Organometallics 1996, 14, 953-958
953
Hydrocarbon-BridgedMetal Complexes. 32.tJ Addition of Chalcogen Cluster Anions [Fe2(CO)eE2l2- (E = S, Te) to Unsaturated Hydrocarbons of Cationic Complexes: Synthesis and Structure of New p-Hydrocarbon Complexes Stephan Huffer, Kurt Polborn, and Wolfgang Beck* Institut f i r Anorganische Chemie der Universitat Miinchen, Meiserstrasse 1, 80333 Miinchen, Germany Received September 26, 1994@ The addition of the butterfly chalcogen-bridged dianions [@2-E)Fe2(C0)612-(E = S, Te) to coordinated, unsaturated hydrocarbons of the cationic complexes [(OC)5Re(q2-C2H4)1+,[Cp(OC)3W(q2-C2H4)1+,[Cp(OC)zFe(q2-C2H4)1+,[(oC>3Fe(q5-C6H7)1+,and KOC)3Mo(q7-C7H7)1+ gives a series of p-hydrocarbon heterotetrametallic complexes. Elimination of ethylene from { (OC)3Febz-TeCHzCHzRe(CO)sl}2 yields the carbonyliron tellurium cluster { (0C)sFebs-TeRe(CO)5]}2. The structures of the latter complex and of { (OC)3Feluz-SCHzCHzRe(C0)5]}2 were determined by X-ray diffraction.
Introduction The efficient, high-yield synthesis of Liz[Fez(CO)6S2] by reduction of [Fez(C0)6S21(a mimic of organic disulCurrently there is great interest in the synthesis and characterization of chalcogen-containing c o m p l e ~ e s . ~ ~ f~i d e s 9 with hydridotriethylborate was first described by Seyferth,12who developed a rich chemistry with this Whereas metal sulfide clusters have a long chemical dianion.13 This sulfur-centered nucleophile may be the corresponding tellurium compounds have alkylated12 and has been used t o generate the series of only recently been i n ~ e s t i g a t e d . ~ ~ ~ nido cluster compounds $-L,MSz)Fen(CO)6 by reaction Of the mixed-chalcogen iron clusters, especially the with various main-group and transition-element hadinuclear group VI bridged complexes have proven to lides.13J4 be useful starting materials to generate a wide range The corresponding tellurium dianion can also be of novel cluster compounds. Many of the compounds generated by reduction of T e z F e ~ ( C 0 ) 6 More . ~ ~ conveFe2(CO)&, Fez(CO)6(ER)2,and Fe3(CO)gEz (E = S, Se, nient is the direct reaction of NazFe(CO14 with elemenTe) have first been synthesized in the laboratory of it has tal tellurium reported by Whitmire.16 Recently Hieber.5,8 The structures of the dimers were proposed been shown that the cluster anion [Te6Fes(C0)24I2also on the basis of infrared spectra and dipole moment might serve as a source of [Fez(C0)6Te212-.17 studiesg and finally established by Dahl and Wei by A strategy for the synthesis of ,u-hydrocarbon transiX-ray analyses of Fez(CO)6Ez, Fe3(CO)gEz (E = S, Se), tion-metal complexes is the addition of an anionic metal Dahl introduced the term "bent and [CzH~SFe(C0)312.~~ complex, containing a nucleophilic heteroatom, to coormetal-metal bonds" for these complexes.ll dinated unsaturated hydrocarbons.ls In this commu+Dedicated to Professor Lawrence F. Dahl on the occasion of his nication we report the use of the dianions [$-E)aFez65th birthday. (cO)6l2- (E = S, Te) as nucleophiles. Addition of Abstract published in Advance ACS Abstracts, December 15,1994. (1)Part 31: Weinrich, W.; Robl, C.;Beck, W. J.Organomet. Chem., common S-nucleophiles (SR-,SCN-) to coordinated, in press. unsaturated hydrocarbons has been reported.lg (2)E.g.: Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1986,25, @
57.Whitmire, K. H. J. Coord. Chem. 1988,17,95-203. Wachter, J. Angew. Chem., Int. Ed. Engl. 1989,28,1613. (3)Roof, L. C.; Kolis, J. W. Chem. Rev. 1993,93,1037-1080. (4)Roussin, Z.C. R. Hebd. Seances Acad. Sci. 1858,46,224; Liebigs Ann. Chem. 1858,107,120;Ann. Chim. Phys. 1868,(3152,258. (5)Brendel, G. Ph.D. Dissertation, Technische Hochschule Miinchen, 1956,pp 47-55. Hieber, W.; Gruber, J. 2. Anorg. Allg. Chem. 1958, 296,91-104. (6)Lesch, D. A.;Rauchfuss, T. B. Organometallics 1982,1, 499506.Lesch, D. A.;Rauchfuss, T. B. Inorg. Chem. 1981,20,3583-3589. Bachmann, R. E.; Whitmire, K. H. J. Organomet. Chem. 1994,479, 31-35 and references cited therein. (7)Ward, M. D.Coord. Chem. Rev. 1992,115,1-103. (8)Hieber, W.; Spacu, P. Z. Anorg. Allg. Chem. 1937,233, 353364.Hieber, W.; Scharfenberg, C. Chem. Ber. 1940,73, 1012-1021. (9)Hieber, W.; Beck, W. Z. Anorg. Allg. Chem. 1960,305,265-273. Kettle, S . F. A.; Orgel, L. E. J . Chem. SOC.1960,3890-3891. Beck, W.; Stetter, K. H.; Tadros, S.; Schwarzhans, K. E. Z. Anorg. Allg. Chem. 1968,100, 3944-3954. Kostiner, E.; Reddy, M. L. N.; Urch, D. S.; Massey, A. G. J. Organomet. Chem. 1968,15,383-395. Bor, G. J. Organomet. Chem. 1975 94,181-188. (10)Wei, C. H.; Dahl, L. F. Inorg. Chem. 1965,4, 1-11; 1965,4, 493-499. Campana, C. F.;Lo, F.Y.; Dahl, L. F. Inorg. Chem. 1979, Dahl, L. F. Inorg. Chem. 1963,2, 32818,3060-3064. Wei, C. H.; 333.
~
~~
(11)Dahl. L.F.:Martell. C.:Wamuler. D. L . J . A m . Chem. Soc. 1961. 83,1761-1762.Teo, B. K.;'Hall, M. B.; Fenske, R. F.; Dahl, L. F. Inorg.' Chem. 1975,14,3103-3117. (12)Seyferth, D.; Henderson, R. S.; Song, L. C. Organometallics 1982,1,125-133. (13)Seyferth, D.; Womack, G. B.; Song, L. C.;Cowie, M. B.; Hames, W. Organometallics 1983.2.928-930. Sevferth. D.: Gallaeher. K. J. OrgaGmet. Chem. 1981,'218, C5-C10. 'Seyfekh,'D.; Sing, L. C.; Henderson, R. S. J. Am. Chem. SOC.1981,103,5103-5107. Seyferth, D.; Henderson, R. S. J.Am. Chem. Soc. 1979,101,508-509. Seyferth, D.; Song, L. C.;Henderson, R. S. J.Organomet. Chem. 1980,192,C1C5. Seyferth, D.; Gallagher, M. K. Organometallics 1986,5,539-548. (14)Nath, H.; Rattay, W. J. Organomet. Chem. 1986,308, 131152. (15)Mathur, P.; Reddy, V. D. J.Organomet. Chem. 1990,385,363368. (16)Bachman, R. E.; Whitmire, K. H. Organometallics 1993,12, 1988-1992. (17)Shieh, M.; Shieh, M.-H. organometallics 1994,13,920-924. (18)Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993,32,923-949. (19)Davies, S.G.; Green, M. L. H.; Mingos, D. M. P. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Press: New York, 1986;Vol. 1, pp 897-938.
0276-7333/95/2314-0953$09.Q0/0 0 1995 American Chemical Society
Huffer et al.
954 Organometallics, Vol. 14, No. 2, 1995
Scheme 1
FeLco
1: MLn = Re(C0)5 2: MLn = CpW(CO)3
SYn
LnM anti
3: MLn = CpFe(C0)2
Scheme 2
oc CO
OC
4syn
\ r
oc oc,\ ooc. c-p
co /,co
$yq55~.Feg;o co
co
The compounds 4 and 5 with cycloheptatriene and Results and Discussion cyclohexadiene bridges were prepared by treatment of When a freshly prepared thf solution of Liz[@-S)zFezA with the tropylium and cyclohexadienyl complexes (co)6]is stirred a t low temperature with 2 equiv of the [(C0)3Mo(v7-C7H7)1BF4 and [(C0)3Fe(g5-CsH7)lBF4 cationic complexes [(CO),M(x-hc)]+ (hc = unsaturated (Scheme 2). hydrocarbon),one obtains the corresponding hydrocarbonIt has been shown by King20that [(OC)3Fe(m-SMe)h bridged compounds in good yields. The reactions are is obtained as a mixture of the syn and anti isomers, accompanied by the usual color change from green to which could be separated using column chromatograred. By this way the reaction of LidFez(C0)sSzl (A)with p h ~ . The ~ ~syn , ~and ~ anti isomers of 1-5 could be [(C0)5Re(v2-C2H4)1BF4resulted in the formation of detected by NMR spectroscopy and separated for 1 and ((C0)3Feb2-SCH2CH2Re(C0)5]}2(l),which could be 2 on silica gel with CHzCldpentane. isolated as ruby red crystals. This compound is quite The homologous dianion [Fe2(CO)sTe2lZ- (B)also stable and can even be handled for a short time in air. behaves as a potent nucleophile and produces the Similarly, the reactions of A with the cationic ethylene corresponding tellurium-bridged complexes 6-8. These complexes [CpW(C0)3(v2-C2H4)1BF4and [CpFe(C0)2(v2compounds are less stable than the sulfur species and C2H4)1BF4 afford ((CO)~F~~~-SCH~CH~W(CO)~CPI}~ (2) and ( ( C O ) ~ F ~ ~ ~ - S C H Z C H ~ F (31, ~ ( respectively C ~ ) ~ C ~ I } ~ (20) King, R. B. J. Am. Chem. SOC.1962, 84, 2460. King, R. B.; Bisnette, M. B. Inorg. Chem. 1965,4,1663-1665. (Scheme 1).
Hydrocarbon-BridgedMetal Complexes
Organometallics, Vol. 14,No. 2, 1995 955 Scheme 3
9
are especially sensitive t o oxygen. The solubility in nonpolar solvents decreases from the sulfur to the tellurium compounds. In CH2C12 solution 6 and 7 gradually decompose at room temperature. The ethylene-bridged complex 6 eliminates ethylene to give the "butterfly" cluster compound {(C0)3Fek3-TeRe(CO)51}2 (9), which is isolobalzl with the methylated complex Fez(CO)6(p-TeMe)2, isolated by Whitmire17 from iodomethane and [Fez(CO)6Te212-(Scheme 3). Spectral Features. The infrared spectra of 1-8 show the absorption pattern characteristic for the Fez(CO)6 moiety. Due t o the local CzUgeometry five CO absorptions should be ~ b s e r v e d . ~ Some of them are superposed by the carbonyl absorptions of the other metalcarbonyl fragments. The a1 band of the Re(C0)5 fragment in 1, 6, and 9 is observed at ca. 2130 cm-' and is only influenced marginally by the various substituents. In the lH and 13CNMR spectra of the complexes 1-4 one observes two sets of signals which can be attributed to the anti and syn geometrical isomers. Crude {(CO)3F~&~-SCH~CH~R~(CO ) Eshows , I } ~ in the 'H NMR (1) spectrum three sets of AA'MM signal patterns with varying intensities. After the product was separated into two isomers, the first band eluted with CHzCld pentane was found t o exhibit four signals with equal intensities indicating each of the two ethylene bridges to be different. The other isomer shows only a single AA'MM pattern which can be attributed to the syn isomer. In accordance with the observation by Whitmire17for the complex [(OC)3Fe&2-TeCH3)12no sydanti isomerism is found in the NMR spectra of the tellurium complexes 6-8 which show NMR spectra very similar to those of the corresponding syn sulfur compounds. X-ray Structural Determination of 1 and 9. Basically, the core geometry of 1 and 9 displays an FezE2 butterfly core with an Fe-Fe distance of 254.6(1) pm in 1 and 263 pm in 9 which compare well with those in other compounds: 254.5(1) pm in S2Fez(C0)6,10253.7(1) pm in Fe2(CO)6(SEt)2,11263.4(5) pm in Fez(C0)6(TeMe)2," and 262.6(2) pm in Fez(CO)s@-TeCHzCH2T e P (Figure 1). Similarly, the average Fe-E distances (225 pm in 1 and 258 pm in 9 ) are very close t o the average Fe-S (21) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982,21, 711.
05
010
Figure 1. Molecular structure of 1.
m09 OB 02
Figure 2. Molecular structure of 9.
bond lengths found in Fez(N0)4(SEt)z(226.0 pmIz2and Fez(CO)6(SEt)z (225.9 pm)ll and to the Fe-Te bond lengths reported for Fez(CO)6(TeMe)z(255 pmY7 and Fez(CO)&TeCHzTe) (255 pmLz3 The anti orientation of the two CHzCHzRe(C0)5groups linked to the sulfur atoms destroys the idealized CzUsymmetry for 1. The S-C (184.4(8),183.7(7)pm) and C-Re distances (229.0(8),227.6(8) pm) are normal and agree with reported values (Figure 2). The Te-Te distance (318 pm) in 9 is different from that in the isolobal compound Fez(CO)6@-TeMe)z(326.1(1)pm).17 The Te-Te distance in 9 is between that of the latter compound and the distance known for (22)Thomas, J. T.;Robertson, J. H.; Cox, E. G. Acta Crystallogr. 1958,11,599-604. (23)Mathur, P.;Reddy, V. D.; Bohra, R. J.Organomet. Chem. 1991, 401,339-346.
Hiiffer et al.
956 Organometallics, Vol. 14, No. 2, 1995
Table 1. Selected CrystallographicData for 1 and 9
Fe2(CO)&-TeCH2Te) (311.4(1) pm).23 As in [Ted4+ (313.3pm),24a Te-Te interaction has to be assumed in 9. The dihedral angles between the two planes of the "butterfly" formed by the two bridging chalcogen atoms and one iron atom are 104.4 (1) and 88.1"(9).
Conclusions The reported reactions show that the coordinated unsaturated hydrocarbons of cationic complexes are strong alkylating agents. They are isoloba121 with carbenium ions and act like alkyl halides. Especially with the cation [(OC)sRe(r2-C2H4)l+ many examples for this analogy have been observed.lg
Experimental Section General Procedures. All reactions and other manipulations were performed under a n atmosphere of dried argon using standard Schlenk techniques. Solvents were purified, dried, and distilled under argon prior to use: thf ( N d benzophenone); pentane ( L W ) ; CHzClz (CaH2). Fe2(CO)&,5J3 Na2[Fe2(CO)6Te2],17[(C0)5Re(C2H4)1BF4,25 [CpW(CO)dC2H4)1BF4,26 [CpFe(C0)2(C2H4)]BF4,27[(CO)~MO(C~H,)]BF~,~* and [(C0)3Fe(C6H7)]BF429were prepared according to literature methods. Infrared spectra were recorded on a Perkin-Elmer Model 841. IH and 13CNMR spectra were taken on a JEOL EX 400 (400 MHz). Elemental analyses were performed on a Heraeus VT. Some of the elemental analyses are unsatisfactory, which may be due to the thermal instability of the compounds. Reaction of Li2[Fe2(CO)&] with [(COhRe(C2HdIBF4. To a freshly prepared solution of Liz[Fez(C0)6S2] (generated by slow addition of 1 mL of 1 M Li[Et3BHl in thf (Aldrich) to 172 mg (0.5 mmol) of Fez(CO)&z in 10 mL of thf (at -78 "c)) was added 442 mg (1.0 mmol) of [(C0)5Re(C2H4)1BF4in small portions. During the addition the color changed from emerald green to red. The reaction mixture was stirred for 5 min at -78 "C and then slowly warmed to room temperature. The solvent was removed in vacuo, leaving a dark red solid which was extracted with 15 mL of CH2C12. After filtration, this solution was reduced to 3 mL and thereafter placed on a silica gel column (2 x 40 cm) using CHzCldpentane (2/1) as the eluent. The first band yielded 86 mg (0.08 mmol, 16.3%) of lantl, which was isolated as ruby red crystals from the concentrated solution, cooled to -20 "C; the second band yielded 272 mg (0.26 mmol, 51.7%) of red la,. IR (CH2C12, cm-l): 2130 m, 2064 m, 2025 vs, 2015 vs, 1980 vs, br. The v(C0) bands are rather broad; therefore, the isomers cannot be distinguished by IR. IH NMR (CDC13, ppm): Is,, 1.24 (m, 4H, ReCHz), 2.92 (m, 4H, SCH2); lanti, 1.04, 1.25 (m, 4H, ReCHz), 2.60, 2.88 (m, 4H, SCH2). 13C NMR (CDC13, ppm): ls,, -6.33 (ReCHZ), 49.32 (SCHz), 184.12 (ReCO), 210.22 (FeCO); lanti, -7.12, -6.76 (ReCHz), 35.83, 50.39 (SCHz), 180.22, 180.37, 184.19, 184.28 (ReCO), 209.43 (FeCO). Anal. Calcd for C2oHs016Fe2Re2S2: C, 22.82; H, 0.77; S , 6.09. Found: C, 23.21; H, 0.90; S, 5.97. Mp: 117 "C (anti), 119121 "C (syn). (24) Burns, R. C.; Gillespie, R. I.; Luk, W. C.; Slim, D. R. Inorg. Chem. 1979,18,3086-3094. For a discussion of Te-Te bond lengths see: Bogan, L. E., Jr.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. SOC.1985,107,3843-3850. (25) Beck, W.; Raab, K. Inorg. Synth. 1989,26, 106-113; 1989,28, 16-20. Raab, K.; Beck, W. Chem. Ber. 1985,118,3830-3848. (26) Knoth, W. H. Inorg. Chem. 1975,14,1566-1572. (27) Green, M. L. H.; Nagy, P. L. I. J . Organomet. Chem. 1963,1, 58-69. (28) King, R. B. Organometallic Syntheses; Academic Press: New York, 1965; Vol. 1, p 141. Cotton, F. A.; McCleverty, J. A,; White, J . E. Inorg. Synth. 1990,28,45-47. (29) Fischer, E. 0.; Fischer, R. D. Angew. Chem. 1960,72,919.Birch, A. J.; Cross, P. E.; Lewis, J.; White, D. A,; Wild, S. B. J. Chem. SOC.A 1968,332-340.
L
e(ca1c) (g cm-3) abs coeff (mm-') 28 range (deg) diffractometer temp ("C) no. of f i n s collected no. of indep rflns no. of obsd rflns TmJTmax R, R m GOF residual extrema (epm-3 x 106)
1
9
C20Hs016FezRezS2 1052.50 0.1 x 0.1 x 0.17 triclinic P1 (No. 2) 1105.8(2) 1107.9(3) 1403.3(3) 75.99(2) 69.40(2) 67.66(2) 1.4767 2 2.259 9.446 4-46 Nonius (CAD-4) 23 4356 4099 3067 ( I > 3u(I)) 0.71/1.00 0.027, 0.032 1.05 +1.36/-0.19
C16016Fe2RezTez 1187.46 0.03 x 0.33 x 0.50 triclinic P1 (No. 2) 729.1(3) 1890.9(6) 2067.9(6) 108.14(3) 94.30(3) 93.07(3) 2.6926 4 2.929 12.344 4-46 Nonius (CAD-4) 23 8130 743 1 5871 ( I 7 3u(I)) 0.16/1.00 0.035,0.044 1.49 +1.83/-0.28
Table 2. Selected Intramolecular Bond Distances and Angles for 1 Fel-Fe2 Fel-S1 Fel-S2 Fe2-S1 Fe2-S2 Fel-C8
254.6(1) 226.6(2) 224.1(2) 226.5(2) 226.7(3) 229.0(8)
S 1-Fel-S2 S 1-Fe2-S2 Fe 1- S 1-Fe2 Fel -Fe2-S1 Fel-S2-Fe2
Distances (pm) Re2-Cl5 227.6(8) Fel-Cl 180.7(8) 179(1) Fel-C2 Fel-C3 178.3(8) Fe2-C4 180.5(7) Fe2-C5 178.2(7)
Fe2-C6 Sl-C7 S2-Cl4 C7-C8 C14-Cl5
Angles (deg) 8 1.76(8) Fe2-S 1-C7 8 1.21(8) Fe2-S2-C14 68.38(6) SI-C7-C8 55.8 l(6) Rel-C8-C7 68.77(8) S2-Cl4-Cl5
178(1) 185(8) 183.7(7) 149(1) 152(1)
108.8(2) 114.3(3) 114.8(5) 115.1(5) 111.5(5)
Reaction of Li2[Fe2(CO)&l with [CpW(CO)s(C&)]BF4. { (C0)3Fe[CI-SCHpCH2W(C0)3Cpl}2 (2) was prepared in a very
similar way from 158 mg of Fe2(CO)& (0.46 mmol) and 400 mg of [CpW(C0)3(C2Hd)]BF4(0.96 mmol), yielding 263 mg (0.25 mmol, 53.6%) of Banti and 46 mg (0.04 mmol, 9.38%) of 2, as deep red solids. IR (CH2C12, cm-l): 2067 m, 2031 vs, 2016 vs, 1990 vs, 1916 vs, br. IH NMR (CDC13, ppm): BsF, 1.68 (m, 4H, WCHd, 2.62 (m, 4H, SCHz), 5.38 (s, 10H, Cp); Zanti, 1.49, 1.75 (m, 4H, WCHz), 2.38, 2.62 (m, 4H, SCHz), 5.42, 5.44 (s, 10H, Cp). 13CNMR (CDC13, ppm): ZsF, -13.10 (WCHz),46.70 (SCHz), 91.88 (Cp), 210.52 (FeCO); Zanti, -10.41, -10.07 (WCHd, 33.42,47.80 (SCH2), 91.56,91.72 (Cp), 209.70 (FeCO), 217.60, 217.71, 227.92, 228.25 (WCO). Anal. Calcd for c26Hl8O12Fe2S2W2: C, 29.30; H, 1.70; S, 6.02. Found: C, 28.87; H, 1.79; S, 5.79. Decomposition above 140 "C. Reaction of Li2[Fez(CO)&2] with [C~F~(CO)Z(CZ&)IBF4. A similar reaction in which 292 mg (1mmol) of [CpFe(C0)2(C2H4)]BF4was added to the solution of the dianion gave ((C0)3Fe[CI-SCHzCH2Fe(CO)2Cp]}2 (31, which could not be separated entirely into syn and anti isomers. A CH2C12 solution of crude 3 was only filtered over silica gel (10 cm). A longer column led to the decomposition of the product. The solution was reduced to 3 mL and 5 mL of pentane was added at -70 "C. 3 precipitated and was obtained as a dark red solid (225 mg, 0.3 mmol, 60% yield). IR (CH2C12, cm-'1: 2066 s, 2044 s, 2031 vs, 2015 vs, 1991 vs, br, 1958 s. 'H NMR (CDC13, 1.42 (m, 4H, FeCHz), 2.53 (m, 4H, SCHd, 4.78 (s, ppm): Qs, 10H, Cp); Banti, 1.22, 1.52 (m, 4H, FeCHz), 2.23, 2.55 (m, 4H, SCHz), 4.88, 5.0 (s, 10H, Cp). 13C NMR (CDC13, ppm): 38511, 4.10 (FeCHz),47.57 (SCHz), 85.66 (Cp), 210.66,216.91 (FeCO);
Organometallics, Vol. 14, No. 2, 1995 957
Hydrocarbon-Bridged Metal Complexes Table 3. Selected Intramolecular Bond Distances and Angles for 9" Distances (pm) 263.5(2) Fe 1A-Fe2A 257.9(2) FelA-TelA 257.8(2) FelA-Te2A 258.1(2) Fe2A-Te 1A 256.6(2) Fe2A-Te2A 283.4( 1) Re1A-TelA 282.6( 1) Re2A-Te2A Te 1A-Te2A 3 18.0(1) 178(2) Fe2A-CI4A Re 1A-C 1A 200(1) 195(1) RelA-C2A
Fel -Fe2 Fel-Tel Fel-Te2 Fe2-Tel Fe2-Te2 Rel-Tel Re2-Te2 Te 1-Te2 Fe2-Cl4 Rel-C1 Re1 -C2
Angles (deg) Re 1A-Te 1A-Te2A 169.96(3) 121.94(5) RelA-TelA-FelA 119.24(4) RelA-TelA-Fe2A Fel A-Tel A-Fe2A 6 1.420) Re2A-Te2A-FelA 118.07(5) TelA-FelA-Te2A 76.17(5) Te2A-Fe2A-FelA 59.40(5)
Rel-Tel-Te2 Re 1-Tel -Fel Rel-Tel-Fe2 Fe 1-Tel -Fe2 Re2-Te2-Fe 1 Te 1-Fe 1-Te2 Te2-Fe2-Fel a
262.2(2) 258.9(2) 256.8(2) 256.6( 1) 258.7(2) 282.6( 1) 283.7( 1) 318.5(1) 177(1) 196(2) 198(1) 172.28(3) 123.59(5) 120.95(5) 61.14(5) 122.77(4) 76.29(5) 59.07( 5 )
The unit cell contains two independent molecules.
Table 4. Positional Parameters and B , Values for 1 atom
X
Re 1 Re2 Fe 1 Fe2 S1 s2 01 02 03 04 05 06 09 010 011 012 013 016 017 018 019 020 c1 c2 c3 c4 c5 C6 c7 C8 c9 c10 c11 c12 C13 C14 C15 C16 C17 C18 C19 c20
1.00463(3) i.m82(3j 1.1941(1) 1.3532(1) 1.1349(2) 1.3648(2) 1.0250(7) 1.0078(6) 1.347l(6) 1.439l(7) 1.6217(6) 1.2664(6) 0.95 13(6) 0.8462(6) 1.2669(6) 1.2017(6) 0.7449(6) 1.5496(8) 1.4409(6) 1.3236(7) 1.7674(7) 1.8608(6) 1.0882(8) 1.0795(8) 1.2873(8) 1.4087(7) 1.5143(8) 1.2982(7) 1.1366(7) 1.0252(8) 0.9720(8) 0.8988(8) 1.1712(7) 1.1269(7) 0.8374(8) 1.5087(6) 1.6258(7) 1.5665(9) 1.4916(7) 1.4229(8) 1.7033(8) 1.7654(7)
Y 0.25828(3) -o.o7684(3j -0.3414( 1) -0.3627( 1) -0.2247(2) -0.2560(2) -0.16 lO(7) -0.4837(6) -0.5603(7) -0.2234(7) -0.5562(7) -0.5469(6) 0.5583(6) 0.2216(7) 0.2077(6) 0.2212(7) 0.319l(7) 0.2098(7) 0.0089(6) -0.0750(7) -0.2034(7) -0.0944(7) -0.2328(8) -0.4272(8) -0.4744(8) -0.2763(7) -0.4841(8) -0.474 1(8) -0.0527(7) 0.0412(7) 0.4475(7) 0.2410(8) 0.2218(8) 0.2376(8) 0.2964(8) -0.3435(7) -0.2884(7) 0.1033(9) -0.02 lO(8) -0.0728(8) -0.1558(8) -0.0880(8)
Z
0.68490(2) 0.79468(2j 0.84811(8) 0.66620(7) 0.7055( 1) 0.7800( 1) 1.0042(5) 0.8696(5) 0.9710(5) 0.4610(5) 0.6632(5) 0.6093(5) 0.6183(5) 0.5544(5) 0.4997(4) 0.81lO(4) 0.8741(5) 0.8 134(7) 0.6276(5) 0.9703(5) 0.9493(5) 0.6106(5) 0.9449(6) 0.8610(6) 0.9224(6) 0.5409(6) 0.6677(6) 0.6331(6) 0.6716(6) 0.8404(6) 0.6423(6) 0.6011(6) 0.5669(6) 0.7672(6) 0.8058(6) 0.8342(5) 0.7820(6) 0.8063(8) 0.6897(7) 0.9065(6) 0.8947(6) 0.6780(6)
Be, (A2) 2.695(7) 3.357(8j 2.75(3) 2.55(2) 2.89(5) 2.63(4) 6.3(2) 6.2(2) 6.4(2) 6.4(2) 7.0(2) 6.5(2) 5.9(2) 6.6(2) 5.1(2) 5.9(2) 5.8(2) 9.4(3) 6.0(2) 6.6(2) 6.7(2) 6.5(2) 3.9(2) 4.0(2) 4.1(2) 3.2(2) 4.2(2) 3.7(2) 3.4(2) 3.7(2) 3.5(2) 4.0(2) 3.6(2) 3.5(2) 3.7(2) 3.0(2) 3.0(2) 5.6(3) 3.9(2) 4.1(2) 4.5(2) 3.8(2)
Table 5. Positional Parameters and B , Values for One Molecule of 9 ~
atom
X
Re 1 Re2 Fe 1 Fe2 Te 1 Te2 01 02 03 04 05 06 07 08 09 010 0 11 012 013 014 015 016 c1 c2 c3 c4 c5 C6 c7 C8 c9 c10 c11 c12 C13 C14 C15 C16
0.41375(7) 0.51 179(7) 0.2462(2) 0.4357(2) 0.4994( 1) 0.5433( 1) 0.81 l(1) 0.0378( 1) 0.029( 1) 0.589( 1) 0.224( 1) 0.731(1) 0.275( 1) 0.522( 1) 0.871(1) 0.160( 1) O.O03( 1) 0.201(2) -0.033( 1) 0.294(2) omi2j 0.784( 1) 0.668(2) 0.391(2) 0.166(2) 0.526(82) 0.293(2) 0.652(2) 0.359(2) 0.518(2) 0.742(2) 0.285(2) O.lOO(2) 0.223(2) 0.077(2) 0.340(2) 0.300(2) 0.648(2)
Y 0.96240(2) 1.26519(2) 1.1366l(8) 1.03805(8) 1.07 165(4) 1.17757(4) 1.0169(5) 0.8625(4) 0.895 l(5) 0.8455(5) 1.0914(5) 1.1505(6) 1.3580(85) 1.3786(4) 1.3452(5) 1.1846(5) 1.1607(6) 1.2788(5) 1.0477(5) 1.0400(6) 0.902ii5j 0.9746(5) 0.9984(6) 0.8986(6) 0.9217(6) 0.8869(7) 1.0446(6) 1.1921(7) 1.3250(6) 1.3377(7) 1.3160(6) 1.2123(6) 1.1501(7) 1.2226(7) 1.0805(6) 1.0401(7) 0.9574(6) 0.9996(7)
Z
0.86199(2) 0.61868(2) 0.75038(9) 0.66785(9) 0.79879(4) 0.70691(4) 0.9340(5) 0.9548(4) 0.7836(5) 0.7452(6) 0.9605(5) 0.5155(5) 0.7304(6) 0.5390(5) 0.7095(6) 0.5236(6) 0.6432(5) 0.8552(6) 0.7920(5) 0.5337(5) 0.6573i6j 0.6282(6) 0.9084(6) 0.9198(6) 0.8118(6) 0.7879(7) 0.9266(7) 0.5540(7) 0.6897(7) 0.5684(8) 0.6762(7) 0.5600(6) 0.6833(7) 0.8148(7) 0.7739(7) 0.5867(7) 0.6621(7) 0.6449(8)
Be,
_
(A2)
3.00(1) 3.24(2) 3.") 3.33(4) 3.03(2) 3.11(2) 6.0(3) 5.6(2) 6.0(3) 7.1(3) 5.9(3) 7.2(3) 6.6(3) 6.6(3) 6.7(3) 6.6(3) 7.9(3) 8.0(3) 6.6(3) 9.3(4) 7.3i3j 7.7(3) 3.7(3) 3.8(3) 3.9(3) 4.6(3) 4.2(3) 5.0(3) 4.5(3) 6.1(4) 4.8(3) 4.4(3) 4.4(3) 5.0(3) 433) 5.4(4) 433) 5.4(4)
Cldpentane at -20 "C yielded 69 mg (0.08 mmol, 15.6%) of 4,,t, as orange-red crystals and 148 mg (0.17 mmol, 33.4%) 4syn+antl from the mother liquor. IR (CH2C12, cm-'): 2073 m, 2059 s, 2045 s, 2030 sh, 2005 s, 1985 vs, 1916. IH NMR (CDC13, ppm): 4syn,1.95 (m, 2H, 7,7'-H), 3.78 (m, 4H, 1,1',6,6'H), 5.15 (m, 4H, 2,2',5,5'-H), 6.21 (m, 4H, 3,3', 4,4'-H); 4ant1, 0.77, 3.21 (m, 2H, 7,7'-H), 3.93 (pt, 2H, 1,6-H, 357,1,6 = 8.54 Hz), 4.98 (dd, 2H, 1',6'-H, 35= 6.11, 9.23 Hz), 4.84, 6.11 (m, 4H, 2,5,2',5'-H), 5.83, 6.43 (m, 4H, 3,4,3',4'-H). NMR (CDC13, ppm): 4,,t,, 39.97, 49.10 (C-71, 68.12, 96.93 (C-1,6), 100.72,126.30 (C-2,5), 122.44,130.68 (C-3,4). Anal. Calcd for C ~ G H ~ ~ O ~ Z FC, ~ ~35.24; M O ~H,S 1.59; ~ : S, 7.24. Found: C, 34.39; H, 1.83; S, 6.98. Decpt: 60 "C (mixture of isomers).
Reaction of Liz[Fez(CO)6Szl with [(CO)sFe(CeH7)lBF4. To the solution of the dianion prepared from 172 mg (0.5 mmol) of Fez(CO)6Szin 10 mL of thf was added 306 mg (1.0 mmol) of [(C0)3Fe(C&7)]BF4at -78 "C. Further workup proceeded as described for 3 to give 203 mg of (Fez(C0)6~-SCsH7Fe(c0)31)2 (5; 0.26 mmol, 52% yield). IR (CH2C12, cm-I): 2071 s, 2054 vs, 2035 vs, 1984 vs, br, 1952 w. IH NMR (CDC13, ppm): CiSyn, 1.62 (m, 2H, 6-H), 2.36 (m, 2H, 6'-H), 2.92 (m, 4H, 1,1',4,4'H), 3.04 (m, 2H, 5,5'-H), 5.4 (m, 4H, 2,2',3,3'-H); 5ant1, 1.401.80 (m, 2H, 6-H), 2.24 (m, 2H, &-HI, 2.10, 3.09 (m, 2H, 5,5'H), 2.63, 2.88 (m, 4H, 1,1',4,4'), 5.4 (m, 4H, 2,2',3,3'-H). NMR (CDC13, ppm): 35.25 (C-6),49.96 (C-5),58.23,62.96 34.84, (C-1,4),84.40, 87.05 (C-2,3),209.50.210.39 (FeCO);Lt,, 3mt,,0.91,3.92 (FeCH2),33.88,48.73 (SCH2),86.45,87.16 (Cp), 36.27 (C-6,6'), 50.77, 63.32 (C-5,5'), 57.70, 61.84, 63.22, 63.77 210.44, 216.81, 217.06 (FeCO). Anal. Calcd for C24H18010(C-1,1',4,4'), 84.23, 84.47, 87.09, 87.17 (C-2,2',3,3'), 208.51, 210.53 (FeCO). Anal. Calcd for C24H14012Fe4S2: C, 36.87; H, Fe4S2: C, 38.24; H, 2.41; S, 8.51. Found: C, 36.70; H, 1.93; S, 1.80; S, 8.20. Found: C, 36.59; H, 1.94; S, 7.89. Decpt: 112 8.99. Decpt 40 "C (mixture of isomers). Reaction of Liz[Fez(CO)eSz] with [(CO)&~O(C~H~)]BF~."C. { ( C O ) ~ F ~ ~ - S C ~ H ~ M O(4) ( Cwas O ) ~prepared ]}~ as described for Reaction of Naz[Fez(CO)eTe~l with [(C0)5Re(C~Hdl3, starting from 172 mg of Fez(CO)& (0.5 mmol) and 358 mg BF4. To a freshly prepared solution containing 0.32 mmol of of [(C0)3Mo(C7H7)1BF4 (1.0 mmol). Crystallization from CH2Na~[Fez(CO)sTe2]'~was added 309 mg (0.7 mmol) of [(co)5-
_
958 Organometallics, Vol. 14, No. 2, 1995
Hufferet al.
Preparation of [(CO)sFe(pTeRe(CO)a)lz (9). A deep red Re)(C2H4)]BF4in small portions. The dark red reaction solution of 150 mg (0.12 mmol) of 6 in 8 mL of CHzClz was mixture was stirred for 1h at -60 "C and then warmed t o 0 stirred for 30 min at room temperature. An Schlenk U-tube "C within 30 min. The solvent was removed in vacuo ( 0 "C), was charged with the filtered solution on one side and with leaving a dark red solid which was extracted at 0 "C with 15 20 mL of toluene on the other side. After 7 days at -20 "C mL of CH2C12. After filtration over a short silica gel column compound 9 could be obtained as deep red-brown crystals (67 (10 cm, 0 "C), this solution was reduced t o 2 mL and 10 mL mg, 0.06 mmol, 47% yield). IR (CHzClz, cm-l): 2131 s, 2079 pentane was added a t -78 "C with vigorous stirring. The red vw,2033 vs, 2010 m, 1992 s, 1984 s, 1955 m, 1939 s. 13CNMR precipitate was further washed with 5 mL of pentane at -78 (CDC13, ppm): 181.99 (ReCO), 214.69 (FeCO). Anal. Calcd "C and dried in vacuo t o give 282 mg (0.23 mmol, 70.9% yield) for C16016FezRezTez: C, 16.18. Found: C, 16.20. Mp: 158of 6. IR (CH2C12,cm-l): 2129 m, 2077 sh, 2035 s, 2013 s, 2003 160 "C. s, 1983 vs, 1952 vs. 'H NMR (CDC13, ppm): 1.43 (m, 4H, Crystallographic Analysis. Crystal data, data collection ReCHZ), 3.54 (m, 4H, TeCH2). 13CNMR (CDC13, ppm): -6.49 details, and refinement data are summarized in Table 1. The (ReCHZ),52.76 (TeCHZ), 176.0, 182.98 (ReCO), 215.28 (FeCO). Nonius diffractometer was equipped with a graphite monoAnal. Calcd for C2oH8Ol6Fe&e2Te2: C, 19.32; H, 0.65. Found: chromator. Intensity data were obtained by using Mo K a C, 19.34; H, 0.87. Decpt: 55 "C. radiation and were collected by the o-scan method at variable Reaction of Naz[Fez(CO)6Tezl with [CpW(CO)s(C2H4)1speed, dependent on peak intensity. Intensities of 3 standard (7)was prepared in BF4. {(C0)3Fe~-TeCHzCHzW(C0)3Cpl}~ reflections were monitored after every 200 reflections. Backof Naz[Fe(CO)ea very similar way from a solution of 0.32 "01 measurement was 50% of the scan time. Data reducTez]" in 15 mL of thf and 313 mg of [ C ~ W ( C O ) ~ ( C Z H ~ ) I B Fground ~ tion, structure solution, and refinement of the structures were (0.7 mmol) and was obtained as a maroon solid (265 mg, 0.21 carried out by using a Nonius MOLEN package. Absorption mmol, 65.9% yield). IR (CHZC12,cm-'): 2080 sh, 2047 s, 2014 correction was applied to the data. The structures were solved vs, 1992 vs, 1970 sh, 1921 vs, br. 'H NMR (CDC13, ppm): 1.29 by direct methods and refined by full-matrix least squares by (m, 4H, WCHz), 3.31 (m, 4H, TeCHZ), 5.32 (s, 10H, Cp). I3C minimizing h [ F , - FJ2. All non-hydrogen atoms were NMR (CDC13, ppm): -11.32 (WCHz), 43.85 (TeCHz), 92.64 refined anisotropically. Hydrogen atoms of 1 were included (Cp), 211.32 (FeCO), 227.93 (WCO). Anal. Calcd for C26H18in their calculated positions and were refined by using a riding OlzFe2Te2Wz: C, 24.84; H, 1.44. Found: C, 25.77; H, 1.64. model. Decpt: 70 "C. Reaction of Naz[Fe2(CO)6Te2] with [(C0)3Fe(CeHdIBF4. { ( C O ) ~ F ~ [ ~ - T ~ C ~ H ~ F ~(8) ( Cwas O ) synthesized ~]}Z by the reacAcknowledgment. Support by the Deutsche Forstion of 0.32 mmol of Naz[Fe(CO)6Tez]in 15 mL of thf and 215 chungsgemeinschafi and Fonds der Chemischen Indusmg of [(C0)3Fe(C6H7]BF4 (0.7 mmol). Workup similar to that trie is gratefully acknowledged. described for 6 resulted in a maroon solid (200 mg, 0.21 mmol, 64.2% yield). IR (CH2C12, cm-'): 2069 m, 2049 vs, 2009 vs, Supplementary Material Available: Complete tables of 1973 s, br. IH NMR (CDC13, ppm): 1.82 (m, 4H, 6-H), 2.72 positional parameters, bond lengths and angles, torsional (m, 2H, 5-H), 3.45 (m, 4H, 1,4-H), 5.22 (m, 4H, 2,3-H). 13C angles, and thermal parameters for 1 and 9 and a packing NMR (CDC13, ppm): 212.68, 212.54 (FeCO), 85.54, 85.37 (Cdiagram for 9 (33 pages). Ordering information is given on 2,3), 65.33,60.42 (C-1,4),46.16 (C-5), 28.86 (C-6). Anal. Calcd any current masthead page. for C24H14012Fe4Te2:C, 29.63; H, 1.45. Found: C, 29.45; H, OM9407445 1.65. Decpt: 65 "C.