Subscriber access provided by UNIV OF DURHAM
Higher Ethanodiamondoids in Petroleum Guangyou Zhu, Meng Wang, Ying Zhang, and Zhiyao Zhang Energy Fuels, Just Accepted Manuscript • DOI: 10.1021/acs.energyfuels.8b00471 • Publication Date (Web): 08 Mar 2018 Downloaded from http://pubs.acs.org on March 9, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Higher Ethanodiamondoids in Petroleum
Guangyou Zhu *,†, Meng Wang †, Ying Zhang †, Zhiyao Zhang † †
Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
ABSTRACT: Higher ethanodiamondoids (ethanodiamantanes and ethanotriamantanes) have been identified for the first time in petroleum. Since ethanodiamondoids are most thermally stable complex saturated hydrocarbons in petroleum, they appear to reflect the level of oil thermal stress and may serve as promising reliable indicator for oil cracking and oil maturity. As the ethano-bridged diamond lattice molecules, the extraordinarily thermostable characteristics and predictable derivatizable features of ethanodiamondoids make them attractive components for nano materials and devices as well as heatresistant materials. 1. INTRODUCTION Diamondoids possess a carbon framework partially or completely superimposable on the diamond lattice.1 Diamondoids known as nanodiamonds or condensed adamantanes include one or more cages (adamantane, diamantane, and higher polymantanes) as well ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 31
as numerous isomeric and structural variants including iceanes and ethanoadamantanes (Fig. 1).2, 3 The dense and 3D networks of covalent bonds in the molecules lead to their strong and stiff structures and a number of unusual chemical and physical properties.4, 5 Interest in diamondoids comes from pure and applied sciences. Due to the nanoscale size and well-defined structure, diamondoids exhibit unique optical and electronic uses.6-9 Functionalized diamondoids molecules can serve as valuable molecular building blocks for various nano materials10-12 and nano biosensors.13, 14 Polymantane crystals, which possess nanometer-sized diamond cubic framework, show promising applications in nano-devices system.15 Moreover, polymerized iceane has also been used as indispensable components in nanoscale rotary motors.16 Researchers have found adamantane,17 diamantane,18 higher polymantanes3 (up to 11 cages) in petroleum that has been subjected to thermal cracking and isolated a majority of them. Lower diamondoids (< 4 cages) have been synthesized via carbocation rearrangements.19, 20 However, similar attempts at synthesis of higher diamondoids have been thwarted for long,21, 22 until a different free-radical proposed have led to succussful synthesis of lower diamondoids from alkanes23 and higher diamondoids from lower ones.24 The adopted high pressure and high temperature conditions are akin to those of petroleum where diamondoids occur in high concentrations.4 Fig. 1 Ethanoadamantane was discovered in petroleum and no other natural source is currently known.18 The presence of higher ethanodiamondoids in petroleum has been ACS Paragon Plus Environment
Page 3 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
suspected, but have not been documented.18 Organic chemistry of ethanodiamondoid only extends to ethanodiadamantane through rearrangement reactions, with similar conditions to that in production of lower diamondoids.25,
26
Ethanoadamantane and
ethanodiadamantane are respectively the most stable C12H18 and C16H22 isomers obtainable.25, 26 Incorporation of higher ethanodiamondoids in solid state systems and polymers should provide high-temperature stability.27 Unfortunately, the stagnation of discovery in natural material and rational synthesis of more ethanodiamondoids has constrained the application studies, especially in the nano-sized research already rose for diamondoids and iceane. In this work, we have identified a series of ethanodiamondoids with 1 - 3 cages (representative structures shown in Fig. 2) for the first time in petroleum (ZS1C condensate oil) from the Tarim Basin using high resolution GC×GC-TOFMS, based on the best of our knowledge. The discovery advances the isolation and synthesis of ethanodiamondoids attractive materials for modern technological applications in fields such as nanotechnology and heat-resistant polymers. Fig. 2 2. EXPERIMENTAL METHODS The highly mature condensate oil sample was obtained from 6861-6944 m interval of well ZS1C which penetrated the lower Cambrian strata. The density of this condensate oil is 0.79 g/cm3 (20 °C), the viscosity is 1.2-1.4 mPa·s (50 °C) and the sulfur content is 2.06 wt%. ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 31
The comprehensive GC×GC system for the GC×GC-TOFMS is from Leco Corporation. Studies reporting GC×GC analysis of condensate oil samples are rare. The GC×GC system was composed of an Agilent 7890 GC coupled to a hydrogen flame ionization detector (FID) and a liquid-nitrogen-cooled pulse jet modulator. The TOF mass spectrometer is a Pegasus 4D (Leco Corporation). All data were processed with ChromaTOF software. The one-dimensional chromatographic column was a DB-petro (50 m × 0.2 mm × 0.5 mm). The temperature program used was 0.2 min at 35 °C; increased to 210 °C at a rate of 1.5 °C/min and held for 0.2 min; and increased to 300 °C at the rate of 2 °C/min and held for 20 min. The two-dimensional chromatographic column was a DB-17ht (3 m × 0.1 mm × 0.1 µm). The temperature program applied was the same as that for the onedimensional gas chromatography, but the temperatures were 5 °C higher. The modulator temperature was 45 °C higher than for the one-dimensional gas chromatography. The inlet temperature was 300 °C, the inlet mode was split injection, the split ratio was 700:1, and the sample volume was 0.5 µL. Helium was used as the carrier gas, with a flow rate of 1.5 mL/min. The modulation time was 10 s, 2.5 s of which was the hot pulse time. For the mass spectrometry, the temperatures of the transfer line and the ion source were 300 °C and 240 °C, respectively, the scan range was 40-520 amu, the acquisition rate was 100 spectra/s, and the delay time of the solvent was 9 min. The compounds were quantified by peak area normalization. d16-adamantane (using CH2Cl2 as a solvent) was added in the condensate oil sample, and the quantitative results ACS Paragon Plus Environment
Page 5 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
of conventional diamondoids in the condensate oil were obtained using the internal standard method. 3. RESULTS AND DISCUSSION In
ZS1C
condensate
oil,
116
homologues
and
structural
isomers
of
ethanodiamondoids with 1-3 cages (Fig. 2) have been assigned through GC×GCTOFMS in total. The 1D and 2D retention time, as well as quantitative results of all ethanodiamondoids are listed in Table S-1. Fig. 2 Ethanoadamantanes (EAs): ethanoadamantane has been isolated from petroleum by Hala et al.18 and synthesized by Osawa Eiji and coworkers,25,
28
and its chemical
structure has been independently confirmed by NMR, IR and MS spectrum. As shown in Fig. 3(a), the chemical formula of peak EA-1 given by the high-resolution GC×GCTOFMS is C12H18 with molecular ion weight of 162. The characteristic fragment ions (Fig. 4) of peak EA-1 are well identical with those of ethanoadamantane in reference.18, 25, 28
Hence, compound EA-1 is assigned as ethanoadamantane. Moreover, 69 (EA-2 to
EA-70) compounds have been identified as alkyl substituted ethanoadamantanes based on high-resolution mass spectral characterization. Among the substituted EAs, the C1ethanoadamantanes have seven isomers (peaks EA-2 to EA-8 in Fig. 3(a)). As illustrated in Fig. 4, compounds EA-2 to EA-8 all have similar mass spectra with those of the synthetic methylethanoadamantanes,28 although the exact substitution site is not determined. The C2-, C3-, C4- and C5-ethanoadamantane groups comprise 25, 22, 12 and ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 31
3 isomers, respectively, and the chromatograms of representative compounds EA-9, EA10, EA-11, EA-19, EA-41, EA-59 and EA-68 for each substituted group are shown in Fig. S-1. All the mass spectra of compounds EA-9 to EA-70 are shown in Fig. S-4 to S6. The total concentration of ethanoadamantanes in ZS1C condensate oil is 16998 µg/g. Fig. 3 Fig. 4 Ethanodiadamantanes (EDs): ethanodiadamantane have not been previously discovered in natural materials, and the only source before is the chemical preparation reported by Rao et al.26 Ethanodiadamantane has two isomers and the chemical structures have been confirmed by NMR and MS spectrum as well as X-ray analysis. Chemical formula of C16H22 identified by GC×GC-TOFMS has been assigned to peaks ED-1 and ED-2. Compounds ED-1 and ED-2 have remarkably similar mass spectra (see Fig. 5) with the synthesized ethanodiadamantane.26 Hence, ED-1 and ED-2 are both determined as isomers of ethanodiadamantanes. Moreover, 35 alkyl substituted ethanoadamantanes (peaks ED-3 to ED-37) compounds have been identified based on mass spectral characterization (see Fig. S-8 and S-9). The C1-, C2- and C3ethanodiamantane groups comprised 13, 13 and 9 isomers, respectively, and the chromatograms of representative compounds ED-4, ED-5, ED-18, ED-19, ED-31 and ED-36 for substituted ethanodiamantane groups are shown in Fig. S-2. The total content of ethanodiadamantanes in the condensate oil is 5500 µg/g. Fig. 5 ACS Paragon Plus Environment
Page 7 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Ethanotriamantanes (ETs): ethanotriamantanes not been reported in nature or by laboratory synthesis. We have tentatively determined 4 isomers of ethanotriamantane (shown in Fig. 3, peaks ET-1 to ET-4) with formula of C20H26 by mass spectral characterization. All isomers have noticeable similar mass spectra characterized by intense molecular-ion peaks at m/e 266 (see Fig. 5). Seven substituted homologues of ethanotriamantanes also are detected (Fig. S-10). The C1- and C2-ethanotriamantane groups comprise 5 and 2 isomers, respectively, whose chromatograms are shown in Fig. S-3. The total concentration of ethanotriamantanes in the condensate oil is 60 µg/g. This is the first discovery of ethanotriamantanes in nature. Ethanodiamondoids are ethano-bridged diamond lattice molecules, with two carbons and an additional ring are added to adamantane and to the higher adamantane analogues. Ethanodiamondoids appear to be the most thermodynamically stable ones among all the isomers with the identical formula,25, 26 even more stable than the diamondoids which can survive the pyrolysis conditions at 450 °C4. The thermostable characteristics and the predictable derivatizable features of ethanodiamondoids provide extraordinary potentials for theoretical and application studies. In geochemical communities, the thermal stability of diamondoids imparts resistance to petroleum cracking which leads to an increase in their relative concentrations with increasing thermal stress,29 hence, diamondoids are widely used as proxies for oil cracking and to reflect oil maturity.30-32 We have been eager to isolate individual ethanodiamondoid compound in pure form for further structural confirmation, unfortunately, the amount of available ZS1C condensate has ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 31
limited our action. Nevertheless, prior to our work, identification of higher ethanodiamondoids in nature materials have never been reported. This discovery of a large numbers of ethanodiamondoids with 1-3 cages probably promotes the future isolation and rational synthesis of ethanodiamondoids as attractive components for heatresistant materials, and in the fields of nanotechnology such as molecular self-assembly and devices. 4. CONCLUSION To the best of our knowledge, a series of ethanodiamondoids with 1 - 3 cages were detected for the first time in petroleum (ZS1C condensate oil) from the Tarim Basin using high resolution GC×GC-TOFMS. The thermostable characteristics and the predictable derivatizable features of ethanodiamondoids provide extraordinary potentials for theoretical and application studies and the discovery will hopefully advance the isolation and synthesis of ethanodiamondoids as attractive materials for modern technological applications.
Corresponding author. *Guangyou Zhu: E-mail address,
[email protected]; Tel., +86 10 8359 2318; +86 18601309981. The first two authors contributed equally to this work.
ACS Paragon Plus Environment
Page 9 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
REFERENCE: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.
Stauss, S.; Terashima, K. Diamondoids: Synthesis, Properties and Applications Pan Stanford Publishing 2016, 13-18. E. Osawa, A. Furusaki, T. Matsumoto, P. von R. Schleyer and E. Wiskott, Tetrahedron Letters, 1976, 17, 2463-2466. J. Dahl, S. Liu and R. Carlson, Science, 2003, 299, 96-99. J. E. Dahl, S. Liu and R. M. K. Carlson, Science, 2003, 299, 96-99. L. Landt, K. Klünder, J. E. Dahl, R. M. K. Carlson, T. Möller and C. Bostedt, Physical Review Letters, 2009, 103, 047402. W. L. Yang, J. D. Fabbri, T. M. Willey, J. Lee, J. E. Dahl, R. M. K. Carlson, P. R. Schreiner, A. A. Fokin, B. A. Tkachenko and N. A. Fokina, Science, 2007, 316, 1460-1462. M. Vörös and A. Gali, Physical Review B, 2009, 80, 161411. X.-B. Cheng, M.-Q. Zhao, C. Chen, A. Pentecost, K. Maleski, T. Mathis, X.-Q. Zhang, Q. Zhang, J. Jiang and Y. Gogotsi, Nature Communications, 2017, 8, 336. C. Bradac, M. T. Johnsson, M. v. Breugel, B. Q. Baragiola, R. Martin, M. L. Juan, G. K. Brennen and T. Volz, Nature Communications, 2017, 8, 1205. B. A. Tkachenko, N. A. Fokina, L. V. Chernish, J. E. P. Dahl, Liu, R. M. K. Carlson, A. A. Fokin and P. R. Schreiner, Organic Letters, 2006, 8, 1767-1770. J. C. Garcia, J. F. Justo, W. V. M. Machado and L. V. C. Assali, Physical Review B, 2009, 80, 125421. C. M. Ralph, Nanotechnology, 2000, 11, 89. G. Sivaraman and M. Fyta, Nanoscale, 2014, 6, 4225-4232. G. Sivaraman, R. G. Amorim, R. H. Scheicher and M. Fyta, Nanoscale, 2016, 8, 10105-10112. Ç. Tahir, C. Jianwei, N. G. Michael, F. Amir and A. G. William, III, Nanotechnology, 1999, 10, 278. O. Vaughan, Nature Nanotechnology, 2008. S. Landa and V. Machacek, Collection of Czechoslovak Chemical Communications, 1933, 5, 1-5. S. Hala, S. Landa and V. Hanuš, Angewandte Chemie International Edition, 1966, 5, 1045-1046. W. Burns, M. A. McKervey, T. R. B. Mitchell and J. J. Rooney, Journal of the American Chemical Society, 1978, 100, 906-911. R. C. Fort and P. v. R. Schleyer, Chemical Reviews, 1964, 64, 277-300. M. A. McKervey, Tetrahedron, 1980, 36, 971-992. P. v. R. Schleyer, E. Osawa and M. G. B. Drew, Journal of the American Chemical Society, 1968, 90, 5034-5036. G. N. Gordadze and M. V. Giruts, Petroleum Chemistry, 2008, 48, 414-419. J. E. P. Dahl, J. M. Moldowan, Z. Wei, P. A. Lipton, P. Denisevich, R. Gat, S. Liu, P. R. Schreiner and R. M. K. Carlson, Angewandte Chemie International Edition, 2010, 49, 9881-9885. D. Farcasiu, E. Wiskott, E. Osawa, W. Thielecke, E. M. Engler, J. Slutsky, P. v. R. Schleyer and G. J. Kent, Journal of the American Chemical Society, 1974, 96, 4669-4671. S. T. Rao, M. Sundaralingam, E. Osawa, E. Wiskott and P. v. R. Schleyer, Journal of the Chemical Society D: Chemical Communications, 1970, DOI: 10.1039/C29700000861, 861-862. M. A. Meador, Annual Review of Materials Science, 1998, 28, 599-630. E. Osawa, E. M. Engler, S. A. Godleski, Y. Inamoto, G. J. Kent, M. Kausch and P. v. R. Schleyer, The Journal of Organic Chemistry, 1980, 45, 984-991. J. E. Dahl, J. M. Moldowan, K. E. Peters, G. E. Claypool, M. A. Rooney, G. E. Michael, M. R. Mello and M. L. Kohnen, Nature, 1999, 399, 54. J. Chen, J. Fu, G. Sheng, D. Liu and J. Zhang, Organic Geochemistry, 1996, 25, 179-190. L. Jinggui, P. Philp and C. Mingzhong, Organic Geochemistry, 2000, 31, 267-272. Z. Wei, J. M. Moldowan, S. Zhang, R. Hill, D. M. Jarvie, H. Wang, F. Song and F. Fago, Organic Geochemistry, 2007, 38, 227-249.
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 31
Fig. 1 Chemical structures of adamantane, iceane and ethanoadamantane.
Fig. 2 Chromatograms of ethanodiamondoid hydrocarbons with 1-3 cages.
Fig. 3 GC×GC-TOF MS analysis of ethanoadamantanes in the ZS1C condensate oil. Notes: (a) m/z 162+176+175+189+203+217 chromatogram of ethanoadamantanes; (b) m/z 214+213+227+241 chromatogram of ethanodiamantanes; (c) m/z 214+213+227+241 chromatogram of ethanotriamantanes.
Fig. 4 Mass spectra of ethanoadamantanes EA-1 to EA-8 in ZS1C condensate oil.
Fig. 5 Mass spectra of ethanodiamantanes ED-1 and ED-2, and ethanotriamantanes ET1 to ET-4 in ZS1C condensate oil.
ACS Paragon Plus Environment
Page 11 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Fig. 1
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Fig. 2
ACS Paragon Plus Environment
Page 12 of 31
Page 13 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Fig. 3
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Fig. 4
ACS Paragon Plus Environment
Page 14 of 31
Page 15 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Fig. 5
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 31
Supplementary Fig. S-1 GC×GC-TOF MS analysis of ethanoadamantanes in the ZS1C condensate oil. Notes: (a) 162 +161 Da showing EA, C1-EA’s and C2-EA’s with ion 161 Da; (b) 175 Da showing C2-EA’s and C3-EA’s with ion 175 Da; (c) 189 Da showing C3-EA’s and C4EA’s with ion 189 Da; (d) 203 Da showing C4-EA’s; (e) 217 Da showing C5-EA’s. The different alkyl-EA products are numbered.
Supplementary Fig. S-2 GC×GC-TOF MS analysis of ethanodiamantanes in the ZS1C condensate oil. Notes: (a) 214+213 Da showing ED, C1-ED’s and C2-ED’s with ion 213 Da; (b) 227 Da showing C2-ED’s (c) 241 Da showing C3-ED’s. The different alkyl-ED products are numbered.
Supplementary Fig. S-3 GC×GC-TOF MS analysis of ethanotriamantanes in the ZS1C condensate oil: 265+279 Da showing C1-ET’s and C2-ET’s. The different alkyl-ET products are numbered.
Supplementary Fig. S-4 Mass spectra of ethanoadamantanes EA-1 to EA-21.
ACS Paragon Plus Environment
Page 17 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Supplementary Fig. S-5 Mass spectra of ethanoadamantanes EA-22 to EA-42.
Supplementary Fig. S-6 Mass spectra of ethanoadamantanes EA-43 to EA-63.
Supplementary Fig. S-7 Mass spectra of ethanoadamantanes EA-64 to EA-70.
Supplementary Fig. S-8 Mass spectra of ethanodiamantanes ED-1 to ED-21.
Supplementary Fig. S-9 Mass spectra of ethanodiamantanes ED-22 to ED-37.
Supplementary Fig. S-10 Mass spectra of ethanotriamantanes ET-1 to ET-11.
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Supplementary Fig. S-1
ACS Paragon Plus Environment
Page 18 of 31
Page 19 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Supplementary Fig. S-2
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Supplementary Fig. S-3
ACS Paragon Plus Environment
Page 20 of 31
Page 21 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Supplementary Fig. S-4
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Supplementary Fig. S-5
ACS Paragon Plus Environment
Page 22 of 31
Page 23 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Supplementary Fig. S-6
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Supplementary Fig. S-7
ACS Paragon Plus Environment
Page 24 of 31
Page 25 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Supplementary Fig. S-8
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Supplementary Fig. S-9
ACS Paragon Plus Environment
Page 26 of 31
Page 27 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
Supplementary Fig. S-10
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 31
Supplementary Table S-1. Ethanodiamondoids detected in ZS1C condensate. Notes: Peak No. correspond to GC×GC-TOF MS assigned peaks in Fig. 2, Supplementary Fig. S-2, S-3 and S-4. EA=Ethanoadamantane, ED=Ethanodiamantane, and ET=Ethanotriamantane. Name
Concentration
Peak No.
Classifications
Formula
R.T. (s)
Quant Masses
UniqueMass
D16-Adamantane
I.S.-1
I.S.
C10D16
2490 , 2.390
152
152
642
Ethanoadamantane
EA-1
EA
C12H18
3516 , 2.660
162
162
943
C1-ethanoadamantane
EA-2
EA
C13H20
3588 , 2.510
176
161
1315
C1-ethanoadamantane
EA-3
EA
C13H20
3636 , 2.540
176
161
2620
C1-ethanoadamantane
EA-4
EA
C13H20
3690 , 2.600
176
161
1186
C1-ethanoadamantane
EA-5
EA
C13H20
3732 , 2.560
176
161
60
C1-ethanoadamantane
EA-6
EA
C13H20
3840 , 2.630
176
161
158
C1-ethanoadamantane
EA-7
EA
C13H20
3852 , 2.650
176
161
108
C1-ethanoadamantane
EA-8
EA
C13H20
3816 , 2.620
176
161
580
n-ethyl-ethanoadamantane
EA-9
EA
C14H22
4122 , 2.570
190
161
385
n-ethyl-ethanoadamantane
EA-10
EA
C14H22
4140 , 2.600
190
161
604
C2-ethanoadamantane
EA-11
EA
C14H22
3690 , 2.420
190
175
2210
C2-ethanoadamantane
EA-12
EA
C14H22
3738 , 2.430
190
175
1158
C2-ethanoadamantane
EA-13
EA
C14H22
3750 , 2.440
190
175
889
C2-ethanoadamantane
EA-14
EA
C14H22
3798 , 2.480
190
175
1011
C2-ethanoadamantane
EA-15
EA
C14H22
3834 , 2.440
190
175
254
C2-ethanoadamantane
EA-16
EA
C14H22
3846 , 2.450
190
175
928
C2-ethanoadamantane
EA-17
EA
C14H22
3852 , 2.520
190
175
340
C2-ethanoadamantane
EA-18
EA
C14H22
3870 , 2.470
190
175
367
C2-ethanoadamantane
EA-19
EA
C14H22
3912 , 2.500
190
175
1867
C2-ethanoadamantane
EA-20
EA
C14H22
3930 , 2.510
190
175
1135
C2-ethanoadamantane
EA-21
EA
C14H22
3966 , 2.590
190
175
572
C2-ethanoadamantane
EA-22
EA
C14H22
3978 , 2.550
190
175
192
C2-ethanoadamantane
EA-23
EA
C14H22
4002 , 2.550
190
175
37
C2-ethanoadamantane
EA-24
EA
C14H22
4020 , 2.560
190
175
1008
C2-ethanoadamantane
EA-25
EA
C14H22
4056 , 2.580
190
175
111
C2-ethanoadamantane
EA-26
EA
C14H22
4188 , 2.650
190
175
73
C2-ethanoadamantane
EA-27
EA
C14H22
4218 , 2.660
190
175
6
C2-ethanoadamantane
EA-28
EA
C14H22
4494 , 2.410
190
175
123
ACS Paragon Plus Environment
μg/g
Page 29 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
C2-ethanoadamantane
EA-29
EA
C14H22
3936 , 2.570
190
190
220
C2-ethanoadamantane
EA-30
EA
C14H22
3954 , 2.500
190
190
101
C2-ethanoadamantane
EA-31
EA
C14H22
3966 , 2.540
190
190
130
C2-ethanoadamantane
EA-32
EA
C14H22
4026 , 2.600
190
190
7
C2-ethanoadamantane
EA-33
EA
C14H22
4158 , 2.650
190
190
75
n-propyl-ethanoadamantane
EA-34
EA
C15H24
4476 , 2.550
204
161
153
C3-ethanoadamantane
EA-35
EA
C15H24
4176 , 2.450
204
175
429
C3-ethanoadamantane
EA-36
EA
C15H24
4206 , 2.460
204
175
381
C3-ethanoadamantane
EA-37
EA
C15H24
4236 , 2.480
204
175
813
C3-ethanoadamantane
EA-38
EA
C15H24
4326 , 2.510
204
175
317
C3-ethanoadamantane
EA-39
EA
C15H24
4392 , 2.560
204
175
431
C3-ethanoadamantane
EA-40
EA
C15H24
3786 , 2.310
204
189
871
C3-ethanoadamantane
EA-41
EA
C15H24
3834 , 2.340
204
189
1185
C3-ethanoadamantane
EA-42
EA
C15H24
3870 , 2.350
204
189
177
C3-ethanoadamantane
EA-43
EA
C15H24
3882 , 2.310
204
189
449
C3-ethanoadamantane
EA-44
EA
C15H24
3900 , 2.410
204
189
199
C3-ethanoadamantane
EA-45
EA
C15H24
3924 , 2.350
204
189
890
C3-ethanoadamantane
EA-46
EA
C15H24
3948 , 2.370
204
189
675
C3-ethanoadamantane
EA-47
EA
C15H24
4038 , 2.460
204
189
77
C3-ethanoadamantane
EA-48
EA
C15H24
4044 , 2.430
204
189
130
C3-ethanoadamantane
EA-49
EA
C15H24
4062 , 2.430
204
189
718
C3-ethanoadamantane
EA-50
EA
C15H24
4074 , 2.450
204
189
451
C3-ethanoadamantane
EA-51
EA
C15H24
4080 , 2.440
204
189
377
C3-ethanoadamantane
EA-52
EA
C15H24
4092 , 2.440
204
189
570
C3-ethanoadamantane
EA-53
EA
C15H24
4104 , 2.470
204
189
390
C3-ethanoadamantane
EA-54
EA
C15H24
4128 , 2.470
204
189
149
C3-ethanoadamantane
EA-55
EA
C15H24
4248 , 2.530
204
189
315
n-butyl-ethanoadamantane
EA-56
EA
C16H26
4482 , 2.540
218
161
138
C4-ethanoadamantane
EA-57
EA
C16H26
4392 , 2.400
218
189
380
C4-ethanoadamantane
EA-58
EA
C16H26
3918 , 2.260
218
203
158
C4-ethanoadamantane
EA-59
EA
C16H26
3948 , 2.240
218
203
347
C4-ethanoadamantane
EA-60
EA
C16H26
4050 , 2.320
218
203
80
C4-ethanoadamantane
EA-61
EA
C16H26
4080 , 2.360
218
203
194
C4-ethanoadamantane
EA-62
EA
C16H26
4098 , 2.260
218
203
84
C4-ethanoadamantane
EA-63
EA
C16H26
4122 , 2.280
218
203
76
C4-ethanoadamantane
EA-64
EA
C16H26
4140 , 2.340
218
203
218
C4-ethanoadamantane
EA-65
EA
C16H26
4254 , 2.360
218
203
395
C4-ethanoadamantane
EA-66
EA
C16H26
4326 , 2.410
218
203
272
C4-ethanoadamantane
EA-67
EA
C16H26
4440 , 2.420
218
203
218
ACS Paragon Plus Environment
Energy & Fuels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 30 of 31
C5-ethanoadamantane
EA-68
EA
C17H28
4092 , 2.140
232
217
35
C5-ethanoadamantane
EA-69
EA
C17H28
4104 , 2.150
232
217
24
C5-ethanoadamantane
EA-70
EA
C17H28
4236 , 2.220
232
217
71
Ethanodiamantane
ED-1
ED
C16H22
4974 , 3.080
214
214
675
Ethanodiamantane
ED-2
ED
C16H22
5106 , 3.130
214
214
134
C1-ethanodiamantane
ED-3
ED
C17H24
4992 , 2.850
228
213
89
C1-ethanodiamantane
ED-4
ED
C17H24
5010 , 2.880
228
213
471
C1-ethanodiamantane
ED-5
ED
C17H24
5052 , 2.920
228
213
517
C1-ethanodiamantane
ED-6
ED
C17H24
5070 , 2.960
228
213
65
C1-ethanodiamantane
ED-7
ED
C17H24
5106 , 2.970
228
213
256
C1-ethanodiamantane
ED-8
ED
C17H24
5130 , 3.020
228
213
149 248
C1-ethanodiamantane
ED-9
ED
C17H24
5136 , 3.000
228
213
C1-ethanodiamantane
ED-10
ED
C17H24
5148 , 2.910
228
213
92
C1-ethanodiamantane
ED-11
ED
C17H24
5214 , 3.030
228
213
66
C1-ethanodiamantane
ED-12
ED
C17H24
5232 , 3.040
228
213
81
C1-ethanodiamantane
ED-13
ED
C17H24
5238 , 3.100
228
213
143
C1-ethanodiamantane
ED-14
ED
C17H24
5280 , 3.090
228
213
151
C1-ethanodiamantane
ED-15
ED
C17H24
5328 , 3.140
228
213
84
n-ethyl-ethanodiamantane
ED-16
ED
C18H26
5466 , 2.940
242
213
46
n-ethyl-ethanodiamantane
ED-17
ED
C18H26
5478 , 2.970
242
213
53
C2-ethanodiamantane
ED-18
ED
C18H26
5022 , 2.660
242
227
271
C2-ethanodiamantane
ED-19
ED
C18H26
5082 , 2.750
242
227
188
C2-ethanodiamantane
ED-20
ED
C18H26
5100 , 2.770
242
227
87
C2-ethanodiamantane
ED-21
ED
C18H26
5136 , 2.800
242
227
125
C2-ethanodiamantane
ED-22
ED
C18H26
5244 , 2.820
242
227
56
C2-ethanodiamantane
ED-23
ED
C18H26
5268 , 2.930
242
227
112
C2-ethanodiamantane
ED-24
ED
C18H26
5274 , 2.890
242
227
98
C2-ethanodiamantane
ED-25
ED
C18H26
5298 , 2.890
242
227
164
C2-ethanodiamantane
ED-26
ED
C18H26
5358 , 2.950
242
227
183
C2-ethanodiamantane
ED-27
ED
C18H26
5370 , 2.970
242
227
50
C2-ethanodiamantane
ED-28
ED
C18H26
5496 , 3.020
242
227
152
C3-ethanodiamantane
ED-29
ED
C19H28
5424 , 2.800
256
241
124
C3-ethanodiamantane
ED-30
ED
C19H28
5046 , 2.530
256
241
67
C3-ethanodiamantane
ED-31
ED
C19H28
5040 , 2.500
256
241
60
C3-ethanodiamantane
ED-32
ED
C19H28
5094 , 2.570
256
241
32
C3-ethanodiamantane
ED-33
ED
C19H28
5160 , 2.650
256
241
113
C3-ethanodiamantane
ED-34
ED
C19H28
5190 , 2.680
256
241
61
C3-ethanodiamantane
ED-35
ED
C19H28
5292 , 2.750
256
241
84
C3-ethanodiamantane
ED-36
ED
C19H28
5436 , 2.820
256
241
118
C3-ethanodiamantane
ED-37
ED
C19H28
5466 , 2.820
256
241
73
ET-1
ET
C20H26
6180 , 3.490
266
266
4
Ethanotriamantane Ethanotriamantane
ET-2
ET
C20H26
6222 , 3.530
266
266
9
Ethanotriamantane
ET-3
ET
C20H26
6288 , 3.620
266
266
9 6
Ethanotriamantane
ET-4
ET
C21H28
6360 , 3.630
266
266
C1-ethanotriamantane
ET-5
ET
C21H28
6264 , 3.340
280
265
6
C1-ethanotriamantane
ET-6
ET
C21H28
6282 , 3.340
280
265
4
ACS Paragon Plus Environment
Page 31 of 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Energy & Fuels
C1-ethanotriamantane
ET-7
ET
C21H28
6330 , 3.430
280
265
4
C1-ethanotriamantane
ET-8
ET
C21H28
6360 , 3.380
280
265
6
C1-ethanotriamantane
ET-9
ET
C21H28
6414 , 3.550
280
265
4
C2-ethanotriamantane
ET-10
ET
C22H30
6276 , 3.110
294
279
3
C2-ethanotriamantane
ET-11
ET
C22H30
6324 , 3.150
294
279
3
ACS Paragon Plus Environment