High Temperature Laminating Resins Based on Melt Fusible

Jun 1, 1975 - HUGH H. GIBBS and C. V. BREDER1. Plastics Department, E. I. duPont de Nemours & Co., Wilmington, Del. 19898. 1 Present address: Food ...
1 downloads 0 Views 1MB Size
38 High Temperature Laminating Resins Based on Melt Fusible Polyimides 1

HUGH H. GIBBS and C. V. BREDER

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

Plastics Department, Ε. I. duPont de Nemours & Co., Wilmington, Del. 19898

Incorporation of theperfluoroisopropylidenegroup as the flexibilizing linkage in the aromatic dianhydride 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane dianhydride (6F) has resulted in a new class of melt fusible polyimide binders. Polyimides based on 6F and aromatic diamines are ideally suited for preparing lami­ nates having very low void levels. The low molecular weight prepolymer undergoes thermally induced condensation polymeri­ zation to produce a high molecular weight polyimide which is both linear and amorphous. Voids formed as a result of the elimi­ nation of volatiles can then be readily removed by applying pres­ sure above the glass transition temperature (T ). Varying the structure of the aromatic diamine varies the T over the range 229°-385°C. Such polymers are tough and have unusually good thermal-oxidative stability. g

g

F

or s o m e t i m e n o w , t h e r e h a s b e e n a n e e d f o r a p o l y i m i d e b i n d e r w h i c h c o u l d b e u s e d t o m a k e l o w v o i d (less t h a n 3 % ) l a m i n a t e s , t h a t w o u l d h a v e a h i g h d e g r e e of p r o p e r t y r e t e n t i o n a n d t h e r m a l - o x i d a t i v e s t a b i l i t y i n t h e 2 6 0 ° 3 7 1 ° C t e m p e r a t u r e r a n g e , a n d t h a t w o u l d n o t b e c r o s s l i n k e d . T h e last f e a t u r e w o u l d n o t o n l y s e r v e t o p r o m o t e m e l t f u s i b i l i t y b u t w o u l d also c o n t r i b u t e t o toughness. I n addition, the b i n d e r s h o u l d be based o n a h i g h solids, l o w v i s c o s i t y s o l u t i o n o f t h e k i n d n o r m a l l y u s e d i n p r e p r e g g i n g o p e r a t i o n s . It s h o u l d also b e c a p a b l e o f b e i n g u s e d i n r a p i d , h i g h p r e s s u r e , m a t c h e d - d i e m o l d i n g as w e l l as i n l o w e r p r e s s u r e ( 1 0 0 - 2 0 0 p s i ) v a c u u m b a g - a u t o c l a v e m o l d i n g . N o k n o w n p o l y i m i d e b i n d e r m e t these criteria c o m p l e t e l y . Conventional aromatic polyimide binders polymerize b y thermally i n d u c e d c o n d e n s a t i o n r e a c t i o n s . I n t h e m o l d i n g o f a t y p i c a l p r e p r e g , as m u c h as 2 0 % w e i g h t loss c a n o c c u r . T h i s loss is a t t r i b u t a b l e t o a c o m b i n a t i o n o f r e s i d u a l s o l v e n t s u c h as N - m e t h y l p y r r o l i d o n e ( N M P ) o r d i m e t h y l f o r m a m i d e ( D M F ) and the water a n d alcohol evolved i n the polymerization a n d imidization r e a c t i o n s (see R e a c t i o n 1 ) .

Present address: Food and Drug Administration, Department of Health, Educa­ tion, and Welfare, Washington, D.C. 1

442

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

38.

GIBBS A N D

BREDER

Ο il R'O—C

Laminating

443

Resins

Ο η C—OR' \

/ R

HO—C ^

+ N

H N—R"—NH 2

2

+

solvent

Ç—OH

Diester D i a c i d Binder Solution — solvent -2ROH -2H 0

Δ

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

2

O

o

Il c

II c

/

\

-N

/

\

\

/

R

\

/ C Il

o

N—R' C II

o

Polyimide

If t h e d i a n h y d r i d e is a l l o w e d to p r e r e a c t w i t h a l c o h o l t o f o r m t h e d i e s t e r d i a c i d d e r i v a t i v e , n o p o l y m e r i z a t i o n o c c u r s w h e n t h e d i a m i n e is a d d e d . If t h i s ester-forming reaction were not a l l o w e d , the p o l y a m i d e a c i d f o r m a t i o n w o u l d o c c u r i m m e d i a t e l y . I n t h i s case t h e m o l e c u l a r w e i g h t w o u l d d e p e n d o n l y o n the m o l a r i m b a l a n c e of the m o n o m e r s ( R e a c t i o n 2 ). It is g e n e r a l l y n o t d e s i r a b l e to h a v e a h i g h m o l e c u l a r w e i g h t p o l y m e r s o l u t i o n as b i n d e r b e c a u s e at h i g h s o l i d s c o n t e n t t h e s o l u t i o n is t o o v i s c o u s t o h a n d l e , a n d at l o w s o l i d s c o n c e n t r a t i o n t h e r e is u s u a l l y i n s u f f i c i e n t p i c k u p i n o n e pass i n t h e p r e p r e g g i n g o p e r a t i o n . I n the e a r l y stages of c u r e , w h i c h n o r m a l l y t a k e p l a c e at 150°-200°C, t h e m o l e c u l a r w e i g h t r a p i d l y a d v a n c e s to t h e p o i n t at w h i c h t h e h i g h l y f l u i d b i n d e r s o l i d i f i e s ( g e l s ) . S i n c e t h i s o c c u r s b e f o r e a l l of t h e v o l a t i l e s h a v e b e e n e l i m i n a t e d , t h e n e t r e s u l t is a l a m i n a t e t h a t g e n e r a l l y h a s a h i g h v o i d c o n t e n t ( 1 0 - 2 0 % ). W h e n 3,3',4,4'-benzophenone tetracarboxylic d i a n h y d r i d e ( B T D A ) is u s e d as t h e d i a n h y d r i d e , it is v e r y d i f f i c u l t to e l i m i n a t e these v o i d s , e v e n at ele­ v a t e d temperatures a n d pressures. Side reactions a p p a r e n t l y occur d u r i n g p o l y m ­ e r i z a t i o n w h i c h c o u l d l e a d to l o n g c h a i n b r a n c h i n g a n d c r o s s l i n k i n g , p o s s i b l y via t h e i n t e r a c t i o n of t h e c e n t r a l c a r b o n y l g r o u p i n B T D A a n d a n a m i n e g r o u p l e a d i n g to a n a z o m e t h i n e ( > C = N — ) l i n k a g e . S u c h a r e a c t i o n w o u l d greatly r e d u c e t h e m e l t f u s b i l i t y of t h e c u r e d p o l y i m i d e . T h e a d v e r s e effects o f t h e v o i d s so p r o d u c e d i n s u c h l a m i n a t e s h a v e b e e n d i s c u s s e d p r e v i o u s l y ( 1 , 2, 3, 4, 5).

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

444

COPOLYMERS,

AND

COMPOSITES

ο

Ο

Ο'

POLYBLENDS,

II (2)

II

R ^

X

0

H N—R' 2

'—NH

2

II

ο II D i a n h y d r i d e

solvent room temperature

ο

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

ο

ο

ιι

II

·ι\Η—C

C—ΧΗ—R'

HO—C ^

C—OH

Il

II

ο

ο

Polyamide Acid

A n o v e l a p p r o a c h to e l i m i n a t i n g v o i d s has b e e n t o d e v e l o p b i n d e r s b a s e d o n i m i d e oligomers c o n t a i n i n g unsaturated aliphatic e n d groups (6, 7 ) . A t e l e v a t e d temperatures these oligomers m e l t a n d u n d e r g o a free r a d i c a l p o l y m ­ e r i z a t i o n r e a c t i o n w h i c h d o e s n o t i n v o l v e t h e loss o f a n y v o l a t i l e b y p r o d u c t s . F o r t h i s r e a s o n v e r y l o w v o i d l a m i n a t e s c a n b e p r o d u c e d . H o w e v e r , t h i s class o f p o l y i m i d e s is i n h e r e n t l y v e r y b r i t t l e b e c a u s e o f e x t e n s i v e c r o s s l i n k i n g w h i c h occurs d u r i n g p o l y m e r i z a t i o n . Also, such materials cannot be used for long m u c h a b o v e 2 2 5 ° C b e c a u s e of t h e o x i d a t i v e i n s t a b i l i t y r e s u l t i n g f r o m t h e p r e s e n c e of a l i p h a t i c h y d r o g e n a t o m s i n t h e p o l y m e r c h a i n s . T h e o b j e c t i v e o f t h i s s t u d y w a s to d e v e l o p a p o l y i m i d e b i n d e r s y s t e m w h i c h w o u l d not u n d e r g o side reactions d u r i n g p o l y m e r i z a t i o n b u t w o u l d result i n a linear h i g h m o l e c u l a r w e i g h t a m o r p h o u s p o l y m e r . S u c h a c u r e d p o l y i m i d e w o u l d h a v e to h a v e s u f f i c i e n t m e l t f u s i b i l i t y t o u n d e r g o c o a l e s c e n c e r e a d i l y i n order to eliminate t r a p p e d voids w h e n heated u n d e r pressure above t h e glass t r a n s i t i o n t e m p e r a t u r e (T ). T h e a p p r o a c h has b e e n to p r e p a r e a n e w f a m i l y of p o l y i m i d e s , a l l b a s e d o n 2 , 2 - b i s ( 3 ' , 4 ' - d i c a r b o x y p h e n y l ) h e x a f l u o r o p r o pane dianhydride ( 6 F ) and various aromatic diamines. g

Some work involving polyimides prepared from p e r f l u o r o c a r b o n g r o u p s has a l r e a d y b e e n d o n e . Rogers

monomers containing (8) p r e p a r e d a series

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

38.

G I B B S

Laminating

A N D B R E D E R

0

445

Resins

CF

3

Ο

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

6F

of p o l y i m i d e s i n w h i c h t h e c o m m o n d e n o m i n a t o r w a s t h e h e x a f l u o r o i s o p r o p y l i dene b r i d g e d 6 F D A . A l t h o u g h the 6 F / 6 F D A p o l y i m i d e w a s prepared, there w a s n o r e p o r t of p o l y i m i d e s p r e p a r e d w i t h o u t t h e f l u o r o c a r b o n b r i d g e d d i a m i n e . C r i t c h l e y et al. ( 9 , J O ) h a v e d e s c r i b e d p o l y i m i d e s c o n t a i n i n g l i n e a r p e r fluoroalkylene bridges i n either one or b o t h of the monomers. T h i s paper, therefore, describes the p r e p a r a t i o n a n d properties of p o l y i m i d e s based o n 6 F and aromatic diamines w h i c h have unexpected utility i n preparing low-void l a m i n a t e s t h a t a r e t o u g h , r e t a i n t h e i r p r o p e r t i e s at e l e v a t e d t e m p e r a t u r e s , a n d possess a n u n u s u a l d e g r e e of t h e r m a l - o x i d a t i v e s t a b i l i t y .

CF

CF

3

6FDA Experimental Preparation of U n r e i n f o r c e d P o l y i m i d e s . T h e polyimides characterized i n this s t u d y w e r e p r e p a r e d i n t w o w a y s . W h e n l a m i n a t i n g operations w e r e n o t g o i n g t o b e c a r r i e d o u t , t h e p o l y m e r s w e r e m o s t r e a d i l y p r e p a r e d via t h e a m i d e a c i d r o u t e i n p y r i d i n e . W h e n t h e l a m i n a t e - f o r m i n g c h a r a c t e r i s t i c s w e r e to b e s t u d i e d u l t i m a t e l y , t h e n e a t resins w e r e p r e p a r e d b y s i m p l e t h e r m a l p o l y m e r i ­ zation of b i n d e r solutions. A m i d e A c i d R o u t e . T o a 3 - l i t e r , 3 - n e c k e d r o u n d - b o t t o m e d flask e q u i p p e d w i t h a thermometer, m e c h a n i c a l stirrer, condenser, a n d n i t r o g e n p u r g e w a s a d d e d 100 g ( 0 . 5 0 0 m o l e , 6 % m o l a r excess) 4 , 4 ' - o x y d i a n i l i n e ( O D A ) . T h e diamine was washed i n with 700 m l distilled pyridine w h i c h h a d been dried

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

446

COPOLYMERS,

POLYBLENDS,

AND

COMPOSITES

o v e r m o l c e u l a r sieves ( 5 A ) just p r i o r t o u s e . T h e m i x t u r e w a s s t i r r e d a n d h e a t e d t o 5 0 ° - 6 0 ° C t o e f f e c t s o l u t i o n . T h e n 6 F ( 2 1 3 . 6 g , 0.48 m o l e ) w a s a d d e d as a d r y s o l i d i n s m a l l p o r t i o n s d u r i n g a b o u t 5 m i n w i t h s t i r r i n g . L a s t traces w e r e w a s h e d i n w i t h 100 m l p y r i d i n e . T h e s l i g h t l y e x o t h e r m i c r e a c t i o n w a s e a s i l y m a i n t a i n e d at 5 0 ° - 6 0 ° C b y i n t e r m i t t e n t c o o l i n g w i t h a n i c e b a t h . A t the e n d of 45 m i n , a l l the d i a n h y d r i d e w a s i n s o l u t i o n a n d the p o l y a m i d e acid containing amine e n d groups was produced. Phthalic anhydride c a p p i n g a g e n t ( 5 . 6 9 g, 0 . 0 3 8 5 m o l e ) w a s a d d e d a l l at o n c e a n d w a s h e d i n w i t h 1 0 0 m l p y r i d i n e , stirring was c o n t i n u e d for an a d d i t i o n a l 45 m i n , a n d t h e n acetic anhydride (330 m l ) was a d d e d . I m i d i z a t i o n occurred almost instantly. T h e t e m p e r a t u r e rose f r o m a b o u t 3 0 ° to 4 5 ° C . T h e 6 F / O D A p o l y i m i d e s o l u t i o n w a s stirred for 30 m i n , t h e n c o o l e d to r o o m t e m p e r a t u r e a n d p o u r e d s l o w l y , w i t h v i g o r o u s s t i r r i n g , i n t o a l a r g e excess o f m e t h a n o l i n a W a r i n g b l e n d e r . T h i s p a r t of t h e o p e r a t i o n w a s u s u a l l y c a r r i e d o u t i n t h r e e stages u s i n g a 1 - g a l l o n b l e n d e r . T h e l i g h t c r e a m - c o l o r e d g r a n u l a r p o l y m e r w h i c h c a m e o u t of s o l u t i o n w a s s e p a r a t e d b y filtration a n d w a s h e d o n t h e filter w i t h t h r e e v o l u m e s o f m e t h a n o l . It w a s d r i e d o v e r n i g h t i n a v a c u u m o v e n at 1 5 0 ° C a n d t h e n h e a t e d to 2 6 0 ° C f o r 2 h r s to r e m o v e last t r a c e s of v o l a t i l e s . T h e i n h e r e n t viscosity was 0.42. T h e molecular weight was normally controlled b y using a 4 - 6 % m o l a r excess of d i a m i n e . N o t e t h a t t h e use of p h t h a l i c a n h y d r i d e as a c a p p i n g agent was not essential. W i t h o u t it, acetamide e n d groups w o u l d h a v e been f o r m e d . T h e more inert phenylene e n d groups were preferred i n order to m i n i m i z e m o l e c u l a r w e i g h t c h a n g e s d u r i n g m o l d i n g of t h e p o l y m e r . P r e p a r a t i o n o f B i n d e r S o l u t i o n s . I n a t y p i c a l r u n , 6 F ( 4 4 4 g , 1.00 m o l e ) w a s c h a r g e d i n t o a 2 - l i t e r 3 - n e c k e d r o u n d b o t t o m e d flask fitted w i t h a t h e r m o m e t e r , stirrer, a n d condenser. T h e n , 92.0 g (2.00 m o l e ) absolute ethanol a n d 3 5 7 m l D M F w e r e a d d e d ( N M P w a s also u s e d as a s o l v e n t i n t h i s s t u d y ) . T h e s l u r r y w a s h e a t e d w i t h s t i r r i n g t o 1 1 0 ° - 1 2 0 ° C at w h i c h p o i n t a l l o f t h e d i a n h y d r i d e was i n solution, a n d the diester was f o r m e d . T h e dark amber s o l u t i o n w a s s t i r r e d at t h i s t e m p e r a t u r e f o r 3 0 m i n , t h e n c o o l e d t o 8 0 ° C ; O D A ( 2 0 0 g , 1.00 m o l e ) w a s a d d e d s l o w l y w i t h v i g o r o u s s t i r r i n g o v e r a 5 - m i n p e r i o d . T h e O D A was w a s h e d i n w i t h an a d d i t i o n a l 100 m l D M F . T h e temperature w a s m a i n t a i n e d at 7 5 ° - 8 5 ° C f o r 3 0 m i n . A t t h e e n d o f t h i s t i m e , a l l o f t h e d i a m i n e was i n solution, a n d the b i n d e r was r e a d y for use. S o l u t i o n viscosity w a s 4 - 6 poises at 2 5 ° C as d e t e r m i n e d w i t h t h e B r o o k f i e l d v i s c o m e t e r . The c a l c u l a t e d c o n c e n t r a t i o n w a s 5 2 w t % o n a c u r e d r e s i n b a s i s . I n a l l cases, stoichiometric concentrations of the m o n o m e r s w e r e u s e d . P o l y m e r i z a t i o n of B i n d e r S o l u t i o n s . T o assess t h e p r o p e r t i e s of t h e u n r e i n f o r c e d resins d e r i v e d f r o m b i n d e r s o l u t i o n , t h e s o l u t i o n s w e r e p l a c e d i n a n a l u m i n u m p a n a n d t h e n c u r e d i n a v a c u u m o v e n . T h e f o a m e d m a s s of h i g h m o l e c u l a r w e i g h t p o l y m e r ( i n h e r e n t v i s c o s i t y g r e a t e r t h a n 0.5) was then m e c h a n i c a l l y c u t i n t o a finely d i v i d e d g r a n u l a r p r o d u c t . T h e c u r e c y c l e f o r p o l y i m i d e s w i t h a T,, less t h a n 3 0 0 ° C w a s 2 h r s at 2 0 0 ° C f o l l o w e d b y 3 h r s at 3 0 0 ° C . F o r t h o s e w i t h a T of 3 0 0 ° - 3 5 0 ° C , a n a d d i t i o n a l 3 h r s at 3 6 0 ° C w a s u s e d . F o r m e m b e r s of the f a m i l y w i t h the highest softening temperatures ( 3 5 0 ° - 3 8 5 ° C ) , t h e c u r e w a s e x t e n d e d e v e n f u r t h e r t o i n c l u d e a 3 - h r p e r i o d at 371 ° C . A l l p o l y m e r i z a t i o n s of this t y p e w e r e r u n u n d e r v a c u u m . g

C o m p r e s s i o n M o l d i n g o f U n r e i n f o r c e d R e s i n s . T h e finely d i v i d e d p o l y m e r w a s c h a r g e d i n t o a p o s i t i v e p r e s s u r e m o l d b e t w e e n t w o sheets o f g r a p h i t e c o a t e d a l u m i n u m f o i l , h e a t e d t o t h e m o l d i n g t e m p e r a t u r e at 4 0 0 0 p s i , a n d h e l d t h e r e f o r 10 m i n . A f t e r b e i n g c o o l e d u n d e r p r e s s u r e t o r o o m t e m p e r a t u r e , t h e c o m p r e s s i o n - m o l d e d s p e c i m e n was r e m o v e d . Test bars c o u l d then be c u t f r o m the p l a q u e w h i c h was n o r m a l l y about % - i n c h thick. T h e m o l d i n g temperature w a s u s u a l l y a b o u t 5 0 ° C h i g h e r t h a n t h e T of t h e p a r t i c u l a r p o l y i m i d e b e i n g used. g

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

38.

GIBBS

Laminating

A N D B R E D E R

Table I .

447

Resins

T y p i c a l F i n a l M o l d i n g Conditions for L a m i n a t e s

Rapid Matched-Die Cycle, min/°C/psi

Matrix Polymer 6F/0DA 6F/PPD 6F/1, 5-ND

Vacuum BagAutoclave Cycle, hrs/°C/psi

10/325/2500 10/371/2500 30/440/2500

4/316/200 3/371/200 1/400/200

C h a r a c t e r i z a t i o n of U n r e i n f o r c e d R e s i n s . T h e i n h e r e n t v i s c o s i t i e s w e r e d e t e r m i n e d i n c o n c e n t r a t e d ( 9 5 - 9 7 % ) s u l f u r i c a c i d at 2 5 ° C at a p o l y m e r concentration of 0 . 5 % . F o r t h e r m o g r a v i m e t r i c analyses ( T G A ) , t h e D u p o n t m o d e l 9 5 0 t h e r m o g r a v i m e t r i c a n a l y z e r w a s o p e r a t e d at a 1 5 ° C / m i n h e a t i n g rate. T h e T v a l u e s o f u n r e i n f o r c e d resins w e r e d e t e r m i n e d w i t h t h e D u p o n t m o d e l 9 0 0 differential s c a n n i n g calorimeter c e l l ( D S C ) operated at a h e a t i n g rate of 1 0 ° C / m i n .

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

n

P r e p a r a t i o n of L a m i n a t e s . T h e s t a c k e d p l i e s o f p r e p r e g w e r e l a i d u p i n a v a c u u m b a g a c c o r d i n g t o t h e p r o c e d u r e p r e v i o u s l y o u t l i n e d (11, 12, 13). Slight v a c u u m ( 1 - 2 p s i ) was applied, a n d the temperature w a s brought to 2 0 0 ° C at t h e rate of about 5 ° - 8 ° C / m i n . T h e s e conditions w e r e m a i n t a i n e d f o r one h r , a n d then t h e v a c u u m w a s increased to 1 2 - 1 5 p s i f o r another 4 5 m i n . W h e n 6 F / O D A binder was used, the partly cured laminate w a s discharged f r o m t h e v a c u u m b a g a n d c u t i n t o bars V 2 - i n . w i d e a n d 5 - 6 i n . l o n g . L a m i n a t e s m a d e w i t h p o l y m e r s h a v i n g h i g h e r TJs w e r e u s u a l l y h e a t e d f o r a n a d d i t i o n a l 2 h r s at 2 5 0 ° C b e f o r e b e i n g d i s c h a r g e d f r o m t h e v a c u u m b a g . A t t h i s p o i n t , t h e TJs w e r e g e n e r a l l y l o w ( 1 6 0 ° - 1 8 0 ° C ) a n d s e v e r a l w t % o f v o l a t i l e s w e r e n o t y e t d r i v e n off. N o r m a l l y , i f a n a u t o c l a v e w e r e t o b e u s e d , the l a m i n a t i n g cycle w o u l d b e c o n t i n u e d i n t h e o r i g i n a l v a c u u m b a g . I n this study, h o w e v e r , a l l laminations w e r e r u n i n a press. T o k e e p laminates (espe­ cially those w h i c h w e r e u n i d i r e c t i o n a l ) f r o m m o v i n g o u t sideways w i t h t h e a p p l i c a t i o n of pressure, it w a s necessary to place the m a c h i n e d bars i n a positive pressure m o l d , r e b a g t h e m o l d , a n d t h e n c o n t i n u e t h e cycle. I n this w a y t h e sides o f t h e m o l d c o n s t r a i n e d t h e l a m i n a t e . T h e r e m a i n d e r o f t h e m o l d i n g c y c l e v a r i e d a c c o r d i n g t o t h e p a r t i c u l a r b i n d e r a n d t h e p r e s s u r e u s e d (see T a b l e I for a s u m m a r y ) . P r e l i m i n a r y C h a r a c t e r i z a t i o n of L a m i n a t e s . A l l l a m i n a t e s w e r e r o u t i n e l y c h e c k e d f o r v o i d content b y c o m p a r i n g the actual density w i t h that calculated f r o m t h e concentrations of t h e components a n d their densities. T h e resin content c o u l d b e d e t e r m i n e d b y K j e l d a h l nitrogen analysis. T h e T w a s most conveniently determined with the D u p o n t model 941 thermomechanical analyzer operated at 5 ° C / m i n i n the expansion m o d e ( T M A - e x p a n s i o n ) . a

Discussion Properties of P o l y i m i d e s . E F F E C T O F S T R U C T U R E O N T . A s u m m a r y of t h e p o l y i m i d e s p r e p a r e d i n t h i s s t u d y b y t h e a m i d e a c i d r o u t e is g i v e n i n T a b l e I I . I t i s a p p a r e n t t h a t t h e T i n c r e a s e s w i t h d e c r e a s i n g flexibility o f t h e d i a m i n e . 6 F / R B A , t h e m o s t flexible c o m b i n a t i o n , h a d t h e l o w e s t T ( 2 2 9 ° C ) . A t t h e other extreme, 6 F / 1 , 5 - N D , w h i c h contains t h e b u l k y , r i g i d naphthalene ring, h a d t h e h i g h e s t T ( 3 6 5 ° C ) . I t is o f i n t e r e s t t o n o t e t h a t t h e d i a m i n e s t h a t contain t h e similarly sized — Ο — , — S — , a n d — C H — linkages a l l gave polyimides h a v i n g similar T values ( 2 8 0 ° - 2 9 1 ° C ) . Change i n the position of t h e a m i n o g r o u p i n p h e n y l e n e d i a m i n e f r o m t h e m e t a t o t h e p a r a p o s i t i o n caused t h e T to increase significantly ( 2 9 7 ° - 3 2 6 ° C ) . g

g

g

g

2

g

g

American Chemical Society Library 1155 16th st Η. ΨΙ.

Platzer; Copolymers, Polyblends, and Composites Washington, 0. C. 20036 Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

448

COPOLYMERS,

T a b l e II.

POLYBLENDS,

A N D COMPOSITES

Glass Transition Temperatures of 6 F Polyimides M a d e via A m i d e A c i d Route

Inherent T , Viscosity °C g

Code

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

Diamine

XH

2

A l l p o l y i m i d e s p r e p a r e d u s i n g 6 F as t h e d i a n h y d r i d e w e r e f o u n d t o b e a m o r p h o u s . A l l w e r e r e a d i l y s o l u b l e i n s o l v e n t s s u c h as p y r i d i n e , D M F , a n d N M P , as w e l l as i n c o n c e n t r a t e d s u l f u r i c a c i d . A l t h o u g h D S C c u r v e s s o m e t i m e s showed weak melting endotherms o n freshly precipitated polymer, the endotherm was permanently destroyed b y melting a n d could not be detected i n a

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

38.

GIBBS

A N D

T a b l e III.

Laminating

B R E D E R

449

Resins

R o o m Temperature M e c h a n i c a l Properties of 6 F C o p o l y i m i d e s M a d e via A m i d e A c i d R o u t e

Molar Ratio

Diamines'

1

ODA/RBA

90/10 80/20 60/40 65/35 62/38 51/49 41/59 25/75

ODA/1, 5-ND ODA/PPD

Tensile Strength, " psi

T , °C

Inherent Viscosity 0.39 0.40 0.39 0.35 0.38 0.34 0.36 0.36

Elongation, %

1

g

277 269 254 311 298 304 307 315

b

15,000 14,700 14,600 15,700 14,500 — — —

11 13 12 6 5 — — —

« See Table II. A S T M D-1708.

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

b

rerun

of the sample.

6F/1,5-ND)

were

Furthermore,

tested

t w o of the polyimides

for crystallinity

b y x-ray

(6F/ODA and

diffraction;

none w a s

detected. T h e ability to vary the T

o v e r a b r o a d r a n g e is o f c o n s i d e r a b l e

g

significance.

Laminates based o n polyimides having l o w T

g

practical

values w o u l d be

r e l a t i v e l y e a s y t o p r e p a r e b u t w o u l d suffer i n t e r m s o f h i g h t e m p e r a t u r e m e ­ chanical property retention.

T h i s is b e c a u s e s u c h p r o p e r t i e s g e n e r a l l y f a l l off

quite r a p i d l y i n the v i c i n i t y of the T .

O n the other h a n d , if a p o l y i m i d e w i t h a

g

high Τ

g

were used, properties c o u l d be maintained through m u c h higher tem­

peratures, b u t then the fabrication temperature w o u l d have to b e correspond­ ingly increased. final

T h i s is b e c a u s e , f o r o p t i m u m r e s u l t s i n v o l v i n g l a m i n a t e s , t h e

m o l d i n g temperature

is u s u a l l y h i g h e r

than the T .

I n any particular

g

a p p l i c a t i o n i t is n e c e s s a r y t o b a l a n c e off ease o f p r o c e s s i n g vs. e n d - u s e p e r f o r m ­ ance.

F r o m t h e d a t a c i t e d i n T a b l e I I , i t is a p p a r e n t t h a t a w i d e r a n g e o f T

g

values w a s attainable

i n the 6 F f a m i l y of p o l y i m i d e s s i m p l y b y choosing t h e

appropriate diamine. Yet another w a y of v a r y i n g the T

g

imides using mixed diamines 1

g

80

I

70

1

(Table 1

was t h r o u g h the preparation of copoly­

I I I ) . T h e d a t a i n d i c a t e t h a t t h e r e is a n

1

1

1

1

I

1

50 40

-

30 20 10 0

6F/0DA

IN

6F/0DA

IN

AIR

\ \

NITROGEN

\\

PMDA/ODA

IN

AIR

PMDA/ODA

IN

NITROGEN

\

N

\ \ *·. \

-

•*·\ 1

0

100

1

200

1

300



I

1

1

1

1

1

400

500

600

700

800

900

TEMPERATURE, °C Figure 1.

Programmed temperature thermogravimetric analysis of polyimides

Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

450

C O P O L Y M E R S ,

P O L Y B L E N D S ,

A N D

C O M P O S I T E S

approximately linear relationship b e t w e e n the T values of the i n d i v i d u a l poly­ imides a n d the concentration of the diamines i n the c o p o l y i m i d e . T H E R M A L - O X I D A T I V E S T A B I L I T Y B Y T G A . T y p i c a l programmed tempera­ t u r e T G A c u r v e s r u n i n a i r a n d n i t r o g e n f o r 6 F / O D A are p r e s e n t e d i n F i g u r e 1. F o r c o m p a r i s o n , c u r v e s f o r P M D A / O D A are also g i v e n . I t is a p p a r e n t t h a t g

Ο

Ο

I

II

Downloaded by CORNELL UNIV on June 2, 2017 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch038

ο

ο

Ο

Pyromellitic dianhydride (PMDA) w h i l e b o t h p o l y m e r s w e r e quite stable, the latter p o l y i m i d e p e r f o r m e d some­ w h a t b e t t e r i n t h i s k i n d o f test. I n i s o t h e r m a l w e i g h t loss s t u d i e s c a r r i e d o u t at 3 9 0 ° C , b o t h p o l y m e r s d e g r a d e d a t t h e r a t e o f 0 . 2 - 0 . 3 % / h r i n n i t r o g e n a n d 0 . 4 - 0 . 6 % / h r i n air. M E C H A N I C A L P R O P E R T I E S O F U N R E I N F O R C E D P O L Y I M I D E S . Typical room temperature properties of the h o m o p o l y i m i d e s a n d the c o p o l y i m i d e s are pre­ s e n t e d i n T a b l e I V a n d T a b l e I I I r e s p e c t i v e l y . I t c a n b e s e e n t h a t as t h e d i a m i n e m o i e t y b e c o m e s b u l k i e r a n d less f l e x i b l e , t h e r e i s a p r o g r e s s i v e i n c r e a s e i n t h e T v a l u e s , a n d t h e p o l y m e r s also b e c o m e stiffer a n d s o m e w h a t m o r e brittle. Àt 2 5 0 ° C , the 6 F / O D A p o l y i m i d e still h a d a tensile strength of 4 8 0 0 psi, a tensile m o d u l u s of 148,000 p s i , a n d 7 8 % elongation. L O N G T E R M A I R A G I N G O F U N R E I N F O R C E D P O L Y I M I D E S . A summary of the data o n a i r o v e n aging of 6 F / O D A , 6 F / P P D , a n d 6 F / 1 , 5 - N D r u n at 2 6 0 ° , 3 1 6 ° , a n d 3 7 1 ° C respectively is g i v e n i n T a b l e V . N o t e that 6 F / O D A r e t a i n e d 7 7 % o f its o r i g i n a l tensile strength after 10,000 h r s at 2 6 0 ° C . g

Table IV. R o o m T e m p e r a t u r e M e c h a n i c a l Properties of P o l y i m i d e s M a d e b y T h e r m a l l y C u r i n g D M F - b a s e d B i n d e r Solutions Polyimide Property T , °C Tensile strength/psi Tensile modulus/ psi Flexural strength/psi Flexural modulus/psi Compressive strength/psi Elongation/ % Notched Izod impact / ft-lb/in. Density, g/cm g

3

6F/RBA 229 13,400 — — — — 11 1.0 —

6F/ODA 285« 17,600 496,000 22,000 500,000 62,400 15 1.0 1.42

6F/PPD 326 17,500 570,000 — — — 8 0.8 1.42

T values as high as 3 0 0 ° C were obtained when the solvent was Ν M P . To values as high as 3 8 5 ° C were obtained when the solvent was Ν M P . « A S T M D-1708.