Hydride Transfer - ACS Publications - American Chemical Society

Jan 4, 2019 - cade [1,5]-hydride transfer/spirocyclization and cascade. [1,5]-hydride transfer/hydrolysis from para-quinone methide in HFIP were devel...
0 downloads 0 Views 1MB Size
Subscriber access provided by University of Kansas Libraries

Article

Aromatization-Driven Cascade [1, 5]-Hydride Transfer/ Spirocyclization Promoted by Fluorinated Alcohols Xintong Lv, Fangzhi Hu, Kang Duan, Shuai-Shuai Li, Qing Liu, and Jian Xiao J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02754 • Publication Date (Web): 04 Jan 2019 Downloaded from http://pubs.acs.org on January 5, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Aromatization-Driven

Cascade

[1,

5]-Hydride

Transfer/Spirocyclization Promoted by Fluorinated Alcohols †〢

†〢

Xintong Lv, , Fangzhi Hu, , Kang Duan,† Shuai-Shuai Li,*,† Qing Liu,§ Jian Xiao*,†,‡ †

Shandong Province Key Laboratory of Applied Mycology, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China ‡ College

of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.

§College

of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Corresponding author: Shuai-Shuai Li; Jian Xiao E-mail address: [email protected]; [email protected]

Graphic Abstract

Abstract: The aromatization-driven redox-neutral cascade [1,5]-hydride transfer/spirocyclization and cascade [1,5]-hydride transfer/hydrolysis from para-quinone methide in HFIP were developed. These protocols enabled the synthesis of azaspirocyclohexadienones and ortho-benzylated anilines in good to high yields under mild conditions, featuring room temperature, additive-free and good functional group tolerance. INTRODUCTION Spirocyclohexadienones are widely distributed as privileged structures in a range of natural products and pharmaceutical molecules with unique biological activities.1 Moreover, they have also been extensively utilized as synthetically important building blocks in organic synthesis and material chemistry.2 As such, the development of powerful methodologies to construct these frameworks has received considerable attention in the synthetic community.3 Among the various methods, the employment of para-quinone methide (p-QM) as a synthon via intermolecular [2+n]

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 30

cycloadditions to construct spirocyclohexadienones have made a significant progress. For instance, the strategies to construct spiro[2.5]octa-4,7-dien-6-one unit have been established by Yao, Fan and Waser groups through 1,6-addition-mediated [2+1] annulation of p-QMs with bromomalonates4, sulfur ylides5 and ammonium ylides6 (Scheme 1, eq 1). In addition, the transition metal-catalyzed 1,6-addition-invovled

[3+2]

annulations

of

p-QMs

with

propargyl

malonates

and

vinylcyclopropanes to synthesize spiro[4.5]deca-6,9-dien-8-one skeleton have been achieved by Lin and Zhao groups, respectively (Scheme 1, eq 2).7 Recently, Yao group successfully accomplished the construction of 2-oxaspiro[5.5]undeca-7,10-dien-9-ones by reaction of p-QMs with allyl carbonates through palladium-catalyzed oxa-[4+2] annulation (Scheme 1, eq 3).8 Despite these advances with p-QMs-involved [2+n] cycloadditions, it is still highly desirable to explore a novel methodology to access spirocyclohexadienones from p-QMs. Redox-neutral cascade [1,5]-hydride transfer/cyclization has attracted intense interest as an efficient strategy for direct functionalization of C(sp3)-H bonds.9 As is well-known, this reaction relies on the transfer of α-H adjacent to heteroatom, induced by electron-deficient hydride acceptors, such as electron-poor alkenes,10 alkynes,11 carbonyl derivatives,12 and so on.13 Given the inherent reactivity of p-QMs,14 we wondered whether the propensity for aromatization could serve as a powerful driving force to initiate the intramolecular hydride transfer, producing active iminium Scheme 1. p-QMs-Involved Methods for Synthesis of Spirocyclohexadienones

ACS Paragon Plus Environment

Page 3 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

intermediates, then it can be further elaborated in miscellaneous means. As our continuing interest in one-step assembly of molecular complexity via hydride transfer,15 herein, we report p-QMs initiated cascade [1,5]-hydride transfer/cyclization and cascade [1,5]hydride transfer/hydrolysis reaction in hexafluoroisopropanol (HFIP), allowing the generation of azaspirocyclohexadienones and ortho-benzylated anilines in high efficiency (Scheme 1, eq 4). RESULTS AND DISCUSSION Table 1. Optimization of the Reaction Conditionsa

entry

catalyst

solvent

1 2 3 4 5 6 7 8 9c 10d

(-)-CSA PhCO2H Cu(OTf)2 Sc(OTf)3 Mg(OTf)2 ------

DCE DCE DCE DCE DCE TFE HFIP i-PrOH H2O HFIP

concentration (mol/L) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10

time (h) 24 24 24 24 48 24 10 min 24 24 10 min

ACS Paragon Plus Environment

yield (%)b 32 20 42 40 50 39 90 0 0 85

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

aReaction bIsolated

11e -HFIP 0.025 10 min 89 conditions: 1a (0.05 mmol), catalyst (10 mol%), in 1 mL of solvent at room temperature under air.

yield after column chromatography. cAt 100 C. d0.5 mL of HFIP. e2 mL of HFIP.

Initially, p-QM 1a carrying pyrrolidine at the ortho-position was designed as the model substrate to validate our hypothesis (Table 1). At first, various Brønsted acids and Lewis acids catalysts were employed in DCE to examine their catalytic activity at room temperature. Satisfyingly, the expected reaction exactly occurred in the presence of acid catalysts, albeit affording 2a in low yields (Table 1, entries 1-5). Obviously, the triflate salts exhibited slightly higher catalytic performance than Brønsted acids, and a moderate yield was observed in the presence of 10 mol % Mg(OTf)2 after 48 h (Table 1, entry 5). With the low yields of acids catalysts, we noticed that fluorinated alcohols were extraordinary solvents with unique properties, which could promote a great deal of chemical processes through hydrogen bonding activation.16 Inspired by the outstanding performance of fluorinated alcohols and our previous success with these solvents,17 then fluorinated alcohols were examined as reaction solvents and promoters. To our delight, trifluoroethanol (TFE) could promote this transformation to deliver 2a in 39% yield after 24 h (Table 1, entry 6). Surprisingly, when HFIP was employed as a solvent, both the yield and reaction rate was significantly enhanced, affording 2a in 90% yield within 10 mins (Table 1, entry 7). However, neither i-PrOH nor H2O took effect in Table 2. The Scope of [1,5]-Hydride Transfer/Cyclizationa

ACS Paragon Plus Environment

Page 4 of 30

Page 5 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

aReaction

conditions: 1 (0.1 mmol) in 2 mL of HFIP at room temperature under air, isolated yield after column

chromatography. b1a (2.2 mmol) in 44 mL of HFIP. cAt 100 C. dIn 4 mL of HFIP.

this reaction, even heating at 100 °C, which might be ascribed to their weak hydrogen bond donor ability (Table 1, entries 8-9). Further increasing or decreasing the reaction concentration lowered the yields (Table 1, entries 10-11). Therefore, the use of HFIP as a solvent with 0.05 mol/L was finally selected as the best reaction conditions. With the optimized conditions in hand, various p-QMs were subjected to HFIP to evaluate the generality of this process. As shown in Table 2, a range of substrates were tolerable in HFIP,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

affording various functionalized 2-azaspiro[5.5]undeca-7,10-dien-9-ones 2a-s in high yields. The substitution effect on the phenyl ring was firstly checked. Pleasingly, both electron-donating and electron-withdrawing groups worked very well in this system (2a-k). In addition, conducting the reaction on a larger scale (2.2 mmol) almost had no effect on the efficiency which demonstrated the practical utility of the method as a synthetic tool. And the structure of 2c was unambiguously confirmed by X-ray crystallographic analysis (see the Supporting Information). Further varying the position of substituents on the phenyl ring indicated that the chlorine substituent at the ortho-, metaand para-position of alkene group were fully compatible, delivering the desired products in high yields (2f-h). In particular, the substrate bearing strong electron-withdrawing nitro group also exhibited good compatibility, furnishing the corresponding product 2k in quantitative yield (99%), which was conducive for further application. Afterwards, different functional groups were installed on phenyl ring to further test the applicability of this protocol. Fortunately, in addition to the halide and trifluoromethyl groups, a wide range of functional groups survived in this reaction, including cyano, alkenyl ester, and acetyl groups, affording the corresponding products (2l-o) in excellent yields. The good functional group tolerance demonstrated the robust capacity of this strategy in preparing diversely functionalized azaspiro-cyclohexadienones-based molecules. Particularly, the replacement of the phenyl ring with electron-poor quinoline and naphthyl moiety was also amenable for this intramolecular redox reaction, affording the corresponding products 2p and 2q in 95% and 98% yields, respectively. Satisfyingly, the p-QMs carrying ortho-acyclic amines, such as N, Ndimethyl group, were also good candidates, furnishing the desired products (2r and 2s) in moderate to good yields. Surprisingly, in addition to N,N-dimethyl group, the substrates incorporating other acyclic amines including N,N-dibenzyl, N-methyl-N-benzyl and N,N-diethyl groups were inapplicable for this cyclization process, producing the ortho-benzylated anilines 3a-c in high yields (Table 3). Undoubtedly, for these substrates, the [1, 5]-hydride transfer reactions occurred to generate the iminium ions successfully. However, these iminium ions underwent hydrolysis rather than intramolecular cyclization, which might be ascribed to the relative instability of iminium ions. In addition, in case of product 3b, the hydrolysis priority of benzyl group over methyl group implied that formaldehyde was an undesired hydrolysate, which was consistent with the fact that N, N-

ACS Paragon Plus Environment

Page 6 of 30

Page 7 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

dimethyl group succeeded in the cyclization process (2r-s). On the other hand, the substituents on the phenyl ring had significant influence on the reaction efficiency. Various electron-withdrawing groups were fully compatible in this reaction, affording the corresponding products 3d-g in good yields. Nevertheless, the substrates incorporating electron-donating substituents such as methyl and methoxyl groups produced complex mixtures, which were difficult to isolate. It is noteworthy that the diarylmethane products were structural hybrids of benzylated phenols and benzylated anilines, which constituted core structures of natural products, medicines and materials.18 This transformation also provided an alternative way for debenzylation and deethylation processes. Table 3. Substrate-Controlled Cascade [1,5]-Hydride Transfer/Hydrolysisa

aReaction

conditions: 1 (0.1 mmol) in 2 mL of HFIP at room temperature under air, isolated yield after column

chromatography.

On the basis of the above experimental studies, a plausible reaction mechanism was proposed in Scheme 2. Firstly, p-QMs 1 are activated by hydrogen bonding clusters of HFIP to form complex I,19-20 in which HFIP acts as a netted charge template to decrease the electron density of conjugate p-QM. Consequently, the strong propensity for aromatization of p-QMs initiated the intramolecular [1,5]-hydride transfer, generating the rearomatic complex II with iminium ion. Subsequently, two competitive reaction pathways, i.e. hydrolysis and dearomatization/nucleophilic addition might operate for zwitterionic intermediate II. The followed dearomatization/nucleophilic addition

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 30

process produces the dearomatic azaspiro-cyclohexadienones 2 (path A), and the hydrolysis process will give the ortho-benzylated anilines 3, alternatively (path B, R1 = Me or Ph). It is the substituents installed on nitrogen atom that determine which way would go. We reason that the tert-butyl groups on the quinone moiety play an important role on the difference between the HFIP promoted reaction and Lewis-acid catalyzed reactions. HFIP is relatively small molecule, thus it is easy to activate the carbonyl moiety with the vicinal and sterically hindered tert-butyl groups. Nevertheless, it is much more difficult to activate the carbonyl moiety with the bulky Lewis-acid catalysts.

Scheme 2. Proposed Reaction Mechanism

CONCLUSION In

conclusion,

we

have

developed

p-QMs-triggered

cascade

[1,5]-hydride

transfer/Spirocyclizations and cascade [1,5]-hydride transfer/hydrolysis reactions in HFIP. These protocols enabled the synthesis of 2-azaspiro[5.5]undeca-7,10-dien-9-one and ortho-benzylated anilines in good to high yields under mild conditions, featuring room temperature, additive-free, and good functional group tolerance. This work integrates and greatly pushes forward the chemistry of hydride transfer and p-QMs, two important areas in organic chemistry. Moreover, these protocols demonstrated that aromatization could serve as a powerful driving force to trigger hydride transferinvolved cascade reactions for construction of architecturally complex molecules, which opens a new avenue for C(sp3)-H functionalization. Further investigations to develop new reactions by exploiting aromatization-driven hydride transfer are underway in our laboratory.

ACS Paragon Plus Environment

Page 9 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Experimental Section All the reactions were performed in sealed tube and monitored by TLC (0.2 mm silica gel-coated HSGF 254 plates). The products were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (1H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl3 solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe4 (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet) or dimethyl sulfoxide-d6 (δ 2.54, singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (13C NMR) were reported in ppm using solvent CDCl3 (δ (ppm) = 77.16 ppm) as an internal standard. HRMS analyses were performed on a Waters XEVO QTOF mass spectrometer. All substituted 2fluorobenzaldehydes, and 2,6-di-tert-butylphenol were purchased from adamas-beta. General Procedure for the Preparation of para-Quinone methides Carrying Pyrrolidine at the ortho-Position A round bottom flask was charged with 2,6-di-tert-butylphenol S-1 (5.2 mmol), oaminobenzaldehyde S-2 (4 mmol), piperidine (8 mmol) and toluene (40 mL). The mixture was stirred at 120 C in oil bath under an air atmosphere for 12 h until S-2 was consumed up. The mixture was concentrated in vacuum and the residue was directly purified by alkaline aluminum oxide column chromatography (eluent: petroleum ether) to afford the desired para-quinone methides 1. General Procedure for the Synthesis of Spiro-cyclohexadienones A reaction tube was charged with para-quinone methide 1 (0.1 mmol) and HFIP (2.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum at room temperature and the

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 30

residue was directly purified by flash column chromatography on neutral alumina (eluent: ethyl acetate/petroleum ether, 1:200) to afford the desired spiro-cyclohexadienones 2.

General Procedure for the Synthesis of 2a on a Larger Scale

A reaction tube was charged with para-quinone methide 1a (2.2 mmol) and HFIP (44.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum at room temperature and the residue was directly purified by flash column chromatography on neutral alumina (eluent: ethyl acetate/petroleum ether, 1:200) to afford the desired spiro-cyclohexadienones 2a in 80% yield (638 mg). 2,6-di-tert-butyl-4-(2-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one (1a). Red solid, 1.09 g, 75% yield; 1H NMR (500 MHz, CDCl3) δ 7.52 (d, J = 1.9 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 7.3 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.90 – 6.84 (m, 2H), 3.29 (t, J = 6.4 Hz, 4H), 1.94 (t, J = 6.4 Hz, 4H), 1.34 (s, 9H), 1.30 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 150.5, 148.4, 147.0, 144.4, 135.1, 133.2, 129.9, 128.9, 128.7, 124.5, 118.5, 114.7, 52.4, 35.4, 34.9, 29.6, 29.6, 25.7 ppm. HRMS (ESI): calcd. for C25H34NO [M+H]+: 364.2635, found: 364.2640. 2,6-di-tert-butyl-4-(4-methoxy-2-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one (1b). Yellow solid, 1.24 g, 79% yield; 1H NMR (500 MHz, CDCl3) δ 7.53 (s, 1H), 7.23 (s, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.01 (s, 1H), 6.46 (d, J = 8.5 Hz, 1H), 6.40 (s, 1H), 3.85 (s, 3H), 3.31 (s, 4H), 1.94 (s, 4H), 1.34 (s, 9H), 1.31 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 161.5, 152.0, 148.0, 146.4, 144.5, 135.2, 134.8, 128.7, 127.7, 118.0, 104.0, 100.8, 55.2, 52.5, 35.3, 34.9, 29.6, 29.5, 25.6 ppm. HRMS (ESI): calcd. for C26H36NO2 [M+H]+: 394.2741, found: 394.2748. 2,6-di-tert-butyl-4-(4-methyl-2-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one

(1c).

Red

solid, 1.14 g, 76% yield; 1H NMR (500 MHz, CDCl3) δ 7.54 (s, 1H), 7.25 (s, 1H), 7.15 (d, J = 7.9 Hz, 1H), 7.02 (s, 1H), 6.70 (s, 2H), 3.29 (s, 4H), 2.36 (s, 3H), 1.93 (s, 4H), 1.34 (s, 9H), 1.30 (s, 9H); 13C{1H}

ACS Paragon Plus Environment

Page 11 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

NMR (126 MHz, CDCl3) δ 186.6, 150.6, 148.2, 146.7, 144.7, 140.4, 135.3, 133.3, 128.8, 128.5, 122.0, 119.7, 115.5, 52.5, 35.4, 34.9, 29.6, 29.6, 25.6, 21.8 ppm. HRMS (ESI): calcd. for C26H36NO [M+H]+: 378.2791, found: 378.2799. 2,6-di-tert-butyl-4-(2-(pyrrolidin-1-yl)-4-(trifluoromethyl)benzylidene)cyclohexa-2,5-dien-1-one (1d). Yellow solid, 1.33 g, 77% yield; 1H NMR (500 MHz, CDCl3) δ 7.41 (s, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.19 (s, 1H), 7.06 (d, J = 11.2 Hz, 2H), 7.02 (s, 1H), 3.34 (s, 4H), 1.97 (s, 4H), 1.34 (s, 9H), 1.29 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 150.0, 149.1, 147.7, 142.3, 134.6, 133.4, 131.3 (q, J = 31.5 Hz), 130.2, 128.0, 126.8, 124.2 (q, J = 272.2 Hz), 120.9 (s), 114.4 (d, J = 3.7 Hz), 111.1 (d, J = 3.8 Hz), 52.3, 35.4, 35.1, 29.6, 29.5, 25.8 ppm. HRMS (ESI): calcd. for C26H33F3NO [M+H]+: 432.2509, found: 432.2511. 4-(4-bromo-2-(pyrrolidin-1-yl)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one

(1e).

Yellow solid, 1.43 g, 81% yield; 1H NMR (500 MHz, CDCl3) δ 7.41 (s, 1H), 7.15 (s, 1H), 7.04 (d, J = 8.1 Hz, 1H), 7.02 – 6.93 (m, 3H), 3.29 (s, 4H), 1.94 (s, 4H), 1.33 (s, 9H), 1.29 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 151.0, 148.8, 147.3, 142.9, 134.8, 134.3, 129.4, 128.2, 124.3, 122.8, 121.2, 117.6, 52.3, 35.4, 35.0, 29.6, 29.5, 25.7 ppm. HRMS (ESI): calcd. for C25H33BrNO [M+H]+: 442.1740, found: 442.1744. 2,6-di-tert-butyl-4-(4-chloro-2-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one (1f). Yellow solid, 1.20 g, 76% yield; 1H NMR (500 MHz, CDCl3) δ 7.42 (d, J = 1.9 Hz, 1H), 7.17 (s, 1H), 7.11 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.82 (d, J = 9.1 Hz, 2H), 3.30 (t, J = 6.4 Hz, 4H), 1.94 (t, J = 6.4 Hz, 4H), 1.33 (s, 9H), 1.29 (s, 9H);

C{1H} NMR (126 MHz, CDCl3) δ 186.6, 150.9, 148.7, 147.3,

13

143.0, 135.9, 134.8, 134.1, 129.3, 128.2, 122.4, 118.3, 114.7, 52.3, 35.4, 35.0, 29.6, 29.5, 25.8 ppm. HRMS (ESI): calcd. for C25H33ClNO [M+H]+: 398.2245, found: 398.2246. 2,6-di-tert-butyl-4-(5-chloro-2-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one

(1g).

Red

solid, 1.11 g, 70% yield; 1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 1.7 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.15 (s, 1H), 6.99 (d, J = 1.8 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 3.25 (t, J = 6.3 Hz, 4H), 1.94 (t, J = 6.4 Hz, 4H), 1.33 (s, 9H), 1.30 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 148.9, 148.8, 147.5, 142.2, 134.7, 132.2, 129.8, 129.4, 128.1, 125.3, 123.3, 115.9, 52.4, 35.4, 35.0, 29.6, 29.5, 25.7 ppm. HRMS (ESI): calcd. for C25H33ClNO [M+H]+: 398.2245, found: 398.2246. 2,6-di-tert-butyl-4-(2-chloro-6-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one

(1h).

Red

solid, 1.29 g, 81% yield; 1H NMR (500 MHz, CDCl3) δ 7.25 (s, 1H), 7.16 (t, J = 8.1 Hz, 1H), 7.04 (d, J

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 30

= 1.6 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.84 (s, 1H), 6.78 (d, J = 8.5 Hz, 1H), 3.03 (s, 4H), 1.83 (d, J = 97.1 Hz, 4H), 1.34 (s, 9H), 1.18 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.8, 148.1, 147.5, 140.4, 135.7, 134.2, 131.3, 129.7, 128.6, 120.0, 118.8, 112.7, 51.6, 35.1, 35.0, 29.6, 29.5, 25.9 ppm. HRMS (ESI): calcd. for C25H33ClNO [M+H]+: 398.2245, found: 398.2247. 2,6-di-tert-butyl-4-(2-fluoro-6-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dienone (1i). Red solid, 1.22 g, 80% yield; 1H NMR (500 MHz, CDCl3) δ 7.20 (dd, J = 15.0, 7.8 Hz, 1H), 7.04 (d, J = 13.9 Hz, 3H), 6.64 (d, J = 8.4 Hz, 1H), 6.56 (t, J = 8.9 Hz, 1H), 3.16 (s, 4H), 1.89 (s, 4H), 1.33 (s, 9H), 1.23 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 161.1 (d, J = 246.3 Hz), 150.5 (d, J = 5.1 Hz), 147.9, 147.2, 136.4, 134.4, 131.8, 130.3 (d, J = 11.3 Hz), 128.9, 111.1 (d, J = 16.4 Hz), 109.9, 104.5 (d, J = 23.5 Hz), 51.9, 35.2, 35.0, 29.6, 29.5, 25.8 ppm. HRMS (ESI): calcd. for C25H33FNO [M+H]+: 382.2541, found: 382.2544. 4-(2-bromo-6-(pyrrolidin-1-yl)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one

(1j).

Red

solid, 1.38 g, 78% yield; 1H NMR (500 MHz, CDCl3) δ 7.21 (s, 1H), 7.08 (d, J = 7.7 Hz, 2H), 7.04 (s, 1H), 6.84 – 6.78 (m, 2H), 3.14 – 2.90 (m, 4H), 1.94 (s, 2H), 1.71 (s, 2H), 1.34 (s, 9H), 1.17 (s, 9H); 13

C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.7, 148.1, 147.6, 142.5, 134.0, 131.0, 129.9, 128.6, 126.2,

122.0, 121.3, 113.3, 51.5, 35.1, 35.1, 29.6, 29.5, 25.9 ppm. HRMS (ESI): calcd. for C25H33BrNO [M+H]+: 442.1740, found: 442.1744. 2,6-di-tert-butyl-4-(5-nitro-2-(pyrrolidin-1-yl)benzylidene)cyclohexa-2,5-dien-1-one (1k). Red solid, 1.27 g, 78% yield; 1H NMR (500 MHz, CDCl3) δ 8.10 (dd, J = 7.7, 2.4 Hz, 2H), 7.32 (d, J = 2.3 Hz, 1H), 7.22 (s, 1H), 6.98 (d, J = 2.3 Hz, 1H), 6.76 – 6.71 (m, 1H), 3.49 (t, J = 6.5 Hz, 4H), 2.03 – 1.97 (m, 4H), 1.35 (d, J = 8.9 Hz, 9H), 1.28 (d, J = 3.5 Hz, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.4, 153.3, 149.5, 148.0, 141.2, 137.6, 134.1, 130.6, 129.8, 127.4, 125.6, 120.7, 113.1, 52.3, 35.5, 35.1, 29.5, 26.0 ppm. HRMS (ESI): calcd. for C25H33N2O3 [M+H]+: 409.2486, found: 409.2492. 3-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)-4-(pyrrolidin-1-yl)benzonitrile (1l). Red solid, 1.27 g, 82% yield; 1H NMR (500 MHz, CDCl3) δ 7.45 (dd, J = 8.8, 2.0 Hz, 1H), 7.39 (d, J = 1.7 Hz, 1H), 7.26 (d, J = 2.4 Hz, 1H), 7.16 (s, 1H), 6.97 (d, J = 2.3 Hz, 1H), 6.77 (d, J = 8.8 Hz, 1H), 3.40 (t, J = 6.5 Hz, 4H), 2.03 – 1.92 (m, 4H), 1.33 (s, 9H), 1.28 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.4, 151.7, 149.4, 147.9, 141.4, 137.0, 134.2, 133.1, 130.3, 127.4, 122.2, 119.7, 114.2, 99.2, 52.0, 35.4, 35.0, 29.5, 25.9 ppm. HRMS (ESI): calcd. for C26H33N2O [M+H]+: 389.2587, found: 389.2593.

ACS Paragon Plus Environment

Page 13 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)-3-(pyrrolidin-1-yl)benzonitrile (1m). Yellow solid, 1.21 g, 78% yield; 1H NMR (500 MHz, CDCl3) δ 7.33 (d, J = 1.9 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.15 (s, 1H), 7.08 (d, J = 8.1 Hz, 1H), 7.06 (s, 1H), 7.00 (d, J = 2.0 Hz, 1H), 3.31 (t, J = 6.3 Hz, 4H), 1.97 (t, J = 6.4 Hz, 4H), 1.33 (s, 9H), 1.28 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 149.8, 149.5, 148.1, 141.4, 134.4, 133.5, 130.8, 127.8, 127.7, 120.8, 119.2, 117.6, 112.8, 52.1, 35.5, 35.1, 29.5, 29.5, 25.8 ppm. HRMS (ESI): calcd. for C26H33N2O [M+H]+: 389.2587, found: 389.2585. methyl(E)-3-(4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)-3-(pyrrolidin-1yl)phenyl)acrylate (1n). Yellow solid, 1.16 g, 65% yield; 1H NMR (500 MHz, CDCl3) δ 7.67 (d, J = 15.9 Hz, 1H), 7.47 (s, 1H), 7.25 (d, J = 9.2 Hz, 1H), 7.21 (s, 1H), 7.05 (d, J = 7.8 Hz, 1H), 7.00 (d, J = 18.6 Hz, 2H), 6.47 (d, J = 15.9 Hz, 1H), 3.82 (s, 3H), 3.32 (s, 4H), 1.96 (s, 4H), 1.34 (s, 9H), 1.30 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 167.4, 150.5, 148.8, 147.4, 144.9, 143.1, 135.6, 134.9, 133.6, 129.7, 128.3, 126.3, 118.4, 117.7, 114.4, 52.3, 51.8, 35.4, 35.0, 29.6, 29.6, 25.7 ppm. HRMS (ESI): calcd. for C29H38NO3 [M+H]+: 448.2846, found: 448.2850. 4-((4'-acetyl-3-(pyrrolidin-1-yl)-[1,1'-biphenyl]-4-yl)methylene)-2,6-di-tert-butylcyclohexa-2,5dien-1-one (1o). Red solid, 1.52 g, 79% yield; 1H NMR (500 MHz, CDCl3) δ 8.04 (d, J = 7.6 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.56 (s, 1H), 7.34 (d, J = 7.7 Hz, 1H), 7.28 (s, 1H), 7.13 (d, J = 7.9 Hz, 1H), 7.10 (s, 1H), 7.05 (s, 1H), 3.38 (s, 4H), 2.65 (s, 3H), 1.98 (s, 4H), 1.35 (s, 9H), 1.32 (s, 9H);

13

C{1H}

NMR (126 MHz, CDCl3) δ 197.7, 186.6, 150.8, 148.7, 147.2, 145.6, 143.5, 141.4, 136.2, 135.0, 133.9, 129.4, 128.9, 128.5, 127.3, 124.4, 117.5, 113.4, 52.5, 35.5, 35.0, 29.6, 29.6, 26.7, 25.7 ppm. HRMS (ESI): calcd. for C33H40NO2 [M+H]+: 482.3054, found: 482.3058. 2,6-di-tert-butyl-4-((2-(pyrrolidin-1-yl)quinolin-3-yl)methylene)cyclohexa-2,5-dien-1-one

(1p).

Yellow solid, 1.29 g, 78% yield; 1H NMR (500 MHz, CDCl3) δ 7.78 (s, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.50 (s, 1H), 7.27 (d, J = 3.4 Hz, 2H), 7.05 (s, 1H), 3.67 (s, 4H), 1.95 (s, 4H), 1.35 (s, 9H), 1.30 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 156.6, 149.3, 147.9, 147.7, 141.7, 140.9, 134.3, 130.9, 130.6, 127.7, 126.5, 123.2, 122.7, 120.6, 50.7, 35.5, 35.1, 29.6, 29.5, 25.8 ppm. HRMS (ESI): calcd. for C28H35N2O [M+H]+: 415.2744, found: 415.2748. 2,6-di-tert-butyl-4-((2-(pyrrolidin-1-yl)naphthalen-1-yl)methylene)cyclohexa-2,5-dien-1-one (1q). Red solid, 1.16 g, 70% yield; 1H NMR (500 MHz, CDCl3) δ 7.82 (d, J = 8.5 Hz, 1H), 7.74 (t, J = 7.3 Hz, 2H), 7.69 (s, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 8.7 Hz, 2H), 7.16 (s, 1H), 6.92 (s, 1H), 3.21 (s,

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 30

4H), 1.88 (d, J = 60.2 Hz, 4H), 1.38 (s, 9H), 1.14 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.8, 147.9, 147.0, 146.9, 142.3, 134.5, 133.9, 131.4, 130.1, 129.1, 128.2, 127.5, 126.8, 122.6, 122.5, 116.6, 113.3, 52.1, 35.1, 35.1, 29.7, 29.5, 26.1 ppm. HRMS (ESI): calcd. for C29H36NO [M+H]+: 414.2791, found: 414.2795. 2,6-di-tert-butyl-4-(2-(dimethylamino)benzylidene)cyclohexa-2,5-dien-1-one (1r). Orange solid, 0.91 g, 68% yield; 1H NMR (500 MHz, CDCl3) δ 7.57 (s, 1H), 7.35 (dd, J = 17.2, 8.0 Hz, 3H), 7.14 – 7.01 (m, 3H), 2.79 (s, 6H), 1.36 (s, 9H), 1.32 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 154.2, 148.8, 147.2, 142.3, 135.4, 132.8, 130.2, 130.1, 128.7, 128.6, 121.5, 117.8, 44.9, 35.4, 35.0, 29.7, 29.6, 29.5 ppm. HRMS (ESI): calcd. for C23H32NO [M+H]+: 338.2478, found: 338.2480. 2,6-di-tert-butyl-4-(2-(dimethylamino)-4-(trifluoromethyl)benzylidene)cyclohexa-2,5-dien-1-one (1s). Yellow solid, 1.13 g, 70% yield; 1H NMR (500 MHz, CDCl3) δ 7.46 (s, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 9.7 Hz, 2H), 7.20 (s, 1H), 7.09 (s, 1H), 2.84 (s, 6H), 1.35 (s, 9H), 1.31 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 154.0, 149.6, 147.9, 140.1, 134.9, 132.9, 131.6, 131.5 (d, J = 25.2 Hz), 131.4, 127.9, 124.0 (q, J = 273.4 Hz), 117.7 (d, J = 3.8 Hz), 114.5 (d, J = 3.7 Hz), 44.5, 35.5, 35.1, 29.6, 29.5 ppm. HRMS (ESI): calcd. for C24H31F3NO [M+H]+: 406.2352, found: 406.2355. 4-(2-(benzyl(methyl)amino)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one

(1t).

Yellow

solid, 1.19 g, 72% yield; 1H NMR (500 MHz, CDCl3) δ 7.55 (d, J = 3.2 Hz, 1H), 7.42 (dd, J = 16.1, 5.8 Hz, 2H), 7.38 – 7.21 (m, 6H), 7.14 – 7.05 (m, 2H), 6.96 (d, J = 3.0 Hz, 1H), 4.16 (d, J = 5.0 Hz, 2H), 2.74 (d, J = 5.1 Hz, 3H), 1.31 (d, J = 5.3 Hz, 18H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 153.4, 148.9, 147.3, 142.0, 138.1, 135.3, 132.6, 130.3, 130.1, 129.1, 128.4, 128.1, 127.3, 121.8, 119.1, 61.8, 40.8, 35.4, 35.0, 29.6, 29.5 ppm. HRMS (ESI): calcd. for C29H36NO [M+H]+: 414.2791, found: 414.2796. 2,6-di-tert-butyl-4-(2-(diethylamino)benzylidene)cyclohexa-2,5-dien-1-one (1u). Yellow solid, 1.07 g, 73% yield; 1H NMR (500 MHz, CDCl3) δ 7.54 (s, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.09 (dd, J = 17.4, 7.7 Hz, 3H), 3.12 (qd, J = 7.0, 2.2 Hz, 4H), 1.35 (d, J = 2.3 Hz, 9H), 1.32 (d, J = 2.3 Hz, 9H), 1.06 (td, J = 7.0, 2.3 Hz, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 151.9, 148.6, 147.1, 142.4, 135.4, 132.7, 130.9, 130.1, 129.5, 128.6, 121.8, 121.0, 47.4, 35.4, 35.0, 29.6, 29.5, 12.3 ppm. HRMS (ESI): calcd. for C25H36NO [M+H]+: 366.2791, found: 366.2799. 2,6-di-tert-butyl-4-(4-chloro-2-(diethylamino)benzylidene)cyclohexa-2,5-dien-1-one (1v). Yellow solid, 1.12 g, 70% yield; 1H NMR (500 MHz, CDCl3) δ 7.45 (d, J = 1.8 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.20 (s, 1H), 7.09 – 7.01 (m, 3H), 3.12 (q, J = 7.0 Hz, 4H), 1.34 (s, 9H), 1.31 (s, 9H), 1.07 (t, J =

ACS Paragon Plus Environment

Page 15 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

7.0 Hz, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 152.8, 149.0, 147.4, 140.8, 135.6, 135.1, 133.4, 130.4, 128.9, 128.1, 121.8, 121.1, 47.2, 35.4, 35.0, 29.6, 29.5, 12.2 ppm. HRMS (ESI): calcd. for C25H35ClNO [M+H]+: 400.2402, found: 400.2404. 4-(4-bromo-2-(diethylamino)benzylidene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (1w). Yellow solid, 1.27 g, 72% yield; 1H NMR (500 MHz, CDCl3) δ 7.44 (d, J = 2.2 Hz, 1H), 7.25 – 7.17 (m, 4H), 7.07 (d, J = 2.2 Hz, 1H), 3.11 (q, J = 7.0 Hz, 4H), 1.35 (d, J = 10.3 Hz, 9H), 1.31 (s, 9H), 1.07 (t, J = 7.0 Hz, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 152.9, 149.0, 147.4, 140.8, 135.1, 133.6, 130.4, 129.4, 128.1, 124.8, 124.2, 123.9, 47.2, 35.4, 35.0, 29.6, 29.5, 12.2 ppm. HRMS (ESI): calcd. for C25H35BrNO [M+H]+: 444.1897, found: 444.1899. 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl)-3-(diethylamino)benzonitrile (1x). Yellow solid, 1.17 g, 75% yield; 1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 8.3 Hz, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.31 (d, J = 6.5 Hz, 2H), 7.16 (s, 1H), 7.06 (d, J = 2.2 Hz, 1H), 3.14 (q, J = 7.0 Hz, 4H), 1.34 (s, 9H), 1.30 (s, 9H), 1.08 (t, J = 7.0 Hz, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.4, 151.9, 149.7, 148.2, 139.3, 135.0, 134.7, 133.1, 131.8, 127.5, 124.5, 123.9, 118.9, 112.5, 46.9, 35.5, 35.1, 29.6, 29.5, 12.2 ppm. HRMS (ESI): calcd. for C26H35N2O [M+H]+: 391.2744, found: 391.2748. 2,6-di-tert-butyl-4-(5-chloro-2-(diethylamino)benzylidene)cyclohexa-2,5-dien-1-one (1y). Yellow solid, 1.12 g, 70% yield; 1H NMR (500 MHz, CDCl3) δ 7.48 (d, J = 1.7 Hz, 1H), 7.38 (d, J = 2.4 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.23 (s, 1H), 7.07 (d, J = 1.9 Hz, 1H), 7.03 (d, J = 8.7 Hz, 1H), 3.09 (q, J = 7.0 Hz, 4H), 1.34 (s, 9H), 1.33 (s, 9H), 1.04 (t, J = 7.0 Hz, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 150.2, 149.2, 147.6, 140.1, 135.0, 132.3, 132.0, 130.9, 129.2, 127.9, 126.9, 122.2, 47.4, 35.4, 35.0, 29.6, 29.5, 12.2 ppm. HRMS (ESI): calcd. for C25H35ClNO [M+H]+: 400.2402, found: 400.2404. 3,5-di-tert-butyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-a]quinoline]-2,5dien-4-one (2a). Yellow solid, 32.7 mg, 90% yield; 1H NMR (500 MHz, CDCl3) δ 7.14 (t, J = 7.7 Hz, 1H), 6.99 (d, J = 7.4 Hz, 1H), 6.62 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 8.1 Hz, 1H), 6.35 (d, J = 2.9 Hz, 1H), 6.33 (d, J = 2.8 Hz, 1H), 3.63 (dd, J = 9.2, 6.2 Hz, 1H), 3.45 (td, J = 8.6, 3.6 Hz, 1H), 3.24 (dd, J = 16.5, 8.2 Hz, 1H), 3.18 (d, J = 15.8 Hz, 1H), 2.55 (d, J = 15.8 Hz, 1H), 1.91 (ddd, J = 15.2, 9.0, 5.7 Hz, 2H), 1.79 (ddd, J = 12.5, 6.3, 3.0 Hz, 1H), 1.27 (s, 9H), 1.13 (s, 9H);

C{1H} NMR (126 MHz, CDCl3) δ

13

186.8, 149.1, 148.2, 144.3, 143.5, 139.5, 129.0, 127.7, 118.6, 115.9, 110.6, 64.3, 47.5, 39.9, 38.4, 34.9, 34.9, 30.4, 29.5, 27.7, 23.3 ppm. HRMS (ESI): calcd. for C25H34NO [M+H]+: 364.2635, found: 364.2640. 3,5-di-tert-butyl-8'-methoxy-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2-

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

a]quinoline]-2,5-dien-4-one (2b). Yellow solid, 24.3 mg, 62% yield; 1H NMR (500 MHz, CDCl3) δ 6.89 (d, J = 8.1 Hz, 1H), 6.33 (d, J = 13.6 Hz, 2H), 6.19 (d, J = 8.1 Hz, 1H), 6.07 (s, 1H), 3.81 (s, 3H), 3.65 – 3.57 (m, 1H), 3.43 (t, J = 7.3 Hz, 1H), 3.22 (q, J = 8.2 Hz, 1H), 3.10 (d, J = 15.4 Hz, 1H), 2.50 (d, J = 15.4 Hz, 1H), 1.88 (dd, J = 19.1, 8.7 Hz, 2H), 1.81 – 1.72 (m, 1H), 1.32 – 1.20 (m, 10H), 1.13 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.8, 159.6, 149.0, 148.2, 144.4, 144.3, 139.5, 129.5, 111.4, 100.4, 97.1, 64.2, 55.1, 47.5, 39.3, 38.6, 34.9, 34.8, 29.5, 27.8, 23.3 ppm. HRMS (ESI): calcd. for C26H36NO2 [M+H]+: 394.2741, found: 394.2746. 3,5-di-tert-butyl-8'-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2c). Yellow solid, 34.3 mg, 91% yield; 1H NMR (500 MHz, CDCl3) δ 6.88 (d, J = 7.5 Hz, 1H), 6.45 (d, J = 7.4 Hz, 1H), 6.34 (d, J = 11.1 Hz, 3H), 3.59 (dd, J = 9.0, 6.3 Hz, 1H), 3.43 (td, J = 8.7, 3.5 Hz, 1H), 3.24 (q, J = 8.1 Hz, 1H), 3.13 (d, J = 15.7 Hz, 1H), 2.52 (d, J = 15.7 Hz, 1H), 2.31 (s, 3H), 1.95 – 1.83 (m, 2H), 1.77 (dtd, J = 9.6, 6.5, 3.0 Hz, 1H), 1.31 – 1.21 (m, 10H), 1.13 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.9, 148.9, 148.1, 144.4, 143.3, 139.7, 137.3, 128.8, 116.7, 115.7, 111.4, 64.3, 47.4, 39.6, 38.7, 34.9, 34.8, 29.6, 29.5, 27.7, 23.3, 21.6 ppm. HRMS (ESI): calcd. for C26H36NO [M+H]+: 378.2791, found: 378.2792. 3,5-di-tert-butyl-8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'pyrrolo[1,2-a]quinoline]-2,5-dien-4-one (2d). Yellow solid, 41.4 mg, 96% yield; 1H NMR (500 MHz, CDCl3) δ 7.06 (d, J = 7.6 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.67 (s, 1H), 6.34 (s, 1H), 6.24 (s, 1H), 3.71 – 3.61 (m, 1H), 3.49 (t, J = 8.4 Hz, 1H), 3.26 (q, J = 8.2 Hz, 1H), 3.17 (d, J = 16.0 Hz, 1H), 2.60 (d, J = 16.1 Hz, 1H), 2.02 – 1.88 (m, 2H), 1.82 (dd, J = 12.1, 5.9 Hz, 1H), 1.34 – 1.22 (m, 10H), 1.13 (s, 9H); C{1H} NMR (126 MHz, CDCl3) δ 186.6, 149.6, 148.7, 143.5, 138.5, 130.3 (q, J = 31.5 Hz ), 129.9,

13

129.6, 129.1, 129.6 (q, J = 273.4 Hz), 122.2, 112.3 (q, J = 3.8 Hz), 106.7 (q, J = 3.8 Hz), 64.3, 47.5, 39.8, 37.8, 35.0, 34.9, 29.5, 27.8, 23.3 ppm. HRMS (ESI): calcd. for C26H33F3NO [M+H]+: 432.2509, found: 432.2517. 8'-bromo-3,5-di-tert-butyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2e). Yellow solid, 41.0 mg, 93% yield; 1H NMR (500 MHz, CDCl3) δ 6.83 (d, J = 7.8 Hz, 1H), 6.72 (dd, J = 7.9, 1.9 Hz, 1H), 6.61 (d, J = 1.9 Hz, 1H), 6.33 (d, J = 2.9 Hz, 1H), 6.24 (d, J = 2.9 Hz, 1H), 3.61 (dd, J = 9.5, 6.0 Hz, 1H), 3.43 (td, J = 8.8, 3.2 Hz, 1H), 3.20 (dd, J = 16.4,

ACS Paragon Plus Environment

Page 16 of 30

Page 17 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

8.7 Hz, 1H), 3.08 (dd, J = 15.8, 0.8 Hz, 1H), 2.51 (d, J = 15.8 Hz, 1H), 1.98 – 1.84 (m, 2H), 1.79 (dtd, J = 10.0, 6.4, 3.2 Hz, 1H), 1.29 – 1.23 (m, 10H), 1.13 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.4, 148.5, 144.5, 143.7, 138.7, 130.2, 121.3, 118.5, 117.5, 113.1, 77.3, 77.0, 76.8, 64.1, 47.5, 39.5, 38.0, 35.0, 34.9, 29.5, 29.5, 27.7, 23.3 ppm. HRMS (ESI): calcd. for C25H33BrNO [M+H]+: 442.1740, found: 442.1746. 3,5-di-tert-butyl-8'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2f). Yellow solid, 37.3 mg, 94% yield; 1H NMR (500 MHz, CDCl3) δ 6.89 (d, J = 7.9 Hz, 1H), 6.57 (d, J = 7.9 Hz, 1H), 6.46 (s, 1H), 6.33 (s, 1H), 6.25 (s, 1H), 3.67 – 3.57 (m, 1H), 3.43 (t, J = 8.4 Hz, 1H), 3.20 (d, J = 8.3 Hz, 1H), 3.09 (d, J = 15.7 Hz, 1H), 2.52 (d, J = 15.8 Hz, 1H), 1.91 (dd, J = 17.1, 8.1 Hz, 2H), 1.83 – 1.74 (m, 1H), 1.26 (s, 10H), 1.13 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.4, 148.5, 144.3, 143.7, 138.8, 133.1, 129.8, 117.0, 115.6, 110.2, 64.2, 47.5, 39.5, 38.0, 35.0, 34.9, 29.5, 29.5, 27.8, 23.3 ppm. HRMS (ESI): calcd. for C25H33ClNO [M+H]+: 398.2245, found: 398.2248. 3,5-di-tert-butyl-7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2g). Yellow solid, 32.1 mg, 85% yield; 1H NMR (500 MHz, CDCl3) δ 7.08 (d, J = 8.6 Hz, 1H), 6.95 (s, 1H), 6.41 (d, J = 8.6 Hz, 1H), 6.32 (d, J = 1.7 Hz, 1H), 6.25 (s, 1H), 3.60 (dd, J = 9.0, 6.3 Hz, 1H), 3.50 – 3.39 (m, 1H), 3.20 (d, J = 8.2 Hz, 1H), 3.12 (d, J = 15.9 Hz, 1H), 2.51 (d, J = 15.9 Hz, 1H), 1.90 (dd, J = 17.2, 9.0 Hz, 2H), 1.79 (dd, J = 7.4, 4.5 Hz, 1H), 1.34 – 1.23 (m, 10H), 1.13 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.4, 148.5, 143.7, 142.1, 138.8, 128.6, 127.5, 120.3, 120.1, 111.6, 64.3, 47.6, 39.7, 38.1, 35.0, 34.9, 29.5, 27.7, 23.3 ppm. HRMS (ESI): calcd. for C25H33ClNO [M+H]+: 398.2245, found: 398.2253. 3,5-di-tert-butyl-6'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2h). Yellow solid, 38.5 mg, 97% yield; 1H NMR (500 MHz, CDCl3) δ 7.06 (t, J = 8.0 Hz, 1H), 6.71 (d, J = 7.9 Hz, 1H), 6.42 (d, J = 8.2 Hz, 1H), 6.35 (d, J = 2.2 Hz, 1H), 6.28 (s, 1H), 3.55 (t, J = 7.2 Hz, 1H), 3.43 (td, J = 8.5, 3.9 Hz, 1H), 3.27 (q, J = 8.1 Hz, 1H), 2.95 – 2.83 (m, 2H), 1.97 – 1.85 (m, 2H), 1.84 – 1.76 (m, 1H), 1.33 – 1.24 (m, 11H), 1.14 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.3, 148.6, 144.8, 143.7, 138.9, 134.6, 128.0, 116.7, 116.6, 109.2, 63.6, 47.7, 38.5, 37.2, 35.0, 34.9, 29.5, 27.6, 23.4 ppm. HRMS (ESI): calcd. for C25H33ClNO [M+H]+: 398.2245, found: 398.2251.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3,5-di-tert-butyl-6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2i). Yellow solid, 31.6 mg, 83% yield; 1H NMR (500 MHz, CDCl3) δ 7.08 (dd, J = 15.0, 7.8 Hz, 1H), 6.37 (dd, J = 16.6, 5.6 Hz, 2H), 6.28 (dd, J = 9.5, 5.4 Hz, 2H), 3.58 (dd, J = 8.9, 6.4 Hz, 1H), 3.45 (td, J = 8.6, 3.4 Hz, 1H), 3.26 (q, J = 8.1 Hz, 1H), 2.83 (dd, J = 39.7, 16.4 Hz, 2H), 1.88 (dt, J = 21.9, 5.8 Hz, 2H), 1.84 – 1.77 (m, 1H), 1.28 (d, J = 10.6 Hz, 10H), 1.14 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 161.5 (d, J = 239.7 Hz), 148.9 (d, J = 92.0 Hz),144.9 (d, J = 7.8 Hz), 143.8, 138.8, 128.0 (d, J = 10.8 Hz), 106.3, 105.7 (d, J = 20.0 Hz), 102.6 (d, J = 22.7 Hz), 63.7, 47.7, 37.7, 34.9, 34.9, 32.4, 32.4, 29.5, 27.6, 26.9, 23.3 ppm. HRMS (ESI): calcd. for C25H33FNO [M+H]+: 382.2546, found: 382.2552. 6'-bromo-3,5-di-tert-butyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2j). Yellow solid, 43.7 mg, 99% yield; 1H NMR (500 MHz, CDCl3) δ 6.99 (t, J = 7.9 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.46 (d, J = 8.1 Hz, 1H), 6.35 (s, 1H), 6.27 (s, 1H), 3.61 – 3.50 (m, 1H), 3.43 (d, J = 3.0 Hz, 1H), 3.27 (d, J = 8.2 Hz, 1H), 2.92 (d, J = 16.7 Hz, 1H), 2.84 (d, J = 16.7 Hz, 1H), 1.98 – 1.84 (m, 2H), 1.81 (dd, J = 9.8, 6.3 Hz, 1H), 1.31 (d, J = 11.7 Hz, 1H), 1.28 (s, 9H), 1.15 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 149.3, 148.6, 144.9, 143.6, 138.8, 128.4, 125.5, 119.9, 118.2, 109.9, 63.7, 47.7, 40.2, 38.9, 35.0, 34.9, 29.5, 29.5, 27.5, 23.4 ppm. HRMS (ESI): calcd. for C25H33BrNO [M+H]+: 442.1740, found: 442.1746. 3,5-di-tert-butyl-7'-nitro-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-dien-4-one (2k). Yellow solid, 40.6 mg, 99% yield; 1H NMR (500 MHz, CDCl3) δ 8.08 (dd, J = 9.0, 1.7 Hz, 1H), 7.95 (s, 1H), 6.45 (d, J = 9.1 Hz, 1H), 6.34 (d, J = 2.6 Hz, 1H), 6.12 (d, J = 2.6 Hz, 1H), 3.75 (dd, J = 10.0, 5.9 Hz, 1H), 3.62 (t, J = 8.9 Hz, 1H), 3.32 (d, J = 7.9 Hz, 1H), 3.17 (d, J = 15.8 Hz, 1H), 2.64 (d, J = 15.8 Hz, 1H), 2.03 (dd, J = 13.5, 6.5 Hz, 1H), 1.96 (d, J = 8.3 Hz, 1H), 1.90 – 1.81 (m, 1H), 1.33 – 1.23 (m, 10H), 1.12 (s, 9H);

C{1H} NMR (126 MHz, CDCl3) δ 186.2, 150.3,

13

149.3, 148.2, 142.4, 137.0, 136.9, 125.4, 125.3, 118.1, 109.1, 64.8, 47.9, 39.6, 37.5, 35.1, 35.0, 29.5, 29.4, 27.7, 23.1 ppm. HRMS (ESI): calcd. for C25H33N2O3 [M+H]+: 409.2486, found: 409.2488. 3,5-di-tert-butyl-4-oxo-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-diene-7'-carbonitrile (2l). Yellow solid, 35.3 mg, 91% yield; 1H NMR (500 MHz, CDCl3) δ 7.41 (d, J = 8.4 Hz, 1H), 7.23 (s, 1H), 6.47 (d, J = 8.5 Hz, 1H), 6.33 (d, J = 2.3 Hz, 1H), 6.14 (d, J = 2.3 Hz, 1H), 3.70 (dd, J = 9.8, 6.0 Hz, 1H), 3.54 (t, J = 8.9 Hz, 1H), 3.25 (dd, J = 17.0, 9.0 Hz, 1H), 3.13 (d, J = 15.8 Hz, 1H), 2.56 (d, J = 15.8 Hz, 1H), 2.04 – 1.89 (m, 2H), 1.84 (dt, J = 12.2, 6.1 Hz,

ACS Paragon Plus Environment

Page 18 of 30

Page 19 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

1H), 1.33 – 1.23 (m, 10H), 1.12 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.4, 149.9, 149.0, 146.3, 142.8, 137.5, 132.5, 132.5, 120.7, 118.9, 110.2, 97.4, 64.5, 47.5, 39.5, 37.4, 35.1, 34.9, 29.5, 29.5, 27.8, 23.2 ppm. HRMS (ESI): calcd. for C26H33N2O [M+H]+: 389.2587, found: 389.2588. 3,5-di-tert-butyl-4-oxo-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'-pyrrolo[1,2a]quinoline]-2,5-diene-8'-carbonitrile (2m). Yellow solid, 38.1 mg, 98% yield; 1H NMR (500 MHz, CDCl3) δ 7.04 (d, J = 7.6 Hz, 1H), 6.89 (d, J = 7.5 Hz, 1H), 6.68 (s, 1H), 6.33 (s, 1H), 6.16 (s, 1H), 3.66 (dd, J = 9.2, 6.2 Hz, 1H), 3.47 (t, J = 8.5 Hz, 1H), 3.27 – 3.12 (m, 2H), 2.59 (d, J = 16.2 Hz, 1H), 1.95 (dt, J = 17.3, 8.0 Hz, 2H), 1.83 (dt, J = 11.9, 5.8 Hz, 1H), 1.34 – 1.22 (m, 10H), 1.12 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.5, 149.8, 148.9, 143.6, 143.0, 137.9, 129.5, 123.8, 119.8, 119.4, 112.8, 111.3, 64.3, 47.5, 40.1, 37.5, 35.0, 34.9, 29.5, 27.8, 23.3 ppm. HRMS (ESI): calcd. for C26H32NaN2O [M+Na]+: 411.2412, found: 411.2417. methyl(E)-3-(3,5-di-tert-butyl-4-oxo-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'pyrrolo[1,2-a]quinoline]-2,5-dien-8'-yl)acrylate (2n). Yellow solid, 39.4 mg, 88% yield; 1H NMR (500 MHz, CDCl3) δ 7.66 (d, J = 16.0 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.81 (d, J = 7.5 Hz, 1H), 6.62 (s, 1H), 6.41 (d, J = 15.9 Hz, 1H), 6.34 (s, 1H), 6.27 (s, 1H), 3.81 (s, 3H), 3.68 – 3.59 (m, 1H), 3.48 (t, J = 8.5 Hz, 1H), 3.26 (d, J = 8.2 Hz, 1H), 3.16 (d, J = 16.1 Hz, 1H), 2.58 (d, J = 16.1 Hz, 1H), 1.93 (dd, J = 16.7, 7.8 Hz, 2H), 1.80 (dd, J = 7.7, 4.4 Hz, 1H), 1.31 (s, 1H), 1.26 (s, 9H), 1.12 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.7, 167.7, 149.4, 148.5, 145.8, 143.7, 143.7, 138.9, 133.8, 129.4, 121.6, 116.6, 116.3, 109.5, 64.3, 51.6, 47.5, 40.0, 38.2, 35.0, 34.9, 29.5, 27.8, 23.3 ppm. HRMS (ESI): calcd. for C29H38NO3 [M+H]+: 448.2846, found: 448.2848. 8'-(4-acetylphenyl)-3,5-di-tert-butyl-1',2',3',3a'-tetrahydro-5'H-spiro[cyclohexane-1,4'pyrrolo[1,2-a]quinoline]-2,5-dien-4-one (2o). Yellow solid, 40.9 mg, 85% yield; 1H NMR (500 MHz, CDCl3) δ 8.02 (d, J = 7.4 Hz, 2H), 7.72 (d, J = 7.4 Hz, 2H), 7.09 (d, J = 7.3 Hz, 1H), 6.90 (d, J = 7.4 Hz, 1H), 6.72 (s, 1H), 6.48 – 6.31 (m, 2H), 3.67 (t, J = 6.8 Hz, 1H), 3.54 (t, J = 8.3 Hz, 1H), 3.33 (d, J = 8.1 Hz, 1H), 3.21 (d, J = 15.9 Hz, 1H), 2.63 (s, 3H), 2.60 (s, 1H), 2.02 – 1.87 (m, 2H), 1.82 (d, J = 2.9 Hz, 1H), 1.33 (s, 1H), 1.30 (s, 9H), 1.15 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 197.8, 186.7, 149.3, 148.4, 146.5, 143.9, 143.8, 139.4, 139.1, 135.6, 129.5, 128.8, 127.1, 119.0, 115.0, 109.1, 64.3, 47.5, 39.7, 38.4, 35.0, 34.9, 29.5, 29.5, 27.7, 26.6, 23.3 ppm. HRMS (ESI): calcd. for C33H40NO2 [M+H]+: 482.3054, found: 482.3053.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3',5'-di-tert-butyl-1,2,3,3a-tetrahydro-5H-spiro[benzo[g]pyrrolo[1,2-a][1,8]naphthyridine-4,1'cyclohexane]-2',5'-dien-4'-one (2p). Yellow solid, 39.4 mg, 95% yield; 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 8.4 Hz, 1H), 7.60 – 7.47 (m, 3H), 7.19 (t, J = 7.4 Hz, 1H), 6.39 (d, J = 2.8 Hz, 1H), 6.29 (d, J = 2.8 Hz, 1H), 3.98 – 3.91 (m, 1H), 3.86 (dd, J = 9.6, 5.8 Hz, 1H), 3.71 (dt, J = 11.3, 8.1 Hz, 1H), 3.25 (d, J = 15.7 Hz, 1H), 2.72 (d, J = 15.7 Hz, 1H), 2.01 – 1.81 (m, 3H), 1.38 – 1.24 (m, 10H), 1.11 (s, 9H); C{1H} NMR (126 MHz, CDCl3) δ 186.6, 152.9, 150.1, 149.1, 147.9, 142.8, 137.7, 134.7, 128.9, 126.9,

13

125.9, 123.2, 121.7, 117.5, 64.5, 46.9, 40.2, 38.5, 35.1, 34.9, 29.5, 28.3, 23.1 ppm. HRMS (ESI): calcd. for C28H35N2O [M+H]+: 415.2744, found: 415.2745. 3',5'-di-tert-butyl-1,2,3,12a-tetrahydro-11H-spiro[benzo[f]pyrrolo[1,2-a]quinoline-12,1'cyclohexane]-2',5'-dien-4'-one (2q). Yellow solid, 40.5 mg, 98% yield; 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 8.0 Hz, 1H), 7.67 (dd, J = 8.3, 3.7 Hz, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 8.9 Hz, 1H), 6.48 – 6.38 (m, 2H), 3.60 (d, J = 6.5 Hz, 2H), 3.42 (q, J = 7.7 Hz, 1H), 3.19 (d, J = 16.3 Hz, 1H), 3.04 (d, J = 16.3 Hz, 1H), 1.87 (ddd, J = 18.0, 13.6, 6.3 Hz, 3H), 1.40 – 1.28 (m, 10H), 1.10 (s, 9H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.8, 148.9, 148.4, 144.6, 141.1, 139.8, 133.2, 128.6, 128.0, 126.8, 126.5, 121.4, 121.4, 115.0, 108.9, 63.6, 47.9, 38.8, 35.6, 34.9, 34.9, 29.6, 29.5, 27.5, 26.9, 23.6 ppm. HRMS (ESI): calcd. for C29H36NO [M+H]+: 414.2791, found: 414.2795. 3,5-di-tert-butyl-1'-methyl-1',4'-dihydro-2'H-spiro[cyclohexane-1,3'-quinoline]-2,5-dien-4-one (2r). Yellow solid, 17.5 mg, 52% yield; 1H NMR (500 MHz, CDCl3) δ 7.16 (t, J = 7.7 Hz, 1H), 6.97 (d, J = 7.3 Hz, 1H), 6.69 (dd, J = 14.1, 7.6 Hz, 2H), 6.55 (s, 2H), 3.11 (s, 2H), 2.95 (s, 3H), 2.79 (s, 2H), 1.21 (s, 18H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.6, 147.3, 145.0, 143.1, 129.4, 127.6, 119.5, 116.9, 111.1, 59.6, 39.2, 38.6, 36.7, 34.8, 29.5 ppm. HRMS (ESI): calcd. for C23H32NO [M+H]+: 338.2478, found: 338.2477. 3,5-di-tert-butyl-1'-methyl-7'-(trifluoromethyl)-1',4'-dihydro-2'H-spiro[cyclohexane-1,3'quinoline]-2,5-dien-4-one (2s). Yellow solid, 29.8 mg, 72% yield; 1H NMR (500 MHz, CDCl3) δ 7.04 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 6.86 (s, 1H), 6.49 (s, 2H), 3.17 (s, 2H), 2.99 (s, 3H), 2.81 (s, 2H), 1.21 (s, 18H); 13C{1H} NMR (126 MHz, CDCl3) δ 186.4, 147.7, 144.9, 142.2, 130.0 (d, J = 31.3 Hz), 129.5, 124.5 (q, J = 273.4 Hz), 122.9, 113.3 (d, J = 3.8 Hz), 107.3 (d, J = 3.8 Hz), 59.4, 39.1, 38.6, 36.2, 34.8, 29.5 ppm. HRMS (ESI): calcd. for C24H31F3NO [M+H]+: 406.2352, found: 406.2355. 4-(2-(benzylamino)benzyl)-2,6-di-tert-butylphenol (3a). Pale yellow solid, 39.3 mg, 92% yield; 1H NMR (500 MHz, CDCl3) δ 7.30 – 7.21 (m, 3H), 7.18 – 7.10 (m, 3H), 7.07 (d, J = 7.1 Hz, 1H), 6.96 (s,

ACS Paragon Plus Environment

Page 20 of 30

Page 21 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

2H), 6.73 (d, J = 7.0 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 5.07 (s, 1H), 4.26 (s, 2H), 3.97 (s, 1H), 3.82 (s, 2H), 1.36 (s, 18H); 13C{1H} NMR (126 MHz, CDCl3) δ 152.3, 146.0, 139.4, 136.1, 130.3, 129.5, 128.5, 127.5, 127.3, 127.0, 125.5, 125.0, 117.3, 110.7, 48.1, 38.2, 34.3, 30.2 ppm. HRMS (ESI): calcd. for C28H36NO [M+H]+: 402.2791, found: 402.2795. 2,6-di-tert-butyl-4-(2-(methylamino)benzyl)phenol (3b). Pale yellow solid, 30.6 mg, 94% yield; 1H NMR (500 MHz, CDCl3) δ 7.19 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 9.5 Hz, 3H), 6.70 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 5.07 (s, 1H), 3.77 (s, 2H), 3.64 (s, 1H), 2.81 (s, 3H), 1.39 (s, 18H);

13

C{1H}

NMR (126 MHz, CDCl3) δ 152.2, 147.2, 136.0, 130.0, 129.4, 127.5, 125.4, 125.2, 117.0, 109.8, 37.4, 34.3, 30.8, 30.3 ppm; HRMS (ESI): calcd. for C22H32NO [M+H]+: 326.2478, found: 326.2485. 2,6-di-tert-butyl-4-(2-(ethylamino)benzyl)phenol (3c). Pale yellow solid, 32.5 mg, 90% yield; 1H NMR (500 MHz, CDCl3) δ 7.15 (t, J = 7.6 Hz, 1H), 7.04 – 6.96 (m, 3H), 6.69 (t, J = 7.2 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 5.07 (s, 1H), 3.77 (s, 2H), 3.48 (s, 1H), 3.08 (q, J = 6.7 Hz, 2H), 1.39 (s, 18H), 1.12 (t, J = 6.9 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 152.2, 146.5, 136.0, 130.1, 129.6, 127.4, 125.5, 125.2, 116.9, 110.5, 38.4, 38.1, 34.3, 30.3, 14.8 ppm. HRMS (ESI): calcd. for C23H34NO [M+H]+: 340.2635, found: 340.2636. 2,6-di-tert-butyl-4-(4-chloro-2-(ethylamino)benzyl)phenol (3d). Pale yellow solid, 25.4 mg, 68% yield; 1H NMR (500 MHz, CDCl3) δ 6.95 (s, 2H), 6.92 (d, J = 7.9 Hz, 1H), 6.64 (dd, J = 7.9, 2.1 Hz, 1H), 6.57 (d, J = 2.0 Hz, 1H), 5.09 (s, 1H), 3.72 (s, 2H), 3.56 (s, 1H), 3.08 – 2.99 (m, 2H), 1.39 (s, 18H), 1.11 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 152.3, 147.5, 136.2, 133.1, 131.0, 129.0, 125.0, 123.7, 116.4, 110.3, 38.3, 37.6, 34.3, 30.3, 14.5 ppm. HRMS (ESI): calcd. for C23H33ClNO [M+H]+: 374.2245, found: 374.2247. 4-(4-bromo-2-(ethylamino)benzyl)-2,6-di-tert-butylphenol (3e). Pale yellow solid, 30.0 mg, 72% yield; 1H NMR (500 MHz, CDCl3) δ 6.95 (s, 2H), 6.86 (d, J = 7.9 Hz, 1H), 6.79 (dd, J = 7.9, 1.7 Hz, 1H), 6.71 (d, J = 1.4 Hz, 1H), 5.09 (s, 1H), 3.70 (s, 2H), 3.55 (s, 1H), 3.03 (dd, J = 6.9, 5.4 Hz, 2H), 1.39 (s, 18H), 1.11 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 152.4, 147.7, 136.2, 131.3, 128.9, 125.1, 124.2, 121.3, 119.4, 113.2, 38.3, 37.7, 34.3, 34.1, 30.3, 14.6 ppm. HRMS (ESI): calcd. for C23H33BrNO [M+H]+: 418.1740, found: 418.1742. 4-(3,5-di-tert-butyl-4-hydroxybenzyl)-3-(ethylamino)benzonitrile (3f). Pale yellow solid, 29.1 mg, 80% yield; 1H NMR (500 MHz, CDCl3) δ 7.07 (d, J = 7.6 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.93 (s, 2H), 6.79 (s, 1H), 5.13 (s, 1H), 3.78 (s, 2H), 3.70 (t, J = 4.7 Hz, 1H), 3.11 – 3.02 (m, 2H), 1.39 (s, 18H), 1.14

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(t, J = 7.1 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 152.6, 146.7, 136.4, 130.6, 130.5, 127.9, 125.1, 120.6, 120.0, 112.7, 110.9, 38.2, 38.1, 34.3, 30.2, 14.4 ppm. HRMS (ESI): calcd. for C24H33N2O [M+H]+: 365.2587, found: 365.2588. 2,6-di-tert-butyl-4-(5-chloro-2-(ethylamino)benzyl)phenol (3g). Pale yellow solid, 23.9 mg, 64% yield; 1H NMR (500 MHz, CDCl3) δ 7.10 (d, J = 8.6 Hz, 1H), 7.00 (s, 1H), 6.96 (d, J = 1.7 Hz, 2H), 6.52 (dd, J = 8.6, 0.9 Hz, 1H), 5.10 (d, J = 1.6 Hz, 1H), 3.73 (s, 2H), 3.47 (s, 1H), 3.03 (d, J = 6.8 Hz, 2H), 1.40 (d, J = 1.7 Hz, 18H), 1.10 (td, J = 7.1, 1.4 Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 152.4, 145.2, 136.2, 129.8, 128.8, 127.1, 125.1, 121.4, 111.5, 38.5, 37.9, 34.3, 30.3, 14.6 ppm. HRMS (ESI): calcd. for C23H33ClNO [M+H]+: 374.2245, found: 374.2248.

ACKNOWLEDGMENTS We are grateful for financial support from the NSFC (21702117, 21878167) and the Natural Science Foundation of Shandong Province (JQ201604, ZR2017BB005) as well as the Key Research and Development Program of Shandong Province (2017GSF218073). Supporting Information NMR spectra of the products, X-ray crystallography data and CIF file of compound 2c. This material is available free of charge via the Internet at http: //pubs.acs.org. ORCID Shuai-Shuai Li: 0000-0001-7279-2885 Jian Xiao: 0000-0003-4272-6865 Author Contributions 〢

These authors contributed equally.

Notes The authors declare no competing financial interest.

REFERENCES (1)

(a) Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M. A.; Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Molecular Basis for Sequence-Specific DNA Alkylation by CC-1065. Biochemistry 1988, 27, 3886. (b) Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Igarishi, Y.; Boger, D. L. DNA Alkylation Properties of Yatakemycin. J. Am. Chem. Soc. 2003, 125,

ACS Paragon Plus Environment

Page 22 of 30

Page 23 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

10971. (c) MacMillan, K. S.; Boger, D. L. Fundamental Relationships between Structure, Reactivity, and Biological Activity for the Duocarmycins and CC-1065. J. Med. Chem. 2009, 52, 5771. (d) Sorek, H.; Rudi, A.; Goldberg, I.; Aknin, M.; Kashman, Y. Saldedines A and B, Dibromo Proaporphine Alkaloids from a Madagascan Tunicate. J. Nat. Prod. 2009, 72, 784. (e) Koswatta, P. B.; Das, J.; Yousufuddin, M.; Lovely, C. J. Studies towards the Leucetta-Derived Alkaloids Spirocalcaridine A and B-Possible Biosynthetic Implications. Eur. J. Org. Chem. 2015, 2603. (f) Tanasova, M.; Sturla, S. J. Chemistry and Biology of Acylfulvenes: Sesquiterpene-Derived Antitumor Agents. Chem. Rev. 2012, 112, 3578. (2)

For selected reviews, see: (a) Sannigrahi, M. Stereocontrolled Synthesis of Spirocyclics. Tetrahedron 1999, 55, 9007. (b) Kotha, S.; Deb, A. C.; Lahiri, K.; Manivannan, E. Selected Synthetic Strategies to Spirocyclics. Synthesis 2009, 2009, 165. (c) Roche, S. P.; Porco, J. A. Dearomatization Strategies in the Synthesis of Complex Natural Products. Angew. Chem. Int. Ed. 2011, 50, 4068. (d) Zhuo, C.-X.; Zhang, W.; You, S.-L. Catalytic Asymmetric Dearomatization Reactions. Angew. Chem. Int. Ed. 2012, 51, 12662. (e) Rafferty, R. J.; Hicklin, R. W.; Maloof, K. A.; Hergenrother, P. J. Synthesis of Complex and Diverse Compounds through Ring Distortion of Abietic Acid. Angew. Chem. Int. Ed. 2014, 53, 220.

(3)

For selected examples, see: (a) Rousseaux, S.; Garcí a-Fortanet, J.; Del Aguila Sanchez, M. A.; Buchwald, S. L. Palladium(0)-Catalyzed Arylative Dearomatization of Phenols. J. Am. Chem. Soc. 2011, 133, 9282. (b) Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong, Z.-Q.; Ye, K.Y.; You, S.-L. Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization of Phenols. Angew. Chem. Int. Ed. 2011, 50, 4455. (c) Nemoto, T.; Zhao, Z.; Yokosaka, T.; Suzuki, Y.; Wu, R.; Hamada, Y. Palladium-Catalyzed Intramolecular ipso-Friedel–Crafts Alkylation of Phenols and Indoles: Rearomatization-Assisted Oxidative Addition. Angew. Chem. Int. Ed. 2013, 52, 2217. (d) Nemoto, T.; Matsuo, N.; Hamada, Y. Gold‐Catalyzed Carbocyclization of Phenols with a Terminal Alkyne via an Intramolecular ipso-FriedelCrafts Alkenylation. Adv. Synth. Catal. 2014, 356, 2417. (e) Yang, L.; Zheng, H.; Luo, L.; Nan, J.; Liu, J.; Wang, Y.; Luan, X. Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Biaryls: Axial-to-Central Chirality Transfer. J. Am. Chem. Soc. 2015, 137, 4876. (f) Luo, L.; Zheng, H.; Liu, J.; Wang, H.; Wang, Y.; Luan, X. Highly

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemo- and Regioselective Construction of Spirocarbocycles by a Pd(0)-Catalyzed Dearomatization of Phenol-Based Biaryls with 1,3-Dienes. Org. Lett. 2016, 18, 2082. (4)

Gai, K.; Fang, X.; Li, X.; Xu, J.; Wu, X.; Lin, A.; Yao, H. Synthesis of Spiro[2.5]octa-4,7dien-6-one with Consecutive Quaternary Centers via 1,6-Conjugate Addition Induced Dearomatization of para-Quinone Methides. Chem. Commun. 2015, 51, 15831.

(5)

(a) Yuan, Z.; Fang, X.; Li, X.; Wu, J.; Yao, H.; Lin, A. 1,6-Conjugated Addition-Mediated [2+1] Annulation: Approach to Spiro[2.5]octa-4,7-dien-6-one. J. Org. Chem. 2015, 80, 11123. (b) Zhang, X.-Z.; Du, J.-Y.; Deng, Y.-H.; Chu, W.-D.; Yan, X.; Yu, K.-Y.; Fan, C.-A. Spirocyclopropanation Reaction of para-Quinone Methides with Sulfonium Salts: The Synthesis of Spirocyclopropanyl para-Dienones. J. Org. Chem. 2016, 81, 2598.

(6)

Roiser, L.; Waser, M. Enantioselective Spirocyclopropanation of para-Quinone Methides Using Ammonium Ylides. Org. Lett. 2017, 19, 2338.

(7)

(a) Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Bifunctional Organo/Metal Cooperatively Catalyzed [3 + 2] Annulation of para-Quinone Methides with Vinylcyclopropanes: Approach to Spiro[4.5]deca-6,9-diene-8-ones. Org. Lett. 2016, 18, 3370. (b) Yuan, Z.; Liu, L.; Pan, R.; Yao, H.; Lin, A. Silver-Catalyzed Cascade 1,6-Addition/Cyclization of para-Quinone Methides with Propargyl Malonates: An Approach to Spiro[4.5]deca-6,9-dien-8-ones. J. Org. Chem. 2017, 82, 8743. (c) Ma, C.; Huang, Y.; Zhao, Y. Stereoselective 1,6-Conjugate Addition/Annulation of para-Quinone Methides with Vinyl Epoxides/Cyclopropanes. ACS Catal. 2016, 6, 6408.

(8)

Yuan, Z.; Pan, R.; Zhang, H.; Liu, L.; Lin, A.; Yao, H. Palladium-Catalyzed Oxa-[4+2] Annulation of para-Quinone Methides. Adv. Synth. Catal. 2017, 359, 4244.

(9)

For reviews, see: (a) Tobisu, M.; Chatani, N. A Catalytic Approach for the Functionalization of C(sp3)-H Bonds. Angew. Chem. Int. Ed. 2006, 45, 1683. (b) Pan, S. C. Organocatalytic C–H Activation Reactions. Beilstein J. Org. Chem. 2012, 8, 1374. (c) Peng, B.; Maulide, N. The Redox-Neutral Approach to C-H Functionalization. Chem.-Eur. J. 2013, 19, 13274. (d) Haibach, M. C.; Seidel, D. C-H Bond Functionalization through Intramolecular Hydride Transfer. Angew. Chem. Int. Ed. 2014, 53, 5010. (e) Wang, L.; Xiao, J. Advancement in Cascade [1,n]-Hydrogen Transfer/Cyclization: A Method for Direct Functionalization of

ACS Paragon Plus Environment

Page 24 of 30

Page 25 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Inactive C(sp3)-H Bonds. Adv. Synth. Catal. 2014, 356, 1137. (f) Wang, L.; Xiao, J. Hydrogen-Atom Transfer Reactions. Top. Curr. Chem. 2016, 374, 17. (g) Wang, L.; Xiao, J. C(sp3)–H Bond Functionalization by Sequential Hydride Transfer/Cyclization: Electronic Effect and Steric Effect Controlled Regioselectivity. Org. Chem. Front. 2016, 3, 635. (h) Xiao, M.; Zhu, S.; Shen, Y.; Wang, L.; Xiao, J. Construction of Chiral Cyclic Compounds via Asymmetric Cascade[1,n]-Hydride Transfer/Cyclization. Chin. J. Org. Chem. 2018, 38, 328. (10)

For representative examples, see: (a) Pastine, S. J.; McQuaid, K. M.; Sames, D. Room Temperature Hydroalkylation of Electron-Deficient Olefins:  sp3 C−H Functionalization via a Lewis Acid-Catalyzed Intramolecular Redox Event. J. Am. Chem. Soc. 2005, 127, 12180. (b) Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. Selective Activation of Enantiotopic C(sp3)−Hydrogen by Means of Chiral Phosphoric Acid: Asymmetric Synthesis of Tetrahydroquinoline Derivatives. J. Am. Chem. Soc. 2011, 133, 6166. (c) Han, Y.; Han, W.; Hou, X.; Zhang, X.; Yuan, W. FeCl3-Catalyzed Stereoselective Construction of Spirooxindole Tetrahydroquinolines via Tandem 1,5-Hydride Transfer/Ring Closure. Org. Lett. 2012, 14, 4054. (d) Suh, C. W.; Kim, D. Y. Enantioselective One-Pot Synthesis of RingFused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences. Org. Lett. 2014, 16, 5374. (e) Briones, J. F.; Basarab, G. S. Expedient Synthesis of Tetrahydroquinoline-3-Spirohydantoin Derivatives via the Lewis Acid-Catalyzed TertAmino Effect Reaction. Chem. Commun. 2016, 52, 8541. (f) Yoshida, T.; Mori, K. Hf(OTf)4Catalyzed Highly Diastereoselective Synthesis of 1,3-Disubstituted Tetralin Derivatives via Benzylic C(sp3)–H Bond Functionalization. Chem. Commun. 2017, 53, 4319. (g) Mori, K.; Isogai, R.; Kamei, Y.; Yamanaka, M.; Akiyama, T. Chiral Magnesium BisphosphateCatalyzed Asymmetric Double C(sp3)–H Bond Functionalization Based on Sequential Hydride Shift/Cyclization Process. J. Am. Chem. Soc. 2018, 140, 6203. (h) Yu, J.; Li, N.; Chen, D.-F.; Luo, S.-W. Catalytic Enantioselective C(sp3)-H Functionalization: Intramolecular Benzylic [1,5]-Hydride Shift. Tetrahedron Lett. 2014, 55, 2859.

(11)

(a) Vadola, P. A.; Sames, D. C−H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C−H Bonds Catalyzed by Platinum Tetraiodide. J.

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 30

Am. Chem. Soc. 2009, 131, 16525. (b) Barluenga, J.; Fananas-Mastral, M.; Aznar, F.; Valdes, C. [1,5]-Hydride Transfer/Cyclizations on Alkynyl Fischer Carbene Complexes: Synthesis of 1,2-Dihydroquinolinyl Carbene Complexes and Cascade Reactions. Angew. Chem. Int. Ed. 2008, 47, 6594. (c) Sugiishi, T.; Nakamura, H. Zinc(II)-Catalyzed Redox CrossDehydrogenative Coupling of Propargylic Amines and Terminal Alkynes for Synthesis of N-Tethered 1,6-Enynes. J. Am. Chem. Soc. 2012, 134, 2504. (d) Wu, X.; Chen, S. S.; Hu, Y.; Gong, L. Z. Gold-Catalyzed [1,5]-Hydride Shift onto Unactivated Alkynes To Trigger an Intermolecular Diels–Alder Reaction. Org. Lett. 2014, 16, 3820. (e) Zhang, S.; Cheng, B.; Wang,

S.-A.;

Zhou,

L.;

Tung,

C.-H.;

Wang,

J.;

Xu,

Z.

Gold-Catalyzed

Cycloisomerization/1,5-H Migration/Diels–Alder Reaction Cascade: Synthesis of Complex Nitrogen-Containing Heterocycles. Org. Lett. 2017, 19, 1072. (12) For examples of aldehydes, see: (a) Jurberg, I. D.; Peng, B.; Woestefeld, E.; Wasserloos, M.; Maulide, N. Intramolecular Redox-Triggered C-H Functionalization. Angew. Chem. Int. Ed. 2012, 51, 1950. (b) Pastine, S. J.; Sames, D. Room Temperature Intramolecular Hydro-Oalkylation of Aldehydes:  sp3 C−H Functionalization via a Lewis Acid Catalyzed Tandem 1,5-Hydride Transfer/Cyclization. Org. Lett. 2005, 7, 5429. For examples of imines, see: (c) Zhang, C.; Murarka, S.; Seidel, D. Facile Formation of Cyclic Aminals through a Brønsted Acid-Promoted Redox Process. J. Org. Chem. 2009, 74, 419. (d) Du, Y.; Luo, S.; Gong, L. Asymmetric sp3 C–H Functionalization via a Chiral Brønsted Acid-Catalyzed Redox Reaction for the Synthesis of Cyclic Aminals. Tetrahedron Lett. 2011, 52, 7064. (e) Zhang, Y.; Yang, F.; Zheng, L.; Dang, Q.; Bai, X. A Cascade of Acid-Promoted C–O Bond Cleavage and Redox Reactions: From Oxa-Bridged Benzazepines to Benzazepinones. Org. Lett. 2014, 16, 6041. (f) Mori, K.; Umehara, N.; Akiyama, T. Synthesis of 3-Aryl-1trifluoromethyltetrahydroisoquinolines by Brønsted Acid-Catalyzed C(sp3)-H Bond Functionalization. Adv. Synth. Catal. 2015, 357, 901. (g) Ramakumar, K.; Maji, T.; Partridge, J. J.; Tunge, J. A. Synthesis of Spirooxindoles via the tert-Amino Effect. Org. Lett. 2017, 19, 4014. (13) For other representative examples, see: (a) Cui, L.; Ye, L. W.; Peng, Y.; Zhang, L. M. GoldCatalyzed Efficient Synthesis of Azepan-4-ones via a Two-Step [5 + 2] Annulation. Chem.

ACS Paragon Plus Environment

Page 27 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Commun. 2010, 46, 3351. (b) Zhou, G.; Zhang, J. Product-Selectivity Control by the Nature of

the

Catalyst:

Lewis

Acid-Catalyzed

Selective

Formation

of

Ring-fused

Tetrahydroquinolines and Tetrahydroazepines via Intramolecular Redox Reaction. Chem. Commun. 2010, 46, 6593. (c) Haibach, Deb, M. C. I.; De, C. K.; Seidel, D. Redox-Neutral Indole Annulation Cascades. J. Am. Chem. Soc. 2011, 133, 2100. (d) Zhou, G.; Liu, F.; Zhang, J. Enantioselective Gold-Catalyzed Functionalization of Unreactive sp3 C-H Bonds through a Redox–Neutral Domino Reaction. Chem. Eur. J. 2011, 17, 3101. (e) Chang, Y.-Z.; Li, M.-L.; Zhao, W.-F.; Wen, X.; Sun, H.; Xu, Q.-L. Construction of Oxadiazepines via Lewis Acid-Catalyzed Tandem 1,5-Hydride Shift/Cyclization. J. Org. Chem. 2015, 80, 9620. (f) Wang, Y.; Li, G.; Liu, H.; Tang, Z.; Cao, Y.; Zhao, G. A Tandem Annulation with a [1,3]Hydride Transfer as the Key Step Leading to Isochromans. Chem. Commun. 2017, 53, 10652. (g) Zhen, L.; Wang, J.; Xu, Q.-L.; Sun, H.; Wen, X.; Wang, G. Direct Intermolecular C–H Functionalization Triggered by 1,5-Hydride Shift: Access to N-Arylprolinamides via UgiType Reaction. Org. Lett. 2017, 19, 1566. (h) Liu, S.; Qu, J.; Wang, B. Substrate-controlled Divergent Synthesis of Polycyclic Indoloazepines and Indolodiazepines via 1,5-Hydride Shift/7-Cyclization Cascades. Chem. Commun. 2018, 54, 7928. (i) Idiris, F. I. M.; Majesté, C. E.; Craven, G. B.; Jones, C. R. Intramolecular Hydride Transfer onto Arynes: Redoxneutral and Transition Metal-free C(sp3)–H Functionalization of Amines. Chem. Sci. 2018, 9, 2873. (j) Mori, K.; Umehara, N.; Akiyama, T. Highly Diastereoselective Synthesis of Tricyclic Fused-pyrans by Sequential Hydride Shift Mediated Double C(sp3)–H Bond Functionalization. Chem. Sci. 2018, 9, 7327. (k) Gandamana, D. A.; Wang, B.; Tejo, C.; Bolte, B.; Gagosz, F.; Chiba, S. Alkyl Ethers as Traceless Hydride Donors in Brønsted Acid Catalyzed Intramolecular Hydrogen Atom Transfer. Angew. Chem. Int. Ed. 2018, 57, 6181. (l) Chen, W.; Ma, L.; Paul, A.; Seidel, D. Direct α-C–H Bond Functionalization of Unprotected Cyclic Amines. Nat. Chem. 2018, 10, 165. (m) Liu, S.; Zhang, W.; Qu, J.; Wang, B.

Engaging

2-Methyl

Indolenines

in

a

Tandem

Condensation/1,5-Hydride

Transfer/Cyclization Process: Construction of a Novel Indolenine–Tetrahydroquinoline Assembly. Org. Chem. Front. 2018, 5, 3008. (n) Liu, S.; Zhao, T.; Qu, J.; Wang, B. Expedient

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Synthesis

of

1,4-Benzodiazepines

via

a

Tandem

Page 28 of 30

Condensation/[1,5]-Hydride

Transfer/Cyclization Process. Adv. Synth. Catal. 2018, 360, 4094. (14) For reviews on the chemistry of p-QMs, see: (a) Peter, M. G. Chemical Modifications of Biopolymers by Quinones and Quinone Methides. Angew. Chem., Int. Ed. 1989, 28, 555. (b) Quinone Methides; Rokita, S. E., Ed.; Wiley: Weinheim, 2009. (c) Caruana, L.; Fochi, M.; Bernardi, L. The Emergence of Quinone Methides in Asymmetric Organocatalysis. Molecules 2015, 20, 11733. (d) Parra, A.; Tortosa, M. para-Quinone Methide: a New Player in Asymmetric Catalysis. ChemCatChem 2015, 7, 1524. (e) Chauhan, P.; Kaya, U.; Enders, D. Advances in Organocatalytic 1,6-Addition Reactions: Enantioselective Construction of Remote Stereogenic Centers. Adv. Synth. Catal. 2017, 359, 888. (f) Yang, B.; Gao, S. Recent Advances in the Application of Diels–Alder Reactions Involving o-Quinodimethanes, Azao-Quinone Methides and o-Quinone Methides in Natural Product Total Synthesis. Chem. Soc. Rev. 2018, 47, 7926. (15) (a) (k) Li, S.-S.; Lv, X.; Ren, D.; Shao, C.-L.; Liu, Q.; Xiao, J. Redox-triggered Cascade Dearomative Cyclizations Enabled by Hexafluoroisopropanol. Chem. Sci. 2018, 9, 8253. (b) Li, S.-S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J. Organocatalytic C(sp3)–H Functionalization via Carbocation-Initiated Cascade [1,5]-Hydride Transfer/Cyclization: Synthesis of Dihydrodibenzo[b,e]azepines. Org. Lett. 2018, 20, 138. (c) Wang, S.; An, X. D.; Li, S. S; Liu, X.; Liu, Q.; Xiao, J. Hydride Transfer Initiated Ring Expansion of Pyrrolidines toward Highly Functionalized Tetrahydro-1-benzazepines, Chem. Commun. 2018, 54, 13833. (d) Zhu, S.; Chen, C.; Xiao, M.; Yu, L.; Wang, L.; Xiao, J. Construction of the Tetrahydroquinoline Spiro Skeleton via Cascade [1,5]-Hydride Transfer-Involved C(sp3)–H Functionalization “on Water”. Green Chem. 2017, 19, 5653. (16)

(a) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Hexafluoroisopropanol as a Highly Versatile Solvent. Nat. Rev. Chem. 2017, 1, 88. (b) Wencel-Delord, J.; Colobert, F. A Remarkable Solvent Effect of Fluorinated Alcohols on Transition Metal Catalyzed C–H Functionalizations. Org. Chem. Front. 2016, 3, 394. (c) Dohi, T.; Yamaoka, N.; Kita, Y. Fluoroalcohols: Versatile Solvents in Hypervalent Iodine Chemistry and Syntheses of diaryliodonium(III) salts. Tetrahedron 2010, 66, 5775. (d)

ACS Paragon Plus Environment

Page 29 of 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Organic Chemistry

Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Fluorinated Alcohols as Solvents, Cosolvents and Additives in Homogeneous Catalysis. Synthesis 2007, 2925. (17) (a) Xiao, J.; Zhao, K.; Loh, T. P. The Acid Free Asymmetric Intermolecular α-Alkylation of Aldehydes in Fluorinated Alcohols. Chem. Commun. 2012, 48, 3548. (b) Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y.; Xiao, J. Fluorinated Alcohol-Mediated SN1-Type Reaction of Indolyl Alcohols with Diverse Nucleophiles. Adv. Synth. Catal. 2015, 357, 4023. (c) Liu, J.; Wang, L.; Wang, X.; Xu, L.; Hao, Z.; Xiao, J. Fluorinated Alcohol-Mediated [4 + 3] Cycloaddition Reaction of Indolyl Alcohols with Cyclopentadiene. Org. Biomol. Chem. 2016, 14, 11510. (18)

(a) Kimura, T.; Hosokawa-Muto, J.; Kamatari, Y. O.; Kuwata, K. Synthesis of GN8 Derivatives and Evaluation of Their Antiprion Activity in TSE-Infected Cells. Bioorg. Med. Chem. Lett. 2011, 21, 1502. (b) Ishida, Y.; Kawaguchi, H. Methylene-Linked Anilide— Bis(aryloxide) Ligands: Lithium, Sodium, Potassium, Chromium(III), and Vanadium(III) Ligation. Inorg. Chem. 2014, 53, 6775. (c) Hosoda, S.; Tanatani, A.; Wakabayashi, K.; Nakano, Y.; Miyachi, H.; Nagasawa, K.; Hashimoto, Y. Ligands with Dual Vitamin D3Agonistic and Androgen-Antagonistic Activities. Bioorg. Med. Chem. Lett. 2005, 15, 4327.

(19) For a mechanistic study with HFIP, see: Berkessel, A.; Adrio, J. A.; Hüttenhain, D.; Neudörfl, J. M. Unveiling the “Booster Effect” of Fluorinated Alcohol Solvents:  Aggregation-Induced Conformational Changes and Cooperatively Enhanced H-Bonding. J. Am. Chem. Soc. 2006, 128, 8421. (20) For recent examples of HFIP-promoted reactions, see: (a) DiPoto, M. C.; Hughes, R. P.; Wu, J. Dearomative Indole (3 + 2) Reactions with Azaoxyallyl Cations – New Method for the Synthesis of Pyrroloindolines. J. Am. Chem. Soc. 2015, 137, 14861. (b) Libman, A.; Shalit, H.; Vainer, Y.; Narute, S.; Kozuch, S.; Pappo, D. Synthetic and Predictive Approach to Unsymmetrical Biphenols by Iron-Catalyzed Chelated Radical–Anion Oxidative Coupling. J. Am. Chem. Soc. 2015, 137, 11453. (c) Mfuh, A. M.; Nguyen, V. T.; Chhetri, B. J.; Burch, E.; Doyle, J. D.; Nesterov, V. N.; Arman, H. D.; Larionov, O. V. Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C–H/C–X Borylation of Haloarenes. J. Am. Chem. Soc. 2016, 138, 8408. (d) Colomer, I.; Batchelor-McAuley, C.;

ACS Paragon Plus Environment

The Journal of Organic Chemistry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Odell, B.; Donohoe, T. J.; Compton, R. G. Hydrogen Bonding to Hexafluoroisopropanol Controls the Oxidative Strength of Hypervalent Iodine Reagents. J. Am. Chem. Soc. 2016, 138, 8855. (e) Vukovic, V. D.; Richmond, E.; Wolf, E.; Moran, J. Catalytic Friedel–Crafts Reactions of Highly Electronically Deactivated Benzylic Alcohols. Angew. Chem. Int. Ed. 2017, 56, 3085. (f) Zeng, X.; Li, J.; Ng, C. K.; Hammond, G. B.; Xu, B. Ligands with Dual Vitamin D3-Agonistic and Androgen-Antagonistic Activities. Angew. Chem. Int. Ed. 2018, 57, 2924. (g) Arnold, A. M.; Pöthig, A.; Drees, M.; Gulder, T. NXS, Morpholine and HFIP: The Ideal Combination for Biomimetic Haliranium-Induced Polyene Cyclizations. J. Am. Chem. Soc. 2018, 140, 4344.

ACS Paragon Plus Environment

Page 30 of 30