9 Consideration of Catalyst Pore Structure and Asphaltenic Sulfur in the Desulfurization of Resids RYDEN L. RICHARDSON and STARLING K. ALLEY
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
Union Oil Co. of California, Union Research Center, Brea, Calif. 92621
The residuum f r a c t i o n of a full range crude is that f r a c t i o n remaining a f t e r all of the distillate i s taken overhead. As noted in Figure 1, t h i s residuum f r a c t i o n or r e s i d may be obtained with e i t h e r atmospheric or vacuum f r a c t i o n a t i o n , y i e l d i n g e i t h e r long or short r e s i d . Table I shows t h a t , upon distillation of a Kuwait crude i n t o s e v e r a l f r a c t i o n s , s u l f u r components concentrate mostly i n the r e s i d f r a c t i o n . Upon h y d r o t r e a t i n g each f r a c t i o n at f i x e d r e a c t o r c o n d i t i o n s , the r e s i d s u l f u r i s more difficult to remove than the gasoline s u l f u r or the gas oil s u l f u r . CHARACTERIZATION OF RESIDS The d i s t i n g u i s h i n g features of r e s i d feedstocks are (1) the presence of asphaltenes or p e n t a n e - i n s o l u b l e s , (2) high carbon r e s i d u e s , (3) the presence of metals, mainly n i c k e l and vanadium, and (4) unknown endpoints i n s o f a r as b o i l i n g range is concerned. Table II compares two atmospheric r e s i d s , West Coast and K u w a i t , i n a t r a d i t i o n a l manner. The obvious d i f f e r e n c e s i n c l u d e s u l f u r , n i t r o g e n , asphaltenes, t o t a l metals and m i d - b o i l i n g p o i n t . Apart from s u l f u r content, one might surmise a greater c a t a l y s t demand by the West Coast feedstock i n that the boxed values suggest heavy coke laydown and metals d e p o s i t i o n . Neither of the s u l f u r values i s boxed because there i s no i n d i c a t i o n as to (1) what f r a c t i o n of the s u l f u r i s r e f r a c t o r y or "hard" s u l f u r , nor (2) the degree of d e s u l f u r i z a t i o n to be achieved. Table I I I extends the comparison of these r e s i d s with an emphasis on r e a c t i v i t y , asphaltene c h a r a c t e r i s t i c s , compound types and the r e f r a c t o r y forms of s u l f u r , such as benzothiophenes and asphaltenic s u l f u r . The lower r a t e constant of the Kuwait feed i n d i c a t e s i t s greater r e f r a c t o r i n e s s or r e s i s t a n c e toward d e s u l f u r i z a t i o n . These second order r a t e constants were measured at 6 7 5 ° F w i t h a p r e s u l f i d e d c o b a l t moly c a t a l y s t having a c a t a l y s t age of 10 days. Conversion l e v e l s d i d not exceed 75% and hence d i d not go deeply
136 Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
RICHARDSON
Desulfurization of Resids
A N D A L L E Y
137
TABLE I
FRACTIONATION
AND
HYDROTREATING
HYDROTREATED SULFUR
PRODUCT
SULFUR
VOL. %
WT. %
S,%
REMOVAL, %
25
0.5
0.02*
96
400-650
25
1.8
0.5 *
72
650 +
50
3.7
1.6·
57
1050 +
(20)
(5)
BOILING FRACTION
RANGE, °F
GASOLINE
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
GAS
X-400
OIL
LONG
SHORT
RESID
RESID
e
• 780 F ,
1000 psig, 1 LHSV,
COMPARISON
OF
4000
TABLE
II
WEST
COAST AND
ATMOSPHERIC
FEED
DESIGNATION
SCF/B
KUWAIT
RESIDS
WEST
COAST
KUWAIT
11.5
17.4
IBP/10
536/725
447 / 6 3 4
50/60
996/1051
937/1020
GRAVITY, *API
DISTILLATION, °F
SULFUR, %
1.73
3.66
NITROGEN, %
0.90
0.203
ASPHALTENES,%
1 1.2
6.3
CONRADSON
10.7
8.1
CARBON,% e
POUR POINT, F
75
30
METALS, ppm COPPER
1
IRON
53
2
NICKEL
75
11
VANADIUM
63
38
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
HYDROCRACKING AND HYDROTREATING
TABLE
III
EXTENDED COMPARISON OF WEST COAST AND KUWAIT RESIDS KUWAIT
DESIGNATION
RATE
CONSTANT
52
38
SULFUR,%
1.73
3.66
ASPHALTENIC SULFUR, %
0.22
0.38
60
70
0.72
0.78
TOTAL
GEL.
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
WEST COAST
FEED
PERM. CHROMO. ASPHALTENE RELATIVE
MODE
AMOUNT
DlAM., A OF
ASPHALTENES AT D - 150 LIQUID
λ
CHROMO
C O M P O U N D TYPE
FEED
SATURATES, Jo
20.6
26.7
AROMATICS, %
41.2
50.4
POLAR AROMATICS, %
22.9
10.4
ASPHALTENES, %
10.7
6.3
WEST COAST
KUWAIT
DESIGNATION SULFUR
CONT ENT
SATURATES, ppm
22
34
AROMATICS, %
0.94
2.36
POLAR
0.4 1
0.59
0.22
0.38
AROMATICS, %
ASPHALTENES, % HIGH MASS O N X-1100 °F Q.H. THIOPHENES
2.9
2.3
BENZOTHIOPHENES
7.4
15.0
TRI BENZOTHIOPHENES
0.0
0.0
0.43
0.33
0.38
0.42
LOW
HIGH
IR ABSORBANCE AROMATIC ALKYL RATIO
GROUPS
OF NMR
CH /CH 2
RINGS
3
PEAK HEIGHTS
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
9.
RICHARDSON
A N D A L L E Y
Desulfurization of Resids
139
into asphaltenic s u l f u r . F i g u r e 2 shows the GPC curves of the c i t e d r e s i d s and t h e i r asphaltene f r a c t i o n s . Note the s l i g h t p r e dominance of very l a r g e asphaltenes i n the Kuwait r e s i d . A l s o note that very l a r g e molecules e x i s t i n the non-asphaltenic f r a c t i o n of both r e s i d s . For the conversion l e v e l s under c o n s i d e r a t i o n , we regard the l a r g e p r o p o r t i o n of s t e r i c a l l y hindered aromat i c s u l f u r i n the Kuwait r e s i d l a r g e l y r e s p o n s i b l e f o r i t s greater refractoriness. Returning to Table I I I , one notes the h i g h values for aromatic s u l f u r (2.36 v s . 0.94%) and benzothiophenes (15.0 v s . 7.4%) i n the Kuwait feed. A l s o , the IR and NMR s p e c t r a i n d i c a t e d that the Kuwait aromatics are more h i g h l y s u b s t i t u t e d , the R groups being naphthenes and/or long p a r a f f i n s . A p e r t i n e n t example of s t e r i c hindrance on the d e s u l f u r i z a t i o n of thiophenes has been reported by a Gulf i n v e s t i g a t o r (1). A l k y l or r i n g a d d i t i o n at the 2 p o s i t i o n can reduce the r e a c t i o n r a t e by a f a c t o r of 100. REFRACTORINESS OF ASPHALTENES When s u l f u r conversion l e v e l s are pushed above 90%, the unique r e f r a c t o r i n e s s of asphaltenes becomes dominant. The tendency of a f i n e pore c a t a l y s t to p a r t i a l l y exclude asphaltenes and the complete s t e r i c hindrance or "burying" of s u l f u r i n a s p h a l tenes c o n t r i b u t e to t h i s r e f r a c t o r i n e s s . However, before c o n s i d e r i n g the f a t e of a s p h a l t e n i c s u l f u r at high r e a c t o r s e v e r i t i e s , some patent aspects of c a t a l y s t pore s t r u c t u r e would be of i n t e r e s t . Table IV shows a divergence of o p i n i o n as to the d e s i r a b i l i t y of asphaltene e x c l u s i o n . I t i s noted that patent (2) favors the e x c l u s i o n of a s p h a l tenes by maximizing surface area contained by pore diameters of 30-70 Â. Patent (3) d i s c l o s e s an upper l i m i t on the amount of macropore volume represented by pore diameters greater than 100 A . Patents (4) and (5) suggest that c a t a l y s t s c o n t a i n i n g mostly m i c r o pores w i l l be poisoned soon; asphaltenes p e n e t r a t i n g the l a r g e r pores subsequently w i l l block entrance to the smaller p o r e s . Patent (6) claims the d e s i r a b i l i t y of intermediate pores (100-1000 Â) p l u s channels (>1000 Â) "to take up p r e f e r e n t i a l l y adsorbed l a r g e molecules without causing blockage, so that the smaller s i z e pores can d e s u l f u r i z e ' s m a l l e r molecules." Patent (7) a l s o p r e f e r s the open s t r u c t u r e for c o l l e c t i o n of coke and metals. It s p e c i f i e s 0.3 c c / g of pore volume i n diameters l a r g e r than 150 Â and "many pores from 1,000-50,000 A . " With t h i s b r i e f c o n s i d e r a t i o n of v a r i a t i o n s i n c a t a l y s t pore s t r u c t u r e , l e t us examine the pore s t r u c t u r e of two c a t a l y s t s used i n t h i s r e f r a c t o r i n e s s study. One observes i n Table V only s l i g h t d i f f e r e n c e s between the two c o b a l t moly c a t a l y s t s , Τ and R. They are t y p i f i e d by h i g h surface a r e a , small micropore mode diameters and low macropore volumes. Upon processing Kuwait r e s i d over these c a t a l y s t s , a s i m i l a r trend i n product d i s t r i b u t i o n i s shown i n Table V I . Saturates i n 1
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
HYDROCRACKING A N D
140 ATMOS
HYDROTRLATING
FRACTIONATION GASOLINE
TURBINE FUEL DIESEL
Λ
FUEL
20 mm Hg VAC COLUMN
CRUDE OIL LGO HEATER
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
HG Ο
Λ
LVGO
HVGO HEATER
A T M O S . RESID OR L O N G RESID 650 F + e
V A C RESID OR SHORT RESID. 1050 F + e
Figure 1. Distillation of crude oil
DIAMETER, Â
Figure 2. GPC molecular size distribution
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
RICHARDSON
141
Desulfurization of Resids
A N D A L L E Y
TABLE IV
SOME OF
PATENT
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
CODE
NUMBER
(2)
PATENTS
RESID
O N PORE
HYDROTREATING
CoMo,
CATALYSTS
SPECIAL
CATALYST COMPOSITION
STRUCTURE
PORE VOLUME
FEATURES PORE
DIAMETER
SURFACE
NiMo
AREA (SA)
OF 3 0 - 7 0 Â PORES 2
> 100 m / g .
(3)
CoMo,
NiMo,WMo.
ALUMINA WITH 1-6%
150 m V g .
PORES > 1 0 0 Â
SA OF 3 0 - 7 0 Â PORES 2
> 100 m / g .
SILICA.
APPROX. 85 7. OF PORE
(4)
VOLUME
IN 5 0 - 2 0 0 A
RANGE.
PATENT CODE
NUMBER
(5)
SPECIAL
CATALYST COMPOSITION
N i C o M o . NO SILICA
PORE VOLUME
0.46 c c / g
CoMo
(+ Ni)
PORE
DIAMETER
REGULAR DISTRIBUTION 0 - 2 4 0 A. A V E R A G E =
WITH
1 4 0 - 1 8 0 A.
ALUMINA.
(6)
FEATURES
0.45-0.50 cc/g
6 0 - 7 0 A PLUS 100-1000 Â PLUS CHANNELS > 1000 A. S A * 260-355 m /g. 2
(7)
CoMo, NiW. NO
0.3 c c / g
SILICA WITH
PORES >150 A
IN
MANY
PORES
1,000-50,000 Â
ALUMINA
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
142
HYDROCRACKING A N D H Y D R O T R E A T I N G
TABLE V PORE
STRUCTURE USED
CATALYST SURFACE MODE
IN
OF
COBALT
MOLY
REFRACTORINESS
STUDY
DESIGNATION
Τ 2
AREA (SORPT.), m / g
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
TOTAL PORE VOL., m l / g 100 A)
PORE VOL., ml/g
R
284
307
67
65
0.44
0.52
0.012
0.035
DIAMETER, Â
MACRO ( D >
CATALYSTS
T A B L E VI
CHANGE
IN
PRODUCT
ASPHALTENIC
C O M P O U N D TYPE A N D
SULFUR
CONVERSION
REACTOR
CONDITIONS
FEED
CONTENT
WITH
LEVEL
CATALYST
Τ
CATALYST R
TEMPERATURE, *F
65 5
655
709
665
670
710
PRESSURE,
800
1292
1292
800
1292
1292
0.5
0.3
0.3
0.5
0.3
0.3
74
83
92
74
85
94
psig
LHSV, V O L . / ( V O L . ) CONVERSION COMPOUND
(HR)
LEVEL, TYPE,'/.
SATURATES
30.6
36.8
42.8
43.1
37.5
39.7
45.5
AROMATICS
45.8
47.6
46.8
43.5
47.6
46.4
44.3
POLAR
17.3
10.7
6.2
10.3
10.8
11.3
8.2
6.3
4.9
4.2
3.1
4. 1
2.6
2.0
3.66
0.95
0.63
0.29
0.96
0.55
0.23
AROMATICS
ASPHALTENES TOTAL
SULFUR, %
ABSOLUTE RELATIVE
ASPHALTENIC ASPHALTENIC
SULFUR, % SULFUR, %
0.45 12
0.32 34
0.26 41
0.18 62
0.24 25
0.15 27
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
0.09 39
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
9.
RICHARDSON
A N D A L L E Y
Desulfurization of Resids
143
crease, aromatics remain f a i r l y constant and both p o l a r aromatics and asphaltenes decrease. Adsorption chromatography i s the b a s i s f o r type s e p a r a t i o n : pentane e l u t e s the s a t u r a t e s , ether e l u t e s the aromatics, and benzene-methanol e l u t e s the p o l a r aromatics. Quite c l e a r l y , the r e l a t i v e amount of a s p h a l t e n i c s u l f u r increases as the product t o t a l s u l f u r decreases. This i s depicted i n F i g u r e 3. Whereas the r e l a t i v e amount of aromatics remained f a i r l y constant as s u l f u r conversion l e v e l was increased to 92-94%, the r e l a t i v e amount of s u l f u r i n the aromatic f r a c t i o n decreased markedly. T h i s a l s o i s depicted i n F i g u r e 3. P o l a r aromatics are intermed i a t e to the aromatics and asphaltenes i n regard to t h i s behavior. These d i f f e r e n t d i s t r i b u t i o n s of s u l f u r with conversion l e v e l resemble those reported by Drushel f o r Safaniya r e s i d (8). The removal of metals with the a s p h a l t e n i c s u l f u r i s observed i n F i g u r e 4. T h i s response i s c o n s i s t e n t with an asphaltene model i n which vanadium and n i c k e l are b u r i e d as porphyrins or sandwich compounds (9). The s l i g h t l y higher removal of vanadium r e f l e c t s a general tendency f o r vanadium to deposit on the c a t a l y s t more r e a d i l y than n i c k e l . EFFECT OF COKE DEPOSITION ON PORE SIZE DISTRIBUTION A f i r s t step toward c a t a l y s t design i s to r e l a t e pore s t r u c ture roughly to asphaltene dimensions. Another step i s to c o n s i der pore s t r u c t u r e of the used c a t a l y s t and the probable s i z e of asphaltenes at r e a c t o r temperature. Figure 5 i s a histogram showing the d i s t r i b u t i o n of pore v o l ume v s . pore diameter f o r alumina c a r r i e r , f r e s h c o b a l t molybdenum c a t a l y s t and used cobalt molybdenum c a t a l y s t . There was a s l i g h t change i n mode diameter when the c a r r i e r was loaded with about 20% a c t i v e metal oxides. The pore volume was reduced from 0.60 to 0.53 m l / g . However, accumulation of about 17% coke during the p r o c e s s i n g of West Coast r e s i d g r e a t l y s h i f t e d the mode downward and reduced the t o t a l pore volume from 0.53 to 0.30 m l / g . ( A l l of these pore volumes have been normalized to 1.0 gram of alumina). A d d i t i o n a l comparisons of f r e s h v s . used c a t a l y s t are shown i n Table V I I . The coke laydown occurred mainly i n the micropore r e g i o n , causing a s u b s t a n t i a l l o s s of surface a r e a . Coke laydown a l s o was observed i n the macropore r e g i o n of the bimodal c a t a l y s t shown at the bottom of the t a b l e . ASPHALTENE EXCLUSION AS A FUNCTION OF TEMPERATURE The e x c l u s i o n of asphaltenes f i r s t was approached by the simp l e method of immersing a given amount of c a t a l y s t i n a volume of r e s i d equal to 3 times the pore volume of the c a t a l y s t . If asphaltene e x c l u s i o n were to occur to a s i g n i f i c a n t degree, then there
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
144
HYDROCRACKING
A N D HYDROTREATING
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
CATALYST R -CATALYST Τ
SATURATES
, 0
20 7.
•^ • 40
60
80
DESULFURIZATION
100 Figure 3. Distribution of sulfur with conversion level
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
9.
RICHARDSON
20
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
Desulfurization of Resids
A N D A L L E Y
145
140
60 80 100 PORE DIAMETER, Â
40
Figure 5. Histograms of pore volumes vs. pore diameter for carrier, fresh catalyst, and used catalyst
TABLE VII
CHANGE
IN
PORE
DUE TO COKE
SAMPLE AND
DESCRIPTION DESIGNATION
PORE
STRUCTURE
DEPOSITION
VOLUME, ml/g
MODE
SURFACE
DIAMETER
AREA
A
m /g
MACRO
MICRO
TOTAL
S - 0293 - A
0.03
0.3 6
0.39
90
207
USED S - 0 2 9 3 - A
0.04
0.13
0.17
55
164
V-8477-Β
0.02
0.35
0.37
85
136
USED
0.02
0.15
0.17
60
102
X - 02 34 - A
0.02
0.41
0.43
90
167
USED X - 0234 - A
0.02
0.21
0.23
60
140
H-6013
0.70
0.4 5
1.15
95, 350
350
USED
0.39
0.30
0.69
80, 400
174
V-8477-Β
H-6013
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
2
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
146
HYDROCRACKING A N D H Y D R O T R E A T I N G
would be an enrichment of asphaltenes i n the e x t e r n a l l i q u i d . Using a 24-hour e q u i l i b r a t i o n p e r i o d of 2 1 2 ° F , the four samp l e s shown i n Table V I I I a l l give an enrichment of asphaltenes. The e x t e r i o r l i q u i d s contained 12.0-13.8% asphaltenes compared to 6.3% i n the Kuwait feed. These r e s u l t s q u a l i t a t i v e l y agree with observations of Drushel who used a d i f f e r e n t technique w i t h Safani y a r e s i d at room temperature (8). The e x c l u s i o n of asphaltenes as a f u n c t i o n of temperature subsequently was approached w i t h the a i d of g e l permeation chromotography (GPC) i n a manner s i m i l a r to that described by D r u s h e l . C a t a l y s t was e q u i l i b r a t e d 4 hour at constant temperatures w i t h a volume of r e s i d equal to 3 times the pore volume of the c a t a l y s t . During t h i s time, the system was n i t r o g e n blanketed and a g i t a t e d every 1/2 hour. The e x t e r n a l l i q u i d subsequently was drained through a screen and submitted f o r GPC analyses and metals content. The i n t e r n a l l i q u i d was e x t r a c t e d from the c a t a l y s t pores f i r s t by benzene and then 50/50 methanol-benzene. A f t e r evaporation of these s o l v e n t s , the i n t e r n a l l i q u i d was submitted f o r i d e n t i c a l analyses. The GPC curves i n Figure 6 show asphaltene or "large molecule" e x c l u s i o n at the nominal temperatures of 200, 400 and 6 0 0 ° F . The e f f e c t decreases with i n c r e a s i n g temperature: planimeter areas f a l l i n the r a t i o of 1.00, 0.65, and 0.40. Metals d i s t r i b u t i o n , which i n some degree should r e l a t e to asphaltene d i s t r i b u t i o n , are shown f o r the a c t u a l e q u i l i b r a t i o n temperatures i n Table IX. N i c k e l showed the expected enrichment at a l l temperatures. Vanadium responded s i m i l a r l y except at 403 and 6 0 3 ° F . Progressive s u l f i d i n g (0.6, 0.7, 1.4% S) and coke l a y down (0.8, 1.5, 7.8% C) were observed f o r the used c a t a l y s t s and hence represent an experiment c o m p l i c a t i o n . CONCLUSIONS The p o i n t s to be emphasized i n c l u d e the f o l l o w i n g : 1. The r e f r a c t o r i n e s s of r e s i d feeds has been considered from the standpoint of process s e v e r i t y and d i v i s i o n between "hard" and "easy" s u l f u r . 2. For lower conversions l e v e l s , where a s p h a l t e n i c s u l f u r removal i s not deep, r e f r a c t o r i n e s s appears to be l a r g e l y i n f l u enced by a l a r g e p r o p o r t i o n of s t e r i c a l l y hindered aromatic s u l fur compounds. S u b s t i t u t e d thiophenes, benzothiophines and d i benzothiophenes are r e p r e s e n t a t i v e compounds. 3. A s p h a l t e n i c s u l f u r i s the most r e f r a c t o r y specie i n r e s i d s and the removal of metals, p a r t i c u l a r l y n i c k e l , c o r r e l a t e s w e l l with removal of a s p h a l t e n i c s u l f u r . 4. Coke d e p o s i t i o n a l t e r s c a t a l y s t pore s i z e d i s t r i b u t i o n s s i g n i f i c a n t l y and i s an e f f e c t to be followed i n regard to c a t a l y s t aging. 5. The e x c l u s i o n of asphaltenes i n Kuwait r e s i d i s observed by an autoclave technique at 2 1 2 ° F with s e v e r a l c a t a l y s t s having
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
A N D
A L L E Y
Desulfurization of Resids
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
RICHARDSON
Figure 6. GPC molecular size distributions at various temperatures
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
148
HYDROCRACKING AND HYDROTREATING
TABLE VIII
ASPHALTENE
EXCLUSION EXPERIMENTS
AT 212 *F A N D Ί ATMOS. .
CATALYST
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
RESID
WEIGHT, g
WEIGHT, g
ASPHALTENE
24.00
23.00
25.50
26-60
36.49
35.00
35.07
47.00
CONTENT
INITIAL, % FINAL, OBS., % PORE
CATALYST
6.3
6.3
6.3
6.3
13.8
12.8
12.0
13.4
V O L U M E , ml/g
0.50
0.52
0.47
1.15
MICROPORE VOLUME, ml/g
0.42
0.50
0.44
0.45
MODE
DIAMETER,
65
λ
60
75
TABLE IX
METALS DISTRIBUTION IN RESID FRACTIONS Ni
e
V (PPM)
9
40
INTERNAL
4
18
FEED 197 F
(PPM)
EXTERNAL
15
58
e
INTERNAL
2
48
e
EXTERNAL
12
35
INTERNAL
5
49
EXTERNAL
10
27
e
197 F 403 F 403 F e
603 F e
603 F
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
95
9.
RICHARDSON AND A L L E Y
Desulfurization of Resids
149
mode diameters of 60-95 Â. 6. Exclusion of asphaltenes and/or large molecules i s also observed at 200, 400 and 600°F by similar technique involving GPC. The effect diminishes moderately with increasing temperature due to thermal dissociation into smaller particles. 7. The exclusion of asphaltenes is matched by the distribution of nickel inside and outside the catalyst pore structure. Vanadium distribution is inconsistent, probably influenced by coke deposition at the higher temperatures. ACKNOWLEDGEMENT
Downloaded by CORNELL UNIV on September 23, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0020.ch009
The authors acknowledge Dr. Dennis L . Saunders for the GPC analytical work and many useful discusssions. LITERATURE CITED (1) (2) (3) (4) (5) (6) (7) (8) (9)
Larson, O. Α . , Pittsburgh Catalysis Society, Spring Symposium, (April, 1972). US 3,509,044 (Esso) US 3,531,398 (Esso) US 3,563,886 (Gulf) UK 1,122,522 (Gulf) NPA 6,815,284 (Hydrocarbon Research) German 1,770,996 (Nippon Oil) Drushel, Η. V., Preprints, Div. Petrol. Chem., ACS, 17, No. 4, F-92 (1972). Dickie, J. P . , Yen, T. F., Preprints, Div. Petrol. Chem., ACS, 12, No. 2, B-117 (1967).
Ward and Qader; Hydrocracking and Hydrotreating ACS Symposium Series; American Chemical Society: Washington, DC, 1975.