Langmuir 2008, 24, 7245-7250
7245
High Uptakes of CO2 and CH4 in Mesoporous MetalsOrganic Frameworks MIL-100 and MIL-101 Philip L. Llewellyn,*,† Sandrine Bourrelly,† Christian Serre,‡ Alexandre Vimont,§ Marco Daturi,§ Lomig Hamon,| Guy De Weireld,| Jong-San Chang,⊥ Do-Young Hong,⊥ Young Kyu Hwang,⊥ Sung Hwa Jhung,⊥ and Ge´rard Fe´rey‡ Laboratoire Chimie ProVence, UniVersite´ de ProVence - CNRS (UMR 6264), Centre de St Je´roˆme, 13397 Marseille Cedex 20, France, Institut LaVoisier (UMR CNRS 8637), UniVersite´ de Versailles Saint-Quentin-en-YVelines, 45 AVenue des Etats-Unis, 78035 Versailles Cedex, France, Laboratoire Catalyse et Spectrochimie, UMR 6506, CNRS/ENSICAEN et UniVersite´ de Caen Basse-Normandie, UNICITE, 14, rue Alfred Kastler, 14052 Caen Cedex 4, France, Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology (KRICT), Jang-dong 100, Yuseong-Gu, 305-600 Daejon, South Korea, and Faculte´ Polytechnique de Mons, 31 bd Dolez, 7000 Mons, Belgium ReceiVed January 29, 2008. In Final Form: February 6, 2008 Mesoporous MOFs MIL-100 and MIL-101 adsorb huge amounts of CO2 and CH4. Characterization was performed using both manometry and gravimetry in different laboratories for isotherms coupled with microcalorimetry and FTIR to specify the gasssolid interactions. In particular, the uptake of carbon dioxide in MIL-101 has been shown to occur with a record capacity of 40 mmol g-1 or 390 cm3STP cm-3 at 5 MPa and 303 K.
1. Introduction Carbon dioxide (56%) and methane (18%) are the two main greenhouse gases emitted today.1,2 Although the methane level is beginning to be stabilized, atmospheric levels of carbon dioxide are still rapidly rising in certain areas of the world. The reduction of their emission is a strategic objective for energy development. These gases are produced in many current industrial processes as well as those in prospective areas such as the purification of hydrogen produced from biomass. Adsorption-based processes can be used to remove these gases. However, with zeolites and activated carbons,3,4 the cost of their regeneration is a limitation. There is thus a demand to develop efficient strategies for the separation/storage of CO2 and CH4 via processes with minimal environmental impact and affordable costs. Porous MOFs may provide an alternative. More than a thousand crystalline frameworks are known5 and may potentially be used in gas storage and gas separation.6–10 Easy substitutions on both the organic and inorganic moieties allow a tuning of the pores, leading to a change in the size, shape, or polarity of the cavities. Recent studies have been devoted to * Corresponding author. E-mail:
[email protected]. Tel: +33 491 637 116. Fax: +33 491 637 111. † Universite´ de Provence - CNRS (UMR 6264). ‡ Universite´ de Versailles Saint-Quentin-en-Yvelines. § CNRS/ENSICAEN et Universite´ de Caen Basse-Normandie. ⊥ Korea Research Institute of Chemical Technology (KRICT). | Faculte´ Polytechnique de Mons. (1) Kikkinides, E. S.; Yang, R. T.; Cho, S. H. Ind. Eng. Chem. Res. 1993, 32, 2714. (2) Kikuchi, R. Energy EnViron. 2003, 14, 383. (3) Ranjani, V.; Siriwardane, M.-S. S.; Fisher, Edward P.; Poston, J. A. Energy Fuels 2001, 15, 279. (4) Himeno, S.; Komatsu, T.; Fujita, S. J. Chem. Eng. Data 2005, 50, 369. (5) Roswell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, 73, 3. (6) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed 2004, 43, 2334. (7) James, S. L. Chem. Soc. ReV. 2003, 32, 276. (8) Fe´rey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217–225. (9) Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319. (10) Liu, Y.; Kravtsov, V. C.; Larsena, R.; Eddaoudi, M. Chem. Commun. 2006, 1488–1490.
the adsorption of CH4 and CO2 by some of these materials. Their adsorption capacities are equivalent or better than those of zeolite or activated carbon samples.4,11–14 As already noted for MIL53,15 the mild regeneration conditions (