENS SOURCE +I0V + 4-10 V P U L S E RATE
|0 KHz Analytical Chemistry
Figure 5. Pulsed positive negative ion chemical ionization (PPNICI) mass spectrometer: FIL-filament, EM-electron mul tiplier, and LBO-Hght beam oscillograph
1001
28.
χ 50
-
50j
6J> 100
Φ Ώ
d ζ 3
ιοω —
ο ζ 3
ι
ω
10,000) i n p a r t t o r e s o l v e sample i o n s and r e f e r e n c e i o n s produced s i m u l t a n e o u s l y . The a c c u r a t e mass o f t h e sample i o n i s t h e n c a l c u l a t e d by e x t r a p o l a t i o n from the measured mass o f a nearby r e f erence i o n . Drawbacks o f t h e above methodology i n c l u d e the h i g h c o s t o f the n e c e s s a r y i n s t r u m e n t a t i o n , l o w s e n s i t i v i t y w h i c h always accompanies o p e r a t i o n a t h i g h r e s o l u t i o n , sample i o n s u p p r e s s i o n due t o t h e l a r g e q u a n t i t i e s o f r e f e r e n c e compound r e q u i r e d t o produce abundant r e f e r e n c e i o n s a t h i g h mass, and t h e d i f f i c u l t y i n u s i n g the method f o r GC-MS a n a l y s i s due t o t h e s l o w s c a n speeds u s u a l l y r e q u i r e d t o m a i n t a i n adequate ion current a t high r e s o l u t i o n . To overcome t h i s p r o b l e m , A s p i n a l eit a l . ( 3 2 ) , i n 1975, d e v e l o p e d a t e c h n i q u e f o r o b t a i n i n g a c c u r a t e mass measurements a t low r e s o l u t i o n u s i n g a d o u b l e beam m a g n e t i c s e c t o r mass s p e c t r o m e t e r . I n t h i s method two p o s i t i v e i o n beams, one c o n t a i n i n g i o n s from t h e i n t e r n a l s t a n d a r d and one beam c o n t a i n i n g i o n s from t h e sample a r e p r o d u c e d i n two s e p a r a t e i o n s o u r c e s , p a s s e d t h r o u g h the same m a g n e t i c f i e l d s i m u l t a n e o u s l y , and c o l l e c t e d s e p a r a t e l y a t two e l e c t r o n m i l t i p l i e r s . A c c u r a t e mass measurements (