Higher Ethanodiamondoids in Petroleum - Energy & Fuels (ACS

6 days ago - (4,5) Interest in diamondoids comes from pure and applied sciences. ... Helium was used as the carrier gas, with a flow rate of 1.5 mL/mi...
1 downloads 11 Views 4MB Size
Subscriber access provided by UNIV OF DURHAM

Higher Ethanodiamondoids in Petroleum Guangyou Zhu, Meng Wang, Ying Zhang, and Zhiyao Zhang Energy Fuels, Just Accepted Manuscript • DOI: 10.1021/acs.energyfuels.8b00471 • Publication Date (Web): 08 Mar 2018 Downloaded from http://pubs.acs.org on March 9, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Higher Ethanodiamondoids in Petroleum

Guangyou Zhu *,†, Meng Wang †, Ying Zhang †, Zhiyao Zhang † †

Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

ABSTRACT: Higher ethanodiamondoids (ethanodiamantanes and ethanotriamantanes) have been identified for the first time in petroleum. Since ethanodiamondoids are most thermally stable complex saturated hydrocarbons in petroleum, they appear to reflect the level of oil thermal stress and may serve as promising reliable indicator for oil cracking and oil maturity. As the ethano-bridged diamond lattice molecules, the extraordinarily thermostable characteristics and predictable derivatizable features of ethanodiamondoids make them attractive components for nano materials and devices as well as heatresistant materials. 1. INTRODUCTION Diamondoids possess a carbon framework partially or completely superimposable on the diamond lattice.1 Diamondoids known as nanodiamonds or condensed adamantanes include one or more cages (adamantane, diamantane, and higher polymantanes) as well ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 31

as numerous isomeric and structural variants including iceanes and ethanoadamantanes (Fig. 1).2, 3 The dense and 3D networks of covalent bonds in the molecules lead to their strong and stiff structures and a number of unusual chemical and physical properties.4, 5 Interest in diamondoids comes from pure and applied sciences. Due to the nanoscale size and well-defined structure, diamondoids exhibit unique optical and electronic uses.6-9 Functionalized diamondoids molecules can serve as valuable molecular building blocks for various nano materials10-12 and nano biosensors.13, 14 Polymantane crystals, which possess nanometer-sized diamond cubic framework, show promising applications in nano-devices system.15 Moreover, polymerized iceane has also been used as indispensable components in nanoscale rotary motors.16 Researchers have found adamantane,17 diamantane,18 higher polymantanes3 (up to 11 cages) in petroleum that has been subjected to thermal cracking and isolated a majority of them. Lower diamondoids (< 4 cages) have been synthesized via carbocation rearrangements.19, 20 However, similar attempts at synthesis of higher diamondoids have been thwarted for long,21, 22 until a different free-radical proposed have led to succussful synthesis of lower diamondoids from alkanes23 and higher diamondoids from lower ones.24 The adopted high pressure and high temperature conditions are akin to those of petroleum where diamondoids occur in high concentrations.4 Fig. 1 Ethanoadamantane was discovered in petroleum and no other natural source is currently known.18 The presence of higher ethanodiamondoids in petroleum has been ACS Paragon Plus Environment

Page 3 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

suspected, but have not been documented.18 Organic chemistry of ethanodiamondoid only extends to ethanodiadamantane through rearrangement reactions, with similar conditions to that in production of lower diamondoids.25,

26

Ethanoadamantane and

ethanodiadamantane are respectively the most stable C12H18 and C16H22 isomers obtainable.25, 26 Incorporation of higher ethanodiamondoids in solid state systems and polymers should provide high-temperature stability.27 Unfortunately, the stagnation of discovery in natural material and rational synthesis of more ethanodiamondoids has constrained the application studies, especially in the nano-sized research already rose for diamondoids and iceane. In this work, we have identified a series of ethanodiamondoids with 1 - 3 cages (representative structures shown in Fig. 2) for the first time in petroleum (ZS1C condensate oil) from the Tarim Basin using high resolution GC×GC-TOFMS, based on the best of our knowledge. The discovery advances the isolation and synthesis of ethanodiamondoids attractive materials for modern technological applications in fields such as nanotechnology and heat-resistant polymers. Fig. 2 2. EXPERIMENTAL METHODS The highly mature condensate oil sample was obtained from 6861-6944 m interval of well ZS1C which penetrated the lower Cambrian strata. The density of this condensate oil is 0.79 g/cm3 (20 °C), the viscosity is 1.2-1.4 mPa·s (50 °C) and the sulfur content is 2.06 wt%. ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 31

The comprehensive GC×GC system for the GC×GC-TOFMS is from Leco Corporation. Studies reporting GC×GC analysis of condensate oil samples are rare. The GC×GC system was composed of an Agilent 7890 GC coupled to a hydrogen flame ionization detector (FID) and a liquid-nitrogen-cooled pulse jet modulator. The TOF mass spectrometer is a Pegasus 4D (Leco Corporation). All data were processed with ChromaTOF software. The one-dimensional chromatographic column was a DB-petro (50 m × 0.2 mm × 0.5 mm). The temperature program used was 0.2 min at 35 °C; increased to 210 °C at a rate of 1.5 °C/min and held for 0.2 min; and increased to 300 °C at the rate of 2 °C/min and held for 20 min. The two-dimensional chromatographic column was a DB-17ht (3 m × 0.1 mm × 0.1 µm). The temperature program applied was the same as that for the onedimensional gas chromatography, but the temperatures were 5 °C higher. The modulator temperature was 45 °C higher than for the one-dimensional gas chromatography. The inlet temperature was 300 °C, the inlet mode was split injection, the split ratio was 700:1, and the sample volume was 0.5 µL. Helium was used as the carrier gas, with a flow rate of 1.5 mL/min. The modulation time was 10 s, 2.5 s of which was the hot pulse time. For the mass spectrometry, the temperatures of the transfer line and the ion source were 300 °C and 240 °C, respectively, the scan range was 40-520 amu, the acquisition rate was 100 spectra/s, and the delay time of the solvent was 9 min. The compounds were quantified by peak area normalization. d16-adamantane (using CH2Cl2 as a solvent) was added in the condensate oil sample, and the quantitative results ACS Paragon Plus Environment

Page 5 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

of conventional diamondoids in the condensate oil were obtained using the internal standard method. 3. RESULTS AND DISCUSSION In

ZS1C

condensate

oil,

116

homologues

and

structural

isomers

of

ethanodiamondoids with 1-3 cages (Fig. 2) have been assigned through GC×GCTOFMS in total. The 1D and 2D retention time, as well as quantitative results of all ethanodiamondoids are listed in Table S-1. Fig. 2 Ethanoadamantanes (EAs): ethanoadamantane has been isolated from petroleum by Hala et al.18 and synthesized by Osawa Eiji and coworkers,25,

28

and its chemical

structure has been independently confirmed by NMR, IR and MS spectrum. As shown in Fig. 3(a), the chemical formula of peak EA-1 given by the high-resolution GC×GCTOFMS is C12H18 with molecular ion weight of 162. The characteristic fragment ions (Fig. 4) of peak EA-1 are well identical with those of ethanoadamantane in reference.18, 25, 28

Hence, compound EA-1 is assigned as ethanoadamantane. Moreover, 69 (EA-2 to

EA-70) compounds have been identified as alkyl substituted ethanoadamantanes based on high-resolution mass spectral characterization. Among the substituted EAs, the C1ethanoadamantanes have seven isomers (peaks EA-2 to EA-8 in Fig. 3(a)). As illustrated in Fig. 4, compounds EA-2 to EA-8 all have similar mass spectra with those of the synthetic methylethanoadamantanes,28 although the exact substitution site is not determined. The C2-, C3-, C4- and C5-ethanoadamantane groups comprise 25, 22, 12 and ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 31

3 isomers, respectively, and the chromatograms of representative compounds EA-9, EA10, EA-11, EA-19, EA-41, EA-59 and EA-68 for each substituted group are shown in Fig. S-1. All the mass spectra of compounds EA-9 to EA-70 are shown in Fig. S-4 to S6. The total concentration of ethanoadamantanes in ZS1C condensate oil is 16998 µg/g. Fig. 3 Fig. 4 Ethanodiadamantanes (EDs): ethanodiadamantane have not been previously discovered in natural materials, and the only source before is the chemical preparation reported by Rao et al.26 Ethanodiadamantane has two isomers and the chemical structures have been confirmed by NMR and MS spectrum as well as X-ray analysis. Chemical formula of C16H22 identified by GC×GC-TOFMS has been assigned to peaks ED-1 and ED-2. Compounds ED-1 and ED-2 have remarkably similar mass spectra (see Fig. 5) with the synthesized ethanodiadamantane.26 Hence, ED-1 and ED-2 are both determined as isomers of ethanodiadamantanes. Moreover, 35 alkyl substituted ethanoadamantanes (peaks ED-3 to ED-37) compounds have been identified based on mass spectral characterization (see Fig. S-8 and S-9). The C1-, C2- and C3ethanodiamantane groups comprised 13, 13 and 9 isomers, respectively, and the chromatograms of representative compounds ED-4, ED-5, ED-18, ED-19, ED-31 and ED-36 for substituted ethanodiamantane groups are shown in Fig. S-2. The total content of ethanodiadamantanes in the condensate oil is 5500 µg/g. Fig. 5 ACS Paragon Plus Environment

Page 7 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Ethanotriamantanes (ETs): ethanotriamantanes not been reported in nature or by laboratory synthesis. We have tentatively determined 4 isomers of ethanotriamantane (shown in Fig. 3, peaks ET-1 to ET-4) with formula of C20H26 by mass spectral characterization. All isomers have noticeable similar mass spectra characterized by intense molecular-ion peaks at m/e 266 (see Fig. 5). Seven substituted homologues of ethanotriamantanes also are detected (Fig. S-10). The C1- and C2-ethanotriamantane groups comprise 5 and 2 isomers, respectively, whose chromatograms are shown in Fig. S-3. The total concentration of ethanotriamantanes in the condensate oil is 60 µg/g. This is the first discovery of ethanotriamantanes in nature. Ethanodiamondoids are ethano-bridged diamond lattice molecules, with two carbons and an additional ring are added to adamantane and to the higher adamantane analogues. Ethanodiamondoids appear to be the most thermodynamically stable ones among all the isomers with the identical formula,25, 26 even more stable than the diamondoids which can survive the pyrolysis conditions at 450 °C4. The thermostable characteristics and the predictable derivatizable features of ethanodiamondoids provide extraordinary potentials for theoretical and application studies. In geochemical communities, the thermal stability of diamondoids imparts resistance to petroleum cracking which leads to an increase in their relative concentrations with increasing thermal stress,29 hence, diamondoids are widely used as proxies for oil cracking and to reflect oil maturity.30-32 We have been eager to isolate individual ethanodiamondoid compound in pure form for further structural confirmation, unfortunately, the amount of available ZS1C condensate has ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 31

limited our action. Nevertheless, prior to our work, identification of higher ethanodiamondoids in nature materials have never been reported. This discovery of a large numbers of ethanodiamondoids with 1-3 cages probably promotes the future isolation and rational synthesis of ethanodiamondoids as attractive components for heatresistant materials, and in the fields of nanotechnology such as molecular self-assembly and devices. 4. CONCLUSION To the best of our knowledge, a series of ethanodiamondoids with 1 - 3 cages were detected for the first time in petroleum (ZS1C condensate oil) from the Tarim Basin using high resolution GC×GC-TOFMS. The thermostable characteristics and the predictable derivatizable features of ethanodiamondoids provide extraordinary potentials for theoretical and application studies and the discovery will hopefully advance the isolation and synthesis of ethanodiamondoids as attractive materials for modern technological applications.

Corresponding author. *Guangyou Zhu: E-mail address, [email protected]; Tel., +86 10 8359 2318; +86 18601309981. The first two authors contributed equally to this work.

ACS Paragon Plus Environment

Page 9 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

REFERENCE: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.

Stauss, S.; Terashima, K. Diamondoids: Synthesis, Properties and Applications Pan Stanford Publishing 2016, 13-18. E. Osawa, A. Furusaki, T. Matsumoto, P. von R. Schleyer and E. Wiskott, Tetrahedron Letters, 1976, 17, 2463-2466. J. Dahl, S. Liu and R. Carlson, Science, 2003, 299, 96-99. J. E. Dahl, S. Liu and R. M. K. Carlson, Science, 2003, 299, 96-99. L. Landt, K. Klünder, J. E. Dahl, R. M. K. Carlson, T. Möller and C. Bostedt, Physical Review Letters, 2009, 103, 047402. W. L. Yang, J. D. Fabbri, T. M. Willey, J. Lee, J. E. Dahl, R. M. K. Carlson, P. R. Schreiner, A. A. Fokin, B. A. Tkachenko and N. A. Fokina, Science, 2007, 316, 1460-1462. M. Vörös and A. Gali, Physical Review B, 2009, 80, 161411. X.-B. Cheng, M.-Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X.-Q. Zhang, Q. Zhang, J. Jiang and Y. Gogotsi, Nature Communications, 2017, 8, 336. C. Bradac, M. T. Johnsson, M. v. Breugel, B. Q. Baragiola, R. Martin, M. L. Juan, G. K. Brennen and T. Volz, Nature Communications, 2017, 8, 1205. B. A. Tkachenko, N. A. Fokina, L. V. Chernish, J. E. P. Dahl, Liu, R. M. K. Carlson, A. A. Fokin and P. R. Schreiner, Organic Letters, 2006, 8, 1767-1770. J. C. Garcia, J. F. Justo, W. V. M. Machado and L. V. C. Assali, Physical Review B, 2009, 80, 125421. C. M. Ralph, Nanotechnology, 2000, 11, 89. G. Sivaraman and M. Fyta, Nanoscale, 2014, 6, 4225-4232. G. Sivaraman, R. G. Amorim, R. H. Scheicher and M. Fyta, Nanoscale, 2016, 8, 10105-10112. Ç. Tahir, C. Jianwei, N. G. Michael, F. Amir and A. G. William, III, Nanotechnology, 1999, 10, 278. O. Vaughan, Nature Nanotechnology, 2008. S. Landa and V. Machacek, Collection of Czechoslovak Chemical Communications, 1933, 5, 1-5. S. Hala, S. Landa and V. Hanuš, Angewandte Chemie International Edition, 1966, 5, 1045-1046. W. Burns, M. A. McKervey, T. R. B. Mitchell and J. J. Rooney, Journal of the American Chemical Society, 1978, 100, 906-911. R. C. Fort and P. v. R. Schleyer, Chemical Reviews, 1964, 64, 277-300. M. A. McKervey, Tetrahedron, 1980, 36, 971-992. P. v. R. Schleyer, E. Osawa and M. G. B. Drew, Journal of the American Chemical Society, 1968, 90, 5034-5036. G. N. Gordadze and M. V. Giruts, Petroleum Chemistry, 2008, 48, 414-419. J. E. P. Dahl, J. M. Moldowan, Z. Wei, P. A. Lipton, P. Denisevich, R. Gat, S. Liu, P. R. Schreiner and R. M. K. Carlson, Angewandte Chemie International Edition, 2010, 49, 9881-9885. D. Farcasiu, E. Wiskott, E. Osawa, W. Thielecke, E. M. Engler, J. Slutsky, P. v. R. Schleyer and G. J. Kent, Journal of the American Chemical Society, 1974, 96, 4669-4671. S. T. Rao, M. Sundaralingam, E. Osawa, E. Wiskott and P. v. R. Schleyer, Journal of the Chemical Society D: Chemical Communications, 1970, DOI: 10.1039/C29700000861, 861-862. M. A. Meador, Annual Review of Materials Science, 1998, 28, 599-630. E. Osawa, E. M. Engler, S. A. Godleski, Y. Inamoto, G. J. Kent, M. Kausch and P. v. R. Schleyer, The Journal of Organic Chemistry, 1980, 45, 984-991. J. E. Dahl, J. M. Moldowan, K. E. Peters, G. E. Claypool, M. A. Rooney, G. E. Michael, M. R. Mello and M. L. Kohnen, Nature, 1999, 399, 54. J. Chen, J. Fu, G. Sheng, D. Liu and J. Zhang, Organic Geochemistry, 1996, 25, 179-190. L. Jinggui, P. Philp and C. Mingzhong, Organic Geochemistry, 2000, 31, 267-272. Z. Wei, J. M. Moldowan, S. Zhang, R. Hill, D. M. Jarvie, H. Wang, F. Song and F. Fago, Organic Geochemistry, 2007, 38, 227-249.

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 31

Fig. 1 Chemical structures of adamantane, iceane and ethanoadamantane.

Fig. 2 Chromatograms of ethanodiamondoid hydrocarbons with 1-3 cages.

Fig. 3 GC×GC-TOF MS analysis of ethanoadamantanes in the ZS1C condensate oil. Notes: (a) m/z 162+176+175+189+203+217 chromatogram of ethanoadamantanes; (b) m/z 214+213+227+241 chromatogram of ethanodiamantanes; (c) m/z 214+213+227+241 chromatogram of ethanotriamantanes.

Fig. 4 Mass spectra of ethanoadamantanes EA-1 to EA-8 in ZS1C condensate oil.

Fig. 5 Mass spectra of ethanodiamantanes ED-1 and ED-2, and ethanotriamantanes ET1 to ET-4 in ZS1C condensate oil.

ACS Paragon Plus Environment

Page 11 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Fig. 1

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 2

ACS Paragon Plus Environment

Page 12 of 31

Page 13 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Fig. 3

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fig. 4

ACS Paragon Plus Environment

Page 14 of 31

Page 15 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Fig. 5

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 31

Supplementary Fig. S-1 GC×GC-TOF MS analysis of ethanoadamantanes in the ZS1C condensate oil. Notes: (a) 162 +161 Da showing EA, C1-EA’s and C2-EA’s with ion 161 Da; (b) 175 Da showing C2-EA’s and C3-EA’s with ion 175 Da; (c) 189 Da showing C3-EA’s and C4EA’s with ion 189 Da; (d) 203 Da showing C4-EA’s; (e) 217 Da showing C5-EA’s. The different alkyl-EA products are numbered.

Supplementary Fig. S-2 GC×GC-TOF MS analysis of ethanodiamantanes in the ZS1C condensate oil. Notes: (a) 214+213 Da showing ED, C1-ED’s and C2-ED’s with ion 213 Da; (b) 227 Da showing C2-ED’s (c) 241 Da showing C3-ED’s. The different alkyl-ED products are numbered.

Supplementary Fig. S-3 GC×GC-TOF MS analysis of ethanotriamantanes in the ZS1C condensate oil: 265+279 Da showing C1-ET’s and C2-ET’s. The different alkyl-ET products are numbered.

Supplementary Fig. S-4 Mass spectra of ethanoadamantanes EA-1 to EA-21.

ACS Paragon Plus Environment

Page 17 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Supplementary Fig. S-5 Mass spectra of ethanoadamantanes EA-22 to EA-42.

Supplementary Fig. S-6 Mass spectra of ethanoadamantanes EA-43 to EA-63.

Supplementary Fig. S-7 Mass spectra of ethanoadamantanes EA-64 to EA-70.

Supplementary Fig. S-8 Mass spectra of ethanodiamantanes ED-1 to ED-21.

Supplementary Fig. S-9 Mass spectra of ethanodiamantanes ED-22 to ED-37.

Supplementary Fig. S-10 Mass spectra of ethanotriamantanes ET-1 to ET-11.

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Supplementary Fig. S-1

ACS Paragon Plus Environment

Page 18 of 31

Page 19 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Supplementary Fig. S-2

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Supplementary Fig. S-3

ACS Paragon Plus Environment

Page 20 of 31

Page 21 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Supplementary Fig. S-4

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Supplementary Fig. S-5

ACS Paragon Plus Environment

Page 22 of 31

Page 23 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Supplementary Fig. S-6

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Supplementary Fig. S-7

ACS Paragon Plus Environment

Page 24 of 31

Page 25 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Supplementary Fig. S-8

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Supplementary Fig. S-9

ACS Paragon Plus Environment

Page 26 of 31

Page 27 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

Supplementary Fig. S-10

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 31

Supplementary Table S-1. Ethanodiamondoids detected in ZS1C condensate. Notes: Peak No. correspond to GC×GC-TOF MS assigned peaks in Fig. 2, Supplementary Fig. S-2, S-3 and S-4. EA=Ethanoadamantane, ED=Ethanodiamantane, and ET=Ethanotriamantane. Name

Concentration

Peak No.

Classifications

Formula

R.T. (s)

Quant Masses

UniqueMass

D16-Adamantane

I.S.-1

I.S.

C10D16

2490 , 2.390

152

152

642

Ethanoadamantane

EA-1

EA

C12H18

3516 , 2.660

162

162

943

C1-ethanoadamantane

EA-2

EA

C13H20

3588 , 2.510

176

161

1315

C1-ethanoadamantane

EA-3

EA

C13H20

3636 , 2.540

176

161

2620

C1-ethanoadamantane

EA-4

EA

C13H20

3690 , 2.600

176

161

1186

C1-ethanoadamantane

EA-5

EA

C13H20

3732 , 2.560

176

161

60

C1-ethanoadamantane

EA-6

EA

C13H20

3840 , 2.630

176

161

158

C1-ethanoadamantane

EA-7

EA

C13H20

3852 , 2.650

176

161

108

C1-ethanoadamantane

EA-8

EA

C13H20

3816 , 2.620

176

161

580

n-ethyl-ethanoadamantane

EA-9

EA

C14H22

4122 , 2.570

190

161

385

n-ethyl-ethanoadamantane

EA-10

EA

C14H22

4140 , 2.600

190

161

604

C2-ethanoadamantane

EA-11

EA

C14H22

3690 , 2.420

190

175

2210

C2-ethanoadamantane

EA-12

EA

C14H22

3738 , 2.430

190

175

1158

C2-ethanoadamantane

EA-13

EA

C14H22

3750 , 2.440

190

175

889

C2-ethanoadamantane

EA-14

EA

C14H22

3798 , 2.480

190

175

1011

C2-ethanoadamantane

EA-15

EA

C14H22

3834 , 2.440

190

175

254

C2-ethanoadamantane

EA-16

EA

C14H22

3846 , 2.450

190

175

928

C2-ethanoadamantane

EA-17

EA

C14H22

3852 , 2.520

190

175

340

C2-ethanoadamantane

EA-18

EA

C14H22

3870 , 2.470

190

175

367

C2-ethanoadamantane

EA-19

EA

C14H22

3912 , 2.500

190

175

1867

C2-ethanoadamantane

EA-20

EA

C14H22

3930 , 2.510

190

175

1135

C2-ethanoadamantane

EA-21

EA

C14H22

3966 , 2.590

190

175

572

C2-ethanoadamantane

EA-22

EA

C14H22

3978 , 2.550

190

175

192

C2-ethanoadamantane

EA-23

EA

C14H22

4002 , 2.550

190

175

37

C2-ethanoadamantane

EA-24

EA

C14H22

4020 , 2.560

190

175

1008

C2-ethanoadamantane

EA-25

EA

C14H22

4056 , 2.580

190

175

111

C2-ethanoadamantane

EA-26

EA

C14H22

4188 , 2.650

190

175

73

C2-ethanoadamantane

EA-27

EA

C14H22

4218 , 2.660

190

175

6

C2-ethanoadamantane

EA-28

EA

C14H22

4494 , 2.410

190

175

123

ACS Paragon Plus Environment

μg/g

Page 29 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

C2-ethanoadamantane

EA-29

EA

C14H22

3936 , 2.570

190

190

220

C2-ethanoadamantane

EA-30

EA

C14H22

3954 , 2.500

190

190

101

C2-ethanoadamantane

EA-31

EA

C14H22

3966 , 2.540

190

190

130

C2-ethanoadamantane

EA-32

EA

C14H22

4026 , 2.600

190

190

7

C2-ethanoadamantane

EA-33

EA

C14H22

4158 , 2.650

190

190

75

n-propyl-ethanoadamantane

EA-34

EA

C15H24

4476 , 2.550

204

161

153

C3-ethanoadamantane

EA-35

EA

C15H24

4176 , 2.450

204

175

429

C3-ethanoadamantane

EA-36

EA

C15H24

4206 , 2.460

204

175

381

C3-ethanoadamantane

EA-37

EA

C15H24

4236 , 2.480

204

175

813

C3-ethanoadamantane

EA-38

EA

C15H24

4326 , 2.510

204

175

317

C3-ethanoadamantane

EA-39

EA

C15H24

4392 , 2.560

204

175

431

C3-ethanoadamantane

EA-40

EA

C15H24

3786 , 2.310

204

189

871

C3-ethanoadamantane

EA-41

EA

C15H24

3834 , 2.340

204

189

1185

C3-ethanoadamantane

EA-42

EA

C15H24

3870 , 2.350

204

189

177

C3-ethanoadamantane

EA-43

EA

C15H24

3882 , 2.310

204

189

449

C3-ethanoadamantane

EA-44

EA

C15H24

3900 , 2.410

204

189

199

C3-ethanoadamantane

EA-45

EA

C15H24

3924 , 2.350

204

189

890

C3-ethanoadamantane

EA-46

EA

C15H24

3948 , 2.370

204

189

675

C3-ethanoadamantane

EA-47

EA

C15H24

4038 , 2.460

204

189

77

C3-ethanoadamantane

EA-48

EA

C15H24

4044 , 2.430

204

189

130

C3-ethanoadamantane

EA-49

EA

C15H24

4062 , 2.430

204

189

718

C3-ethanoadamantane

EA-50

EA

C15H24

4074 , 2.450

204

189

451

C3-ethanoadamantane

EA-51

EA

C15H24

4080 , 2.440

204

189

377

C3-ethanoadamantane

EA-52

EA

C15H24

4092 , 2.440

204

189

570

C3-ethanoadamantane

EA-53

EA

C15H24

4104 , 2.470

204

189

390

C3-ethanoadamantane

EA-54

EA

C15H24

4128 , 2.470

204

189

149

C3-ethanoadamantane

EA-55

EA

C15H24

4248 , 2.530

204

189

315

n-butyl-ethanoadamantane

EA-56

EA

C16H26

4482 , 2.540

218

161

138

C4-ethanoadamantane

EA-57

EA

C16H26

4392 , 2.400

218

189

380

C4-ethanoadamantane

EA-58

EA

C16H26

3918 , 2.260

218

203

158

C4-ethanoadamantane

EA-59

EA

C16H26

3948 , 2.240

218

203

347

C4-ethanoadamantane

EA-60

EA

C16H26

4050 , 2.320

218

203

80

C4-ethanoadamantane

EA-61

EA

C16H26

4080 , 2.360

218

203

194

C4-ethanoadamantane

EA-62

EA

C16H26

4098 , 2.260

218

203

84

C4-ethanoadamantane

EA-63

EA

C16H26

4122 , 2.280

218

203

76

C4-ethanoadamantane

EA-64

EA

C16H26

4140 , 2.340

218

203

218

C4-ethanoadamantane

EA-65

EA

C16H26

4254 , 2.360

218

203

395

C4-ethanoadamantane

EA-66

EA

C16H26

4326 , 2.410

218

203

272

C4-ethanoadamantane

EA-67

EA

C16H26

4440 , 2.420

218

203

218

ACS Paragon Plus Environment

Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 31

C5-ethanoadamantane

EA-68

EA

C17H28

4092 , 2.140

232

217

35

C5-ethanoadamantane

EA-69

EA

C17H28

4104 , 2.150

232

217

24

C5-ethanoadamantane

EA-70

EA

C17H28

4236 , 2.220

232

217

71

Ethanodiamantane

ED-1

ED

C16H22

4974 , 3.080

214

214

675

Ethanodiamantane

ED-2

ED

C16H22

5106 , 3.130

214

214

134

C1-ethanodiamantane

ED-3

ED

C17H24

4992 , 2.850

228

213

89

C1-ethanodiamantane

ED-4

ED

C17H24

5010 , 2.880

228

213

471

C1-ethanodiamantane

ED-5

ED

C17H24

5052 , 2.920

228

213

517

C1-ethanodiamantane

ED-6

ED

C17H24

5070 , 2.960

228

213

65

C1-ethanodiamantane

ED-7

ED

C17H24

5106 , 2.970

228

213

256

C1-ethanodiamantane

ED-8

ED

C17H24

5130 , 3.020

228

213

149 248

C1-ethanodiamantane

ED-9

ED

C17H24

5136 , 3.000

228

213

C1-ethanodiamantane

ED-10

ED

C17H24

5148 , 2.910

228

213

92

C1-ethanodiamantane

ED-11

ED

C17H24

5214 , 3.030

228

213

66

C1-ethanodiamantane

ED-12

ED

C17H24

5232 , 3.040

228

213

81

C1-ethanodiamantane

ED-13

ED

C17H24

5238 , 3.100

228

213

143

C1-ethanodiamantane

ED-14

ED

C17H24

5280 , 3.090

228

213

151

C1-ethanodiamantane

ED-15

ED

C17H24

5328 , 3.140

228

213

84

n-ethyl-ethanodiamantane

ED-16

ED

C18H26

5466 , 2.940

242

213

46

n-ethyl-ethanodiamantane

ED-17

ED

C18H26

5478 , 2.970

242

213

53

C2-ethanodiamantane

ED-18

ED

C18H26

5022 , 2.660

242

227

271

C2-ethanodiamantane

ED-19

ED

C18H26

5082 , 2.750

242

227

188

C2-ethanodiamantane

ED-20

ED

C18H26

5100 , 2.770

242

227

87

C2-ethanodiamantane

ED-21

ED

C18H26

5136 , 2.800

242

227

125

C2-ethanodiamantane

ED-22

ED

C18H26

5244 , 2.820

242

227

56

C2-ethanodiamantane

ED-23

ED

C18H26

5268 , 2.930

242

227

112

C2-ethanodiamantane

ED-24

ED

C18H26

5274 , 2.890

242

227

98

C2-ethanodiamantane

ED-25

ED

C18H26

5298 , 2.890

242

227

164

C2-ethanodiamantane

ED-26

ED

C18H26

5358 , 2.950

242

227

183

C2-ethanodiamantane

ED-27

ED

C18H26

5370 , 2.970

242

227

50

C2-ethanodiamantane

ED-28

ED

C18H26

5496 , 3.020

242

227

152

C3-ethanodiamantane

ED-29

ED

C19H28

5424 , 2.800

256

241

124

C3-ethanodiamantane

ED-30

ED

C19H28

5046 , 2.530

256

241

67

C3-ethanodiamantane

ED-31

ED

C19H28

5040 , 2.500

256

241

60

C3-ethanodiamantane

ED-32

ED

C19H28

5094 , 2.570

256

241

32

C3-ethanodiamantane

ED-33

ED

C19H28

5160 , 2.650

256

241

113

C3-ethanodiamantane

ED-34

ED

C19H28

5190 , 2.680

256

241

61

C3-ethanodiamantane

ED-35

ED

C19H28

5292 , 2.750

256

241

84

C3-ethanodiamantane

ED-36

ED

C19H28

5436 , 2.820

256

241

118

C3-ethanodiamantane

ED-37

ED

C19H28

5466 , 2.820

256

241

73

ET-1

ET

C20H26

6180 , 3.490

266

266

4

Ethanotriamantane Ethanotriamantane

ET-2

ET

C20H26

6222 , 3.530

266

266

9

Ethanotriamantane

ET-3

ET

C20H26

6288 , 3.620

266

266

9 6

Ethanotriamantane

ET-4

ET

C21H28

6360 , 3.630

266

266

C1-ethanotriamantane

ET-5

ET

C21H28

6264 , 3.340

280

265

6

C1-ethanotriamantane

ET-6

ET

C21H28

6282 , 3.340

280

265

4

ACS Paragon Plus Environment

Page 31 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Energy & Fuels

C1-ethanotriamantane

ET-7

ET

C21H28

6330 , 3.430

280

265

4

C1-ethanotriamantane

ET-8

ET

C21H28

6360 , 3.380

280

265

6

C1-ethanotriamantane

ET-9

ET

C21H28

6414 , 3.550

280

265

4

C2-ethanotriamantane

ET-10

ET

C22H30

6276 , 3.110

294

279

3

C2-ethanotriamantane

ET-11

ET

C22H30

6324 , 3.150

294

279

3

ACS Paragon Plus Environment