Identification of Sodium Phosphates with X-Ray Focusing Camera

Thermodynamic properties of phosphorus compounds. II. Low-temperature heat capacity and entropy of sodium mono-, di-, and tri-phosphates. R. J. L. And...
0 downloads 0 Views 11MB Size
observed for some 26 optically active solutions. I n the latter work, a single filter (590 mp) having a band width of 30 mp was used. The consistently low values for the optical rotation observed in the colorimeter may be due to the fact that the maximum transmittance of a filter in colorimetry does not correspond to the peak in polarimetry. A further test of the validity of this method is provided by the data in Figure 2 . Here the ratio (RIG') is plotted against C2, where C is the concentration of the optically active substance. The linear relationship over a 20% concentration range of sucrose is in accordance with Equation 10. Xithin the experimental error, the slopes of the lines in Figure 2 are in keeping 17-ith this equation. For accurate measurements a calibrating substance having about the same rotatory dispersion properties as the sample is desirable. Such a procedure has the additional advantage of permitting the use of a wide pass-band filter. Table I11 gives the results for maltose and dextrose using sucrose as a calibrating substance. The uncertainty of the average value for a 107, maltose and 10% dextrose solution indicates that a precision having an upper limit degree is obtainof about = t 5 X able with polaroids crossed a t 45'. The results for the mide pass-band filter are as reliable as those for the regular fil-

Table II. Calculated Values of Specific Rotation Compared to literature Values"

Wave Length, Filter 640 580 520 445 415

Table 111.

as a Standard" tz.n e = 5

Calcd. [a]Lit. ' 0,970 0.972 1.008 0.951 (0.848) Av. 0.975 [CY]

of sucrose.

ters; the use of such a filter obviated the need for the amplifier. A set of adapters having 0 = arc tan 30 was used in subsequent measurements with the same solutions. Rotations of +1 X lop3could be observed, thus permitting the analysis of a 1% sucrose solution in a 1-cm. cuvette with a precision to better than i 2 % . Further investigation as to the upper practical limit of sensitivity for this method is planned. ACKNOWLEDGMENT

The authors wish to express their a p preciation to A. Rouy for valuable discussions and for constructing the adapters used in this Iyork.

2.100 2.081 2.072 2.070 2.085 2.063 2.073 2.078

0.792 0.776 0.809 0.819 0.815 0.796 0.783 0.799 f.0.004 f . 0 ,008 2.080 0.793

640 580 520 445 4:1 B

Based on Equation 7 and experimental

R values for a single concentration (1070)

Relative Specific Rotation

of Maltose and Dextrose Using Sucrose

BO

Obsd. av.

Lit. 589 Lit. av. 447 to 656 2.07 0.791 Based on a single concentration (10%) of maltose and dextrose. b \Tide passband high transmission filter Bo,no amplifier used.

LITERATURE CITED

(1) Crumpler, T. B., Dyre, W. H., Spell, il., ANAL.C H E ~27, . 1645 (1955). 121 Heller. W.. in Weissberaer, A,, ('Physical ' Methods of Orianic Che&stry," Vol. I, Part 11, Interscience, NPW - . .. Ynrk. - - -- I 1949. (3) Keston, A,, Laspalluto, J., Proc. Fed. SOC.Exatl. Biol. 12, 229 (1953). ( 4 ) Rouy, A.,'private communication. (5) Saltaman, R. S., Abro ast, J. F., OSborn, R. H., .$SAL. '%EM. 27; 1446 (1955). RECEIVEDfor review July 19, 1957. Accepted January 15, 1958. \ -

!

I

Identification of Sod um Phosphates with an X-Ray Focusing Camera D. E. C. CORBRIDGE' and F. R. TROMANS Research Department, Albrighf & Wilson (Mfg. ), ltd., Oldbury, Birmingham, England

b X-ray powder diffraction data, recorded with a Guinier-type focusing camera, are presented for 60 crystalline sodium phosphates. The greater resolution and increased definition of the diffraction lines compared with those obtained with the usual DebyeScherrer type camera, offer several advantages for the identification and analysis of this class of compound. of the sodium phosphates have considerable industrial application in water treatment, food and textile processing, and the manufacture of detergent and pharmaceutical products. X-ray powder diffraction ANY

Present address, Research Department, Unilever, Ltd., Port Sunlight, Cheshire, England.

photographs recorded by the focused beam technique (5) are particularly valuable for the identification and analysis of the great variety of crystalline phosphates which are known to exist. In addition to the usual advantages of the x-ray method-e.g., speed, sensitivity to crystalline form, and smallness of sample required-focusing cameras provide a greater wealth of diffraction data than the more widely used parallel beam method (6). Focusing camera patterns are presented for 60 well characterized sodium phosphates. The ASTM Index ( I ) contains about 20 cards relating to different sodium phosphates, but several of these are in error owing to the presence of impurities, or to false identity of material.

APPARATUS AND TECHNIQUE

The photographs were recorded on a four-tier Sonius focusing camera similar in design to that described by de WOH ( 1 1 ) (Figure 1, A ) . Exposures were for 2 hours on Ilford G film using CuK a radiation a t 50 k v . ; 18 ma. were obtained from a Kenton Yictor Raymax unit with a vertically mounted filament. Samples were finely powdered in a small mortar and dusted into thin layers between adhesive Sellotape. Sample thickness and exposure were adjusted to enable the weaker diffraction lines t o be recorded. MATERIALS

The purity of the materials Tc'as believed t o be greater than 99%, except where otherwise indicated. Crystalline impurities if present to the extent of less than 1%, were not expected to give VOL. 30, NO. 6, JUNE 1958

1101

1'able I. Methods Used to Prepare Samples PatPattern tern NO. KO. 1 Trisodium orthophosphate, SaaPO4. Dodecahydrate dried at 500' C. 2 Trisodium orthophosphate dodecahydrate, Ka3P04.12HnO. Commercial grade material (about 20 96%) recrystallized four times. Samples usually contained a little free NaOH ( I O ) 3 Disodium orthophosphate, S a n HP04. Analytical reagent grade 21 material dried in desiccator 4 Disodium orthophosphate dihydrate, Na2HPO4.2H2O. Analytical reagent grade dodecahydrate crystallized at 60" C. 22 5 or-Disodium orthophosphate dodecahydrate, Na2HP04.12H20. Analytical reagent grade material crystallized a t 33' C. 6 P-Disodium orthophosphate dodeca23 hydrate, Na2HP04.12H20. Analytical reagent grade material crystallized at 25" C. 7 Monosodium orthophosphate, SaHiPod. Analytical reagent grade 24 material dried in desiccator 8 Monosodium ortho hosphate monohydrate, KaHnP&H20. Analytical reagent grade dihydrate crystallized a t 45' C. 9 Rlonosodium orthophosphate dihy25 drate, XaH2P04.2H?0. Analytical reagent grade material crystallized at 25" C. (1May have contained a little monohydrate) 10 Hemisodium phosphate, SaH2P04.26 !&Pod. Single crystals grown from a soln. of this composition containing slight excess phosphoric acid 11 Sodium ammonium hydrogen phos27 tetrahydrate, KaXH4.4&0. Reagent grade niaterial recrystallized 12 Tetrasodium hypophosphate, Ka428 PzOS. Decahydrate dried in vacuum desiccator 13 Tetrasodium pyrophosphate, Na429 P207. Analytical reagent disodium orthophosphate heated at 600" C. 14 Tetrasodium pyrophosphate decahydrate, Na4P207.10H20. Anhydrous material recrystallized twice 30 15 Tetrasodium imidodiphosphate decahydrate, N~~PzO&YH.~OH,O. Disodium phosphoramidate heated a t 210" C. under vacuum. Product recrystallized four times from 31 an acetone-water soln. 16 Tetrasodium hypophosphate decahydrate, NarP~06.10H~O.Recrystallized from pure lab material 17 Tetrasodium pyrophosphate-hydro32 gen peroxide octahydrate, Xa4P~07.8H~0.2H202. Anhydrous pyrophosphate dissolved in excess 135-volume hydrogen peroxide, and the material preci itated with 33 alcohol, filtered, a n 8 air dried. Compound prepared by J. E. Such; its existence not reported elsewhere 18 Tetrasodium pyrophosphate-hydro34 gen peroxide, Pu'a4P~07.2H202. Aqueous soln. of molecular quantities evaporated in vacuo 19 Disodium dihydrogen methane diphosphonate, S~ZHZPZO~.CH~. 35 Tetraethyl ester dealkylated with aq. hydrogen bromide and neutralized with sodium carbonate.

1102

ANALYTICAL CHEMISTRY

Pattern 10 Product precipitated four times from acetone-water s o h (may have contained a little tetrasodium salt j Trisodium hydrogen hypophosphate nonahydrate, K~SHP@~.YH,O. Soln. of tetrasodium and disodium salts (1 to 1) evaporated and product recrystallized twice Trisodium hydrogen pyrophosphate nonahydrate, Sa3HP20,.9H20. Soln. of tetrasodium and disodium salts (1 to 1) evaporated and product recrystallized twice Trisodium hydrogen pyrophosphate monohydrate, Xa3HP2O7.H2O. Konahydrate dehydrated by exposure to atmosphere (approximatelv 507, relative humidity at 20" C.) Disodium hydrogen hypophosphate hexahydrate, r\Ta2H?P206.6H20. Salt precipitated vith alcohol from acetic acid soln. of tetrasodium salt. Recrystallized twice Disodium hydrogen pyrophosphate hexahydrate, 3Ta2H2P207.6Hj0. Commercial anhydrous material recrystallized four times from water Disodium dihydrogen pyrophosphate, Sa2HzPnOi. Commercial grade (-98%) material used (gave a more distinct photograph than dehydrated product from recrystallized hexahydrate) Sodium calcium pvrophosphate tetrahydrate, 3Ta2CaP207.4H20. Calcium chloride soln. added to soh. of tetrasodium salt. Precipitate filtered and washed Sodium triphosphate, Na5P30~o Phase I. Hexahydrate heated at 550' C. for 24 hours, then rapidly chilled Sodium triphosphate, ?;a5P1Olo Phase 11. Hexahydrate heated at 350" C. for 5 hours Sodium triphosphate hexahydrate, Na5P3010.6H20.Sodium trimetaphqsphate hydrolyzed with dilute sodium hydroxide. Product recrystallized Sodium zinc triphosphate nonahvdrate, iSaZn,P301,.9H20. Salt precipitated by mixing s o h . of zinc sulfate and sodium triphosphate Sodium nickel triphosphate dodecahydrate, Na3NiP,O1".12H20. Salt precipitated by mixing solns. of nickel sulfate and sodium triphoqphate Trisodium dihydrogen triphosphate hydrate, Na3H2P301g.11/2H20. Salt precipitated with alcohol from soln. of neutral sodium salt in perchloric acid Sodium meta hosphate, Maddrell salt, 11. Disodium hvdrogen pyrophosphate heated at 380" C. for several days. Product washed and dried Sodium metaphosphate, Maddrell salt, (?TaPOa), 111. Disodium hydrogez pyrophosphate heated a t 260 C. for several days. Product washed and dried Sodium metaphosphate, Kurrol salt, (KaPOs),, IV. A slowly cooled melt seeded a t 550" to 600' C.

Fibrous bundles of crystals picked out and washed. Probably intimate mixtures of CY and p forms (5)

36 Sodium trimetaphosphate, (NaP03)3. Analytical reagent XaHZPO, heated at ,530' C. 37 Sodium trimetaphosphate monohydrate, (SaP0!)3H20. Hexahydrate recrystallized a t 45' C. 38 Sodium trimetaphosphate hexahydrate, (NaP03)3,6HzO. Aknhydrous material recrystallized at 25" C. 39 Sodium tetrametaphosphate, (SaPhosphorus pentoxide hydrolyzed with sodium bicarbonate soln. at 0" C. Hydrated product dried in vacuum desiccator 40 a-Sodium tetrametaphosphate tetrahydrate, stable form, (?TaPOs)a.4Hz0. Anhyd. material recrystallized at 25" C. 41 @-Sodiumtetrametaphosphate tetrahydrate, metastable form, (NaPO&.4H20. Anhyd. material recrystallized at about 40' C. and seeded with preformed crystals 42 Sodium triphosphonitrilate tetrahydrate, P3N3(0H)3(0Na)3.4H?0. Pure triphosphonitrilic chloride hydrolyzed with sodium acetate. Product recrystallized twice 43 Sodium tetraphosphonitrilate hJ-drate, P4N4(0H)4~ONa)4.21/2Hn0. Tetraphosphonitrihc acid neutralized with caustic soda. Product recrystallized tn-ice 44 Disodium phosphoramidate hexahydrate, Na2P03NH2.6H20. Alonosodium salt dissolved in sodium hydroxide soln. Product recrystallized tvice 45 Nonosodium phosphoramidate, NaHPO,?THn. Diphenyl phosphoramidate hydrolyzed with dilute sodium hydroxide and monosodium salt precipitated Fith acetic acid 46 Sodium phosphorodiamidate, S a PO*(KH2)2. Hexahydrate dried in desiccator 47 Sodium phosphorodiamidate hexahydrate, XaP02(~ H 2 ) 2 . 6 H 2 0 . Phenylphosphorodiamidate hydrolyzed with dilute sodium hydroxide. Product n-as recrystallized three times 48 Sodium methylphosphonate, Na2P03.CH3. Hexahydrate dried in vacuum desiccator 49 Sodium methylphosphonate hexahydrate, Na2POS.CH3.6H20. Purified laboratory material recrystallized twice 50 Sodium hydrogen methylphosphonate, KaHPOB.CH3. Precipitated with ethyl alcohol from soh. of disodium salt in acetic acid. Product recrystallized 51 Sodium methyl phosphate hesahydrate, Na2P03.0CH3.6H20. Salt obtained by neutralization of acid. Recrystallized three times 52 Sodium phenylphosphonate, Xa2POa.C&. Salt obtained by neutralization of acid. Recrystallized three times 53 Sodium hydrogen phenylphosphonate, NaHP03.C6Hs. Precipitated Kith ethyl alcohol from soh. of (Continued)

RESULTS AND DISCUSSION

Table I.

Methods Used t a p r e p a r e Samples (Continued)

Pattern No. 54

55 56

57

58

disodium salt in acetic acid Product recrystallized Sodium phosphite pentahydrste, Na,HPO...SH.O . Commercinl era& material rccrvstnlhaed four Eimes at 10" C. " Sodium hydrogen phosphite, N s H r POa. Hydrate dried in vacuum desiccator Sodium h drogcn phosphite hydrate, P?;aH2P03.2'/zHL). Soh. of appropriate quantities of neutral sodium salt in commercial grade phosphorous acid evaporated. Product recrystallized three times Sodium hypophosphite monohydrate, NaH,I'O..H.O. Commercial prsde material recrwtalliaed three Trisodium diphosphite dodecnhydrate, Na3HPzOs.12H.0. Phosnhorous tribromidc hvdrolvzed kith aqueous sodinm bicarhdnato

under vacuum GO Sodium pyrophosphitc dihydrate, Na?H2P201.2Hz0. Anhyd. material twice orecioitated with nleohol from a& sol;,

rise to detectable diffraction lines under the conditions used. Weak lines on the diffraction patterns were carefully checked against the strong lines of possible phosphate impurities. Checks were made by chemical analysis and/or repeated preparation or recrystallization was carried out until no changes were produced in the diffraction pntterns.

Because the focusing camera employs a monochromatized and converging x-ray beam (6, 11) (Figure 1,A) i t produces sharper and better resolved diffraction lines than is the case with the usual parallel beam arrangement (6) (Figure 1,B). I n Figure I,A, the target, monochromator crystal, and origin lie on same circle. I n Figure 2 sonie typical phosphate diffraction patterns recorded by the two methods are compared. T h e patterns produced by the focusing camera have several potential analytical advantages over those given by the 19-cm. diameter powder camera :

A better Characterization of the substance is possible because more lines are produced by the higher resolution of the instrument. A lower limit is set for the detection of impurities. Weaker diffraction lines mill show because of the increased line sharpness and lower background. There is a greater chance of detecting a given component in a multicomponent mixture because of the above tlro fact,ors. There is often a greater choice of lines for quantitative .work. Larger interplanar spacings (up to about 25 A,) are easily observable. Small differences of pattern associated with isomorphism may be more readily seen--e.g., Figure 3, Nos. 14 to 17. T h e characteristic patterns of the

60 sodium salts given in Figures 3, 4, and 5 are reproduced on the same scale as the originals and include most of the known inorganic salts Iikel? to

-

b U N

Figure 1 . A. B.

Plans of cameras

Focusing camera. Dispersion of 4 mm. per degree Powder camera, 19-cm. Dirperrion of 3.32 mm. per degree

111 1% 11;; y?If"!;

'1

f

r B t ' : ',-:q d

Figure 2. Powder photograph of anhydrous sodium pyrophosphateyrecorded with 19-cm. Debye-Scherrer camera and focusing camera

be encountered in this class of compound. A few unstable hydrates have been omitted as well as some saltswhose existence is unconfirmed or still controversial. I n Table 11, 30 diffraction lines corresponding to the highest observed interplanar spacings are listed for each substance. These values are accurate to within about *0.5% for spacings of d < 5.0 A. Numerical estimates of the relative line intensities are not given because the large number of lines are sufficient for practical identification work. Direct matching of photographs mith a set of standards is in any case much quicker and generally more sahfactory t,han laborious comparison with listed spacing and intensity data. Intensity data obtained b y the focusing method may not be strictly comparable with those obtained on a Debye-Scherrer type camera, h e cause of the differences in resolution, specimen absorption, and background level associated with the two techniques. Preferred orientation effects may sometimes be more serious with flat specimens, although such effects Tvere not evident in the present work, n-hich utilizes a transmission technique. Exposure times of a half hour are often sufficient for identification, unless a search is being made for very small amounts of impurities. No improvement in definition was found by evacuation of the camera, hut better results may have been attainable b y using a single coated and finer grain film a t the expense of increased exposure times. The focusing camera provides many diffraction lines over a given range of interplanar spacings (see Figure 2). This holds for most of the Compounds studied, which generally have fairly large unit cell dimensions and symmetry no higher than monoclinic. An isomorphous relationship between the compounds (Figure 3, Nos. 14 to 17) is suggested by the similarities in diffraction patterns. This has been confirmed, b y single crystal data in thecase of t,he hypophosphate, Na4P200.10H,O, and the pyrophosphate, Na,P,O,.10H20 ( 4 ) . The isomorphism of compounds Na2H2P206. 6 H 2 0 and NaH2P2Q7.6H20 has also been established by single crystal x-ray data (4). A simple example of the quantitative use of the above data is afforded in the analysis of commercial sodium triphosphate (largely Na,P,O,, Phase I1 perhaps containing up to 15% NaSPsOLoPhase I and 10% Na4Pa07). B y visual comparison of diffracted intensities with those from standard mixtures, a n analysis can be made to within i l % NaiPaOlo Phase I and *0.5% NaQ201. This compares very favorably with results reported for the same analysis using Geiger counter x-ray methods (7) or photomVOL. 30, NO. 6, JUNE 1 9 5 8

1103

1131

(181

1191

(201

1211

1231

(241

(251

1104

ANALYTICAL CHEMISTRY

1

Figure 4.

Focusing camera patterns of sodium phosphates

VOL 30, NO. 6. JUNE 1958

1105

ia II

152)

153) 1541

155)

1561

157)

1581

1591 1601

Figure 5.

d, A.

I

1. NaaP0.s 6.2 vvw 5.8 "VW 4.42 vvw 4.26 (2) va 3.68 m 3.48 vvw 3.26 vvw 2.85 vvw 2.77 w 2.60 (1) vvs 2.55 ww 2.27 vvw 2.17 vvw 2.12 w 2.06 ww 1.839 (3) m 1.808 vvw 1.745 vvw 1.580 vvw 1.502 m 1.417 vw 1.301 w 1.243 vw

2. NarP0,.12H,0b 10.0 (2) v s 6.5 w 5.8 m 5.3 s 5.1 vw 4.29 (1) V6 3.96 ms 3.85 w 3.69 w 3.39 m 3.28 ma 3.13 w 3.01 m

1106

Focusing camera patterns of sodium phosphates

Table II. d,A. I 2. SaJP0,.12H20b (Conttmed) 2.94 u2.87 m 2.84 ms 2.76 w 2.68 m 2.58 (3) me 2.56 vw 2.44 m 2.41 vw 2.37 vw 2.35 m 2.33

m

2.31 2.10 2.16 2.12

VIY

5.10

YIV

1.808 1.742 1.706 1.642 1.628 1.622

w

m m w w

w

IV

w w

3. Na?HPO,' 4.90 mw 4.63 w 3.98 va 3.82 (2) VB 3.41 E 2.87 * 2.79 (1) vs 2.72 (3) v s 2.64 s 2.53 w 2.45 s 2.43 nr 2.31 m 2.30 m 2.29 m 2.19 m 2.12 w 2.10 vvw

ANALYTICAL CHEMISTRY

X-Ray Diffraction Data for Sodium Phosphates d, A. I d, A. Z d, A. I 3. Na2HP04* 4. Nu.HP04.2H,0~ 6. BNazHPO,. (Continued) (Continued) 12A?OC -~ 2.06 w 2.46 m 7.3 m 2.04 w 2.37 w 6.6 m 1.088 m 2.35 vw 5.9 m 1.082 w 2.33 vw 5 . 3 (1) s 1.912 m 2.28 vw 5.1 m 1.874 vvw 2.25 m 4.61 m

4. NnsHP04.2HsOb 8.4 ms 5.3 (1) " 8 5.1 w 4.60 (2) B 4.38 w 3.92 m 3.63 m 3 . 3 3 (3) ms 3.28 vw 3.24 ms 3.22 m 3.07 vw 2.90 m 2.92 m 2.90 m 2.86 ms 2.84 vw 2.76 m 2.74 ms 2.67 w 2.65 vw 2.62 w 2.57 m 2.48 m

5. aNa2HP04. 12H20 VW 7.5 7.2 VW 7.0 VW 6.5 vvw 6.0 ms 5.6 m 5.4 ma 5.2

m

4.65 (2) s 4 . 35 "114.20 (1) va 3.78 vw 3.74 vw 3.55 w w 3.42 m 3.33 m 3.24 m 3.18 w 3.13 m 3.01 ms 2.98 vw 2.90 8 2.84 ma 2.80 (3) 2.73 m 2.71 w 2.66 vw 2.63 vw 2.58 m 2.56 m

d, A. I 7. NrtHsPOP (Catinued) 4.07 s 3.94 (3) 8 3.67 w 3.53 w 3.50 ww 3.38 (1) VB 3.30 B 3.20 (2) v s 3.17 8 3.08 rn 3.06 w 3.02 vw 2.96 w 2.86 vw 2.84 w 2.82 vw 2.76 w 2.72 3 2.65 w 2.58 w 2.57 vw 2.54 w 2.51 w 2.47 mw 2.40 mw

4.42 m 4.28 (2) ms 4.19 w 4.15 w 4.10 m 3.94 m 3.83 m 3.69 w 3.67 w 3.62 w 3.56 w 3.42 m 3.40 w 3.31 vw 3.25 w 3.22 vw 3.12 m 2.98 vw 2.96 m 2.93 w 2.92 m 2.90 m 2.87 m 2.85 m 2.80 (3) ms

7. NaH9P0.b 6.8 VN 5.4 W 4.97 m 4.79 mw 4.40 w

.

8. NaH2P04H20k 5.4 (1) ~. V8 4.39 8 3.92 m 3.78 w 3.67 ms 3.49 ma 3.41 ms 3.37 (2) VB 3.14 (3) B 3.09 m 3.03 ms

Table II. X-Ray Diffraction Data for Sodium Phosphates (Continued) d, A. 1 d, A. I d, A. Z d, A. Z d , -1. I d, A. I 10. NaH2POl. 13. XarP2Oib 21. Xa3HPzOi. 8. NaH2P04H20b 16. iSa4P206. 18 SarP20i. (Contznued) 9H20 l0HrO 2H202iContznued I (Continued) - __(Continued) 2.73 m vw 2.72 13) vs 7.7 w 15.8 S 2.84 3 68 m 2.68 vw 2.81 w 7.8 S 6.5 S 3 53 ni 2 68 (2) vs 2.64 ms 2.80 vn7.7 w 2 63 s 6.3 m 3 36 \v 2.56 m 2. T i vn2 58 m 6.1 17 3 22 \'\'IT7 . 1 (3) vs 2.52 m 2 55 \v 6 3 m 3 14 w 5 . 3 (3) s 2.50 vw 11. SaNH4.2 53 w 5 8 VVW 4.39 (1) 3 Ot, \v . . vvs 2.48 w HPOi .4H?O 5.7 vvw 2 49 m 4.20 vn3 03 !V 2.46 vw 2.99 vv\v 5.6 R' 2 40 m 3.69 s 10.0 (3) vs 2.35 w 2 33 s 3.60 vw 2.90 n' 5.5 VVW 6 . 5 12) vs 2.33 M w 2 30 113.47 vvnm 5.4 2.80 6.3 m 2.28 vw vw 2 29 VTY w 5.3 3.32 vw 2.7T 5.75 I11 2.23 w w 2 28 w 3.26 \v m 5.1 2.72 4.95 \v 2.19 m 2 23 Tv 3.17 vvw 4.92 m m 2.68 4.76 vs 2.12 R' vvw 2 20 vvw 3.07 m 4.80 2 . 6 5 ( 3 , vs 4.65 vs 2.07 vi?w 2 17 vvw 2.99 mvn4.58 2 63 4.45 vw 2.06 w 4.38 vvw 2.96 \v 4.40 vw 2 04 w 2.93 vvn4.27 w 4.20 (1) vs 2.01 n2 ,82 \\4.20 w 4.03 vw 2.00 vv\v 2.80 m 4.05 vvw 3.64 s 2.80 m 3.95 vw 3.60 TV 6.9 S 9. NaH2POa. 2.71 m 3.92 vvw 3.43 s 6 . 5 (3) vs 2H20 2.68 w 3.88 vvw 3,30 m 6.3 m 5 1 m 2 65 IV 3.85 vvw 6.1 S 3.25 s 6.2 4 26 vv\r 2.63 m 3.81 w 5 . 7 (3) vs 3 . 19 n5 . 5 ( 2 ) vs 3 99 (3, s 2.58 \v 3.78 vw 5.4 77. 3.16 m 5.1 vvTv 3 84 IV 2.56 s 3.70 m 4.86 m 3.11 vir 4.39 (1) vs 3 63 v n. 3.65 w 2.50 (2) vs 3.0% I11 4.47 ms 4.15 VTV 3 56 (21 v.3 2.40 vv~v 3.62 vu' 4.38 vw 3.00 m 3.70 m 3 39 111 2.37 w 3.56 vw 4.30 vw 2.95 m 3.69 s 3 32 111 2.28 w 3.50 w 2.94 m 3.49 m 3.70 (1) vs 3 30 111 2.23 vvw 3 60 m 2.89 vs 3.44 m 2.85 ( 1 ) v v s 3 18 -,v 3.50 \v 2.87 v5 3.38 VTV 2 . 6 5 ( 2 ) vvs 3 1.2 V!'\ 17. Xa4P2O7. 3.42 m 2.84 m 3.2; n' 3 11 VIV 8HzO.2H202 3.37 w 2.82 m 3.20 v\v 22. Sa3HP20iH20 2 90 \% 7.8 1v 3.34 ms 2.76 n3.19 VT12.81 n7 7 ( I ) vvs 7 . 0 m 3.30 m 2.67 m 3 . 10 I\2 , 70 111 6 6 w 6.6 m 3.28 n2.61 113 0s 5 2.6; m 5 6 VVM' 6.4 n3.16 m 3 01 n2 . 6 2 vvw 4 90 vv\\ 6.2 111 12. Sa4lZOe 3.03 (2) vs 3.00 Jv 2 . 58 vvw 4 71 m __ 5 5 (2) s 2.99 s 2.97 TV 2.54 VIY 4 . 70 4 07 R 4 . 4 (1) vs 2.90 m 2.92 m 2 48 v~ 4.39 (1) vvs 3 98 v 4.17 vi\2.85 m 2. 87 vm 2 45 vvTv 3.02 m 3 86 m 3.73 m 2.83 m 3.82 ms 3 37 w 2 . 7 2 (2) ve 3 60 vvw 3.70 m 2.76 TT 2.80 ms 2 35 V\V 2.55 (3) s 3 56 vvw 3.50 m 2.65 s 2.78 ms 2 25 vvn' 2.48 m 3 40 m 3 . 47 ix2.60 m 2.74 w 2.2" v\v 2.36 vvw 3 28 w 3 30 vw 2.56 vw 2.72 w 2.17 TV 2.32 vvn3 22 w 3.20 vn2.53 vw 2.70 s 2.16 m 3 06 m 3 . 12 v\v 20. Sa3HP20,. 2.48 vw 2.03 u3 02 vw 3 09 m 9H20 2.45 w 1.86 m 2 99 vw 3.01 m 2.42 w E.1 (1) vv9 1.786 vvw 2 90 m 2. 95 TI2.38 1%r.l vw 1.765 \v 7.9 -&* 2 83 vvw 2.94 vFv 6.6 m 1.690 v\v 6.8 m 2 78 ( 2 ) vs 2.85 w 10. NaH2P04. 6.3 T T K 1.632 n2 76 (3) s 6 . 5 (2) vs 2 . 83 nHIPO, 6.1 VK 1.623 v~v 6.3 m 2 73 vn 2 . 7 8 13) s 6.0 1.574 m 14.3 (1) vs 6 1 8 2 57 S 2.74 m 5 9 6.7 VVW 1.538 JY 2 55 vvw 5 4 (3) s 2.71 \Y 5 7 5.7 n1.518 vvn4 36 (1) vvs 2 47 vv 2 . 69 TV 5.00 5 5 R1.445 vvw 412 vvw 2 41 vvw 2.60 s 4.96 4.81 w 1.436 xv 3 70 m 2 37 vvw 2.55 m 4.84 1.396 vn' 4.70 (3) ve 3 63 s 2 27 vvw 2.48 vvw 4.81 4.50 m 1.360 3 46 TV 2 25 vvw 2.45 TV 4 60 4.35 'L'vIl1 ,300 T'W 3 42 17' 2 19 vw 2.41 vvw 4.50 4.20 m 1.275 vvw 3 22 v\v 2 14 vw 18. Ka4PsOi. 4 $2 4.14 a 3 18 vvw 13. Na4P20i5 4.21 23. Sa2H2P206. 2H202 3.90 s 3 15 vvw 4.17 6Hn0 3.80 w 7.7 VVTT 3 08 m w 8.0 4.13 3.53 (2) vs 6.7 VVTY 3 03 in 6.9 vv\v 6 3 w 4 04 3.47 VW 5.4 vw 3 00 vw 6.6 vvw 6 2 VS 3.43 1%. 5.00 vvrv 2 98 \v 6.5 VVW 6 0 vs 3.38 s 4.65 ms 2 89 v\v 6 . 1 (1) vvs 5 7 TT 3.31 m 4.40 (1) vs 2.86 vvw 5.4 vvn4 97 m 3.20 m 3.81 w 2 81 VTV 5.3 v 1v 4 70 - IT 3.60 3.17 m 3.40 vn. 2.79 m 4.68 s 3 88 w 3.53 3.15 w 3.36 s 2 75 m 3 79 w 4.39 (2) vs 3.50 3.05 m 3 ,22 n2.71 TV 4.25 vvrv 3 74 \v 3.42 3.00 w 3.17 vvw 9.67 m 4.02 vvw 3 60 m 3.33 2.97 m 3 . 10 vvn2.64 vw 3.99 vv\v 3 49 m 3.29 2.95 m3 . 02 vn2.62 TV 3.87 m 3 33 m 3.24 2.90 TY 2 . 84 IV 2 58 vw 3.81 VVTT 3 17 (1) vs 2 85 m 2.77 vrr2.50 s 3.79 vw 2.84 3 11 (3) vs (Continued on page 1108) \

,

\

,

,

VOL. 30, NO. 6, JUNE 1958

1107

d , A.

1

23. NaLHLP206. 6H20 ( C o n t i n u e d ) 3.05 vvw 2.95 vw 2.85 m 2.81 m 2.80 R2.67 m 2.63 w 2.60 vw 2.57 (2) vs 2.55 vw 2.45 m 2.38 LT2.36 m2.33 vw 2.30 vw 2. 18 vvw 24. SazHzPz07. 6H20 6.3 S 6 . 2 (1) va) vs 6.1 5.00 s 4.87 m 3.90 m 3.86 w 3.82 w 3.75 m 3.60 m 3.53 m 3.50 w 3.43 V\P 3.38 s 3.36 ms 3.14 (2) vs 3.11 ma 3.06 w 3.00

ms

2.96 s 2.75 m 2.65 m 2.63 (3) . ,E 2.58 2.54 vw 2 50 v~v 2.46 m 2.43 w 2 41 m 2 36 m 25. ?*Ta2H2P2O7* 6.8 m w 5.8 5.6 m 4.94 s 4 01 8 3 65 m

2.24 2 22 2 17 2 13 2 02 1 984 1 940 1 838

1108

m TT

m w w vn' vw

m

Table 11. X-Ray Diffraction Data for Sodium Phosphates (Continued from page 7707) d. A . 1 d, A. I d , A. I d, A. I

26. 1\Taz.Ca.P20,. 4Hz0 8.5 ms 7.5 17 5,4 (I) 5 5.05 ms 4.58 m 4.34 (2) ms 3.91 Tv 3.85 m 3.83 m 3.35 \v 3.26 m 3 12 vw 3 08 7v 3 03 (3) ms 3 01 v\v 2 73 m 2.71 vw 2.68 vw 2.60 m 2.58 m 2 . 52 \\2.47 m 2 , 44 n2 41 vw 2.38 mu 2.36 rv 2.29 TV 2.28 JP 2.18 iv 2.16 v\v 27. SaJ'aO,; Phase I a 9.4 \V 4.80 s 4.70 J 4 . 6 3 (3) vs 4.50 (2) vs 4.30 m 4.09 s 3.85 mw 3.62 vw 3.20 m 3 15 vvw 3.08 s 3.00 ms 2.83 ms 2.77 (1) vs 2.71 w 2.69 m 2 6.5 vw 2 GI m 2 58 m 2 56 w 3 50 m 2 47 I\2 46 s 2 42 vvw 2 36 m 2 34 w 2 32 w 2 31 rv 2 26 xv

28 SajPsOlo IIc _ _ Phase _ ~ 8 1 m 1 74 (2) vs 4 60 (3) vs 4 50 m 4 02 w 3 75 m 3 TO m 3 60 ms 3 51 vw 3 18 m 3 02 s 2 97 ms 2 74 \\ 2 69 (1) vs 2 68 m

ANALYTICAL CHEMISTRY

28. Sasl'SOl, Phase IIc (Con__ t i n u e d ) 2.63 YS 2.60 YS 2.55 1v 2.50 m 2.46 m 2 41' e 2 41 in 2.36 IV 2 , 28 vw 2 26 YIv 2 , 20 \\2 , 17 V I ~ 2.14 ~v 2.10 \v 2.06 \v 29

Sa,P30lo

~ _ 6HzO _ _ _ 10 3

VS

7 7 7 6 6 5 5 5 5 4 4 4

6 S 3 m 1 m 4 (2) vs 2 \\ 9 m 4 m 3 g 2 m 90 (3) vs 52 vw 41 m 4 20 v\\ 4 10 vn 4 04 m 3 91 m 3 85 m 3 62 vvw 3 58 m 3 47 m 3 30 m 3 27 m 3 21 \v 3 18 m 3 13 m 3 10 n 3 05 vs 3 00 vw 2 97 1v 2 95 w 2 94 (1) vs

30. SaZn2P&. 9HsO 10.1 (1) vvs 9 5 (2) vs 8 0 n 7 7 (3) s 7 2 ? 6 3 vw 5 5 \P 5 2 V n' 5 1 \Y 5 0 TV 4 90 vv\v m _ 4 77 4 64 vw 4 33 m 4 18 m 4 10 VTV 3 82 m 3 66 w 3 58 VIP 3 52 vw 3 42 v\\3 40 iv 3 37 VV\V 3 33 \P 3 26 vw 3 20 \Tw 318 v,-

SaZnal'sOio. !)HO C o n t i n u e d ) 2 14 ~v

39.

s

12 3 05

1v

:3 50 :i4:j

vv\\

8.26

____

10.4 ( I ) vvs 7.8 \v 7.3 (3;s 6 . 8 ( 2 ) YE 5.8 111 5.4 \V 5,3 \v 4.71 m 4 , 64 VVII4 , 56 vw 4.54 \7v 1.38 m 4.19 vv\v 4,13 vw 3.90 m 3.75 vw 3.72 JV 3.48 m 3.44 vvw 3 . 37 13' 3.32 vvw 3.31 m 3.28 v\v 3.26 \v 3.13 IV 3.09 w 2 . 99 vvw 2.92 vvn2.89 vvw 2.86 IT 32. SaJHJ'aOlo. I'/zHzO 8.4 VV\T 7.8 VVK 6.8 VW 5.7 VVW 5.2 V T 5.00 s 4.96 m 4.88 tv 4.65 IV 4.50 vw 4.48 w 4.40 Y\P 423 v v ~ 4.17 vw 4.06 w 4.01 vvw 3.98 vw 3.83 vw 3 65 s 3.53 m 3 42 \v 3.40 (3) s 3.32 m 3.22 (2) vs 312 s 3.09 s 3.00 2 98

2.96 2.91 2 , 87 2.82

33. (?;aPOa), llsddrell IIb (Contz'nued)

vw

w w w vvw (1) vvs

33. (SaPOd, Maddrell IIb 7 6 TV 7 0 m 5.4 S 5.1 VR 4.98 s 3 80 8

8

v\v

s 3.11 (2) s 3 07 (3) s 2.87 (1) vs 2 80 \v

d , A.

__-_ iiniied) 2.66 vvw 2.62 vvw 2 47 m 2 38 m 2.38 w "30 vw 2 2G viv 2 2s In

2 69 2 67 2.54

VI.

n-

2 17 2.12

2.50 2 46

v\v \v

2 42 2 , 33 2.29

m

36.

2.28 2.27 2 18 2.15 2 . 1:3 2 06 2 00

1 .!)TO 1 944

\v

\v

m

m m 11.

m JV

iv

m K

n.

34. (SaPO& Maddrell IIIh 5.2 m . 5.05 (2) s 4.68 m 4.18 m 3.90 VIP 3.79 VJW 3.49 m 3.42 m 3 30 m 3.27 m 3.16

w

3 . 1 3 (3) s 3.0: vw 2 99 m 2.90 m 2.87 m 2.80 (1) vs 2.68 w 2.60 w 2.54 m 2.45 IP 2.41 w 2.39 vw 2.34 m 2 27 m 2.23 m 2.15 vvw 2.13 \T 2 . 08 112.05 m 35. (SaPOI), Iiurrol I V 6.4 ms 6 0 mw 5 5 v\v 5 3 v \v 4 61 m I58

\v

4 10 (1)

VS

m 63 vvw 48 vvw 37 vvw 22 (2) vs 10 m 3 06 vw 3 01 vw 2 90 ms

4 03

3 3 3 3 3

2 86 _.

\v

2.84

m

~

2 . 7 8 (3) s 2.75 in

1

m w

(SaP03)Be

6.8

S 8 S

6.7 5.2 5.05

s w m

4.24

3 . $17

3.87 ( 2 ) s 3.45

s

3.40 (1) vs 3.35 m 3.32 m w ;Lo3 (3) s 2 . 84 1%' 2.76 8 2.72 ni Y.11

2.70 2 , 59

vi

2.54 2.52 2.50 2 46

s

1%-

w vw T

2.41 2.34 2.29

\P

vvw vw \v w in vw

2.27

30 2.17 2.14 3.13 '9

I . "

w

37. - (SaP0a)aHzOb 7.10 s 6. 55 s .. 5.20 9 4.96 (1) VE 4.29 m 3.90 m 3 78 \P 3.62 w 3.5: (2) vs 3.47 vs 3.33 8 3 28 s 3.21 IP 3 01 (3) vs 2.84 m 2 82 V8 2 i6 s

a

71

2 2 1 2 2 2 2 2 2 2 2 2

60 52 49 47 38 35

w a V\Y

mv mw s VR

27

w vw w

13 20 16 13 12

38.

v~ w

w (Sal'03)3.

6H20 9 5 8 8 8 .3

m (1) vvs

vw

Table 11. d , A. I

X-Ray Diffraction Data for Sodium Phosphates (Continued) d , A. I d , A. I d , A. I d , A. I 45. NaHPOS.SH2 43. P S r ( OH 1448. Sa2P03CH3 50. NaHPOa.CH8 (Continued) ( Contznued) ( OSa)4.21/2H20 (Contznued) 3 15 w 1 594 w 3 10 vw 8.5 vw 6 1 \v 1 560 w 3 08 vw 3 10 (3) vs 5 4 m 8 . 3 (2) s 3 08 vs 7.1 R 1 500 vw 5 3 w m 3 03 6.6 113 03 3 7.0 w 1 452 vvw 3 00 w 4 30 (3) vs 2 92 m 2 97 vw 6.7 w 1 438 m 4 2 4 (1) vs 6 .i m 6.0 G 2 87 vn 2 94 m 6.0 VVK 1 372 n4 02 w 5.5 M 2 82 m 5,3 VVR 1 347 w 2 84 s 3 55 vvm2 80 ni 5.1 vw 2 79 8 1.331 vw 5 . 2 (3) V P I 3 50 8 2 78 v 2 75 m 5.15 13) V R I 1.298 vwv 3 10 m 4.82 (3) s 2 72 w 4.95 \v 4.80 w 3 03 R 2 73 m 2 65 in 4.65 VW 4.84 \v 2 69 vvw 46. SaP02(SH2,h 2 64 TT 4 58 w 4.75 m 2 ., 9 75 (2) ( 2 ) VS) vs) 2 GO m 2 63 n 4.50 vvw 4.29 11 11.0 (1) vs 2.93 vvw 9.0 Fv 2 60 111 4.40 vvw 4.14 m 2.78 vvw 6 . 7 (3) vs 4.30 vvw 4.10 m 2 57 m 51. XanPOa. 5 0 \v 4.00 vn4 21 vvw 2 54 m OCH3.6Hz0 5 6 m 4.14 m 3.93 m 2 52 w 41. p-(SaPO,j,. 7 2 vw 5 2 \v 3.90 w 4.10 m 2 48 m 4H20e 6 3 W 4 95 m 3.78 vw 4.03 VIY 2 46 m 5 7 (3) vs 7 . 7 ( 2 ) vs 4 51 111 3.72 m 3.99 v\v 233 m 5 5 W 4 44 vi\ 6 . 2 (1) vs 3.65 Jv 3.87 (1) vvs 2 25 m 4 74 vw 5.6 vw 4 39 v\\ 3.62 rv 3.78 n2 20 vn4 59 m 5.3 v \v 4 :32 vn 3.58 s 3.74 vw 2 15 s 4 43 (1) vvs 4.87 vs 4 10 \v 3.71 vw 3.53 m 2 12 vi 4 33 (2) vs 4,i-i vs 3.65 w 3.47 m 2 0-1 VI7 3 77 vvw 4.39 \v 3.62 vw 3.39 m 2 02 vw 3 68 vvw 4.03 vvw 3 76 mn. 3.59 \v 3.33 Ill 1 990 vvn 3 60 w 3 . 94 n3 70 ( 2 ) vs (7 lines) 3.57 m 3 26 vw 3 . 90 VR' 3 50 s 2.87 (2' ve 3.48 m vw 49. Sa,PO1. 3 13 3.82 vs 3 44 vu, 3.39 rn CHI.~H,O 3 11 vw 3.80 s 3 30 vw 39. (KaPO3)1' i 8 V \v 3 05 vw 3.73 m 3 14 m 7.0 v 5v 3.02 vw 3.59 w 6.8 \v 3 10 m 44. Sa2PO3XH2. 3.00 8 6.1 w 3.44 vw 5.8 vvw 3 08 m 6Hz0 S 2.92 vvw 5.6 5 . 7 (1) vs 3.30 s 3 02 vw 6 7 VK 2.85 w 5.3 1v 3.27 s 5.5 \\2 96 s 6 3 m 5 2 w 2.78 m 3.20 m 4.80 w 2 92 \v 5 6 (1) vs 5.1 VW 2.75 m 3.15 1v 4.63 2 87 Vu' 5 5 m 4 50 m 2.70 m 3.14 w 4.39 m 2 86 vw 5 2 S 4.40 s 2.61 vw 3.10 m 3.82 m 2.81 v w 4 84 ( 2 ) s V6 2.59 w 4.35 3.00 vw 3.78 vw 2.73 17 4 56 m 4.30 (3) vs 2.55 vw 2.95 w 3.70 17. 2.71 17. 4 24 vw 2.46 m 2.84 (3) VF 3.68 w 3 90 vw 4 08 w 3.60 vn2.42 m 3.58 \v 2.77 m 3 71 s 47. SaP02(SH2) 3.56 m 2.37 w 2.74 111 3.54 vu 3 55 w 6H9O 2.31 w 2.68 m 3.42 m 3.50 m 3 40 m 10.0 \v 3.49 n2.28 w 2.67 v \v 3.38 m 3 32 w 2. 64 \\3.31 m 3 . 30 u3 28 w 3 28 vvw 2 . 63 T I 3.24 w 3 17 w 3.23 w 3.15 \v 5 2 . SatPOr.C& 3 13 VW 3.08 iv 2 98 ( 1 ) vs 3.10 (3) s 16 0 (1) vvs 4 00 3.05 v 2 95 v\v 42. P&~(OH)S 3.05 w 10.6 vvw 4 66 P 2.93 vw 3.00 (2) vs ( OSa)a.4H20 3.00 m 9.4 , vvw 4 50 (1) vs 2.94 vs 2.86 (2) vs 2.95 s i.! vvw 8.3 m 4 10 m 2.90 (3i vs w 2.79 2.90 w vvw 2.74 w 7.0 7 . 4 (1) vs 3 91 F 2.86 vvw 2 83 m 2.69 7.0 VW w 6.9 vvw 3 80 (3) vs 2.80 w 2 79 m 2.62 w 6.8 vvw 5 . 7 (3) vs 3 57 Vw 2.75 1v 2 76 m 5.4 W 2.60 w 5.3 vw 3 41 vw 2.72 m 2 66 TV 4.95 w 5.1 vvw 3 32 F 2.60 \v 2.58 w 2 58 TV 4.59 vw 4.70 (2) w vs 3 15 s 2.50 m m 4.50 2.55 2 55 V R 4.51 VTV 3 12 vw 2 44 I\2 54 w 4.38 w 4.41 m 3 07 VP 2 47 w 4.18 s 50. SaHP03.CH3 4.26 vw 3 02 vs 40. C X - ( S ~ P O ~ ' ) ~ 3. . 8 8 2 $2 w w 3.84 6.1 m m 2 92 ( 2 ) vs 4H20C 3.77 m 5.7 w 3.76 vvw 2 88 m 3 67 v xv 9 . 4 (1) vs m 3.69 vvw 5.5 2 76 m 3 61 w 6.3 m 5 . 2 (1) vs 3.59 w 2 72 1%. 3.52 \ 7 . 5.8 m 3 . 88 ( 1 ) v s 5.0 S 3.57 vvw 2 68 m 3 50 \T 5.7 S 3.00 s 4.77 m3.50 vvw 2 67 n 5.6 vvw 3.31 m 4.41 (2) vs 3.48 vvw 2 . 87 12) vs 2 6?i VE 3.27 m 2.59 n 5 . 2 (2) VE 4.30 s 3.42 vvw 2 55 vw 4.90 E 3.20 in 2 57 (3) s 3.98 m 3.38 vvw 2 jp 9 4.75 ms 2 48 \v 3 . 19 I11 m 3.35 vvw 3.91 2 50 4.60 n3.06 TV 2 30 m 3.68 vw 3.31 vvw 2 49 n 4.41 m 3.00 vw 2 08 w m 3 . 1 8 vvw 3 . 6 0 2 17 5 4.30 ni 2.98 m 1 920 m 3.54 vw 3.11 vvw 3.97 n2.94 17. 1 880 w 3.47 w 3.09 vw 48. Sa2P03CH3 3.80 e 2.90 m 1 858 m 3.36 vw 3.04 vw 3.50 m 1 795 111 9.i \v 3.30 vw 2.95 vvw 2.82 (2) vs 3.34 m 2 . 80 I\1.660 w 8 8 vvvi 3.15 w 2.92 vvw 3.23 E 2.75 m 1 €42 vvw 7 2 vvn3.12 (3) vs ' 2.79 (3) s ( C a t i n u e d o n page 1110)

d , A. I 38. (?;aPOs)a. 6H20 ( C o n t i n u e d ) 7.5 w 7.2 R 7.0 Tv

VOL. 30, NO. 6, JUNE 1958

1109

Table II. X-Ray Diffraction Data for Sodium Phosphates (Continued from page 7 J 09) d , A. I d , A. Z d , A. I d, 4. Z d , A. Z 57. NaHLPOa. 58. Xa3HPZO6. 59. NaZHzPlOe 54. Xa2HPO3. H2Oo (Contznued) 1 2 H ~ 0(Continued) (Continued) 53. NaHPO3.CIH5 5H20" (Contznued) 3.44 (2) m 2.44 w 2.00 w 9.0 w 17.0 (1) vvs 2.76 (2) VE 3.35 vvw 2.39 TV 1.93 w 2.58 n6 . 0 (2) 14.0 (2) vs . . vs 5.1 vs 3.30 TV 11.7 vvw 2.47 vvw 3.24 w 60. Na2HQP206. 2.38 TV 4.82 w 9.2 vvw 2H.O 3.21 vvw 4.50 w 8.8 VVTV 2.31 ni 3.15 \V 4.31 s n2 . 30 7.2 VVTY 8.7 m 3 . 10 n2.22 vvw 4.04 (1) vs 6.6 vvw 7.1 vw 3.05 (3) m 3.iO m 2.19 Yvw 6.3 vvw 5.4 w 3.00 w 3.69 m 2.17 vvw 6.0 VW 4.89 vw 5.9 VW 2.94 I\2.12 (3) EL'\ 5.8 VW 3 . 5 1 (3) vs 5.8 vvw 4.36 (3) vs 2.85 IV 3.28 s 2.08 vw 5.7 vw 5.6 VW 3.66 vvw 2.83 vw 3.18 w 2.07 vvw 5 . 5 (3) m 3.58 vs 5.1 vw 2.74 \'VW 3.16 \v 2.05 Y\V 5.4 w 3.16 s 4.60 m 2.72 111 3.13 m 2.01 vw 5.3 m 4.23 6 3.05 s 2 64 VIV 3.10 w 1.940 vw 5.2 VW 4.03 vvw 2.98 (2) vs 2 62 IT 3.00 vs 1.932 \v 5.1 vw 2.88 (1) vvs 3.58 (1) vvs 2.97 w 4.92 vvw 2.78 m 3.51 vw

d , A.

4.80 4.52 4.38 4.29 4.13 4.01 3.90 3 74 3.70 3.63 3.50 3.42 3.37

I

TV

w TV

vw w w TV

vvw m vvw vvw vvm vvm

54. Sa2HPO3. 5HzOa 6.4 m 5.7 S 5 3 S 4.80 w 4 60 TV 4 23 s 3.73 s 3.58 vw 3.31 w 3.12 m 3 03 m 2.96 (1) vs 2 93 \V 2 82 s

55. SaHaPOs w 11.6 7.1 m 6.8 n6.6 w 5.7 v\w 5.3 vvw 5.1 \'vw 4.14 m 3.98 (1) vs 3.78 XT 3.71 vw 3.50 w 3.40 ni in 3.34 3.29 ni 3.14 12) s 3 . 0 8 (3j s 3.05 s 2.95 m vn2.88 2 81 vw 2 80 mw 2.70 n) 2 67 vw 2 62 vw 2 58 VK 2 46 w 2 44 vrw 2 41 vn2 36 n-

etry of 19-cm. powder photographs (9). Minimum detectable quantities of YajP3O1, Phase I and SalPzOi in Na5P3010Phase I1 are about 5% on a 19-cm. camera and about 1% on the focusing camera. ACKNOWLEDGMENT

The authors thank J. E. Such for providing samples of 13 compound7 and for general chemical advice.

1 1 10

ANALYTICAL CHEMISTRY

2.78 2.68 2.64 3.57 2.53 2.48 2.43 2.41 2.40 2.37 2.32 2.28 2 24

m

w vnv vw

i.3 ni 6.5 vw 6.3 vvn6.1 vvw 5,9 ni 5.4 IT 4.80 vvw 4.63 (1) vvs 4.36 173.91 n3 ,63 ni 3.22 TV 3.05 vvw 3.02 VIV 2.89 V\V 2.95 VVrn 2.93 (3) s 2.87 w 2.78 (2) vs 2.71 vw 2 68 vw 2 64 m 2.59 m 2 56 vvw 2 50 vn2 47 vrn-

TY

w w vw vv vw

vm VR'

5 7 . XaH2P02 Hz05 m 8 3 i 5 m vvw 6 7 6 2 w 5 8 w 5 3 v n' 4 60 w 419 vw 4 10 \V 4 00 w 3 80 (1) m w 3.66 3 51 m 3 47 vw

LITERATURE CITED

i l ) 4m. SOC. Testing Materials, card index file of x-ray diffraction data, Sections 1-7. (2) Bell, R. N., Audrieth, L. F., Hill, 0. F., Ind. Eng. Cheni. 44, 568 (1952). (3) Corbridge, D. E. C., A c f a Cryst. 8, 520 (1985). 14) Zbid.., 10.,88 11957). . (5) Guinier, A., Ann. phys. 12, 161 (1939). (6) Institute of Physics, London, '.XI

3.46 vw 3.30 m 3.13 (3) s 2.98 vw 2.90 m 2.87 m 2.83 (2) vs 2.80 m 2.77 m 2.69 vw 2.54 TV 2.44 vm 2.38 vw 2.19 m 2 16 m _. 3 13 IV ~

2 08 2 02

vw

m

2.75 2.67 2.46 2.45 2.25 2.21 2.19 2.18 2.15 2.14 2.06 2.02 1,940 1.876 1.855 i 840 1 805 1 798

m m s w vvw vvw vvw vvw vvw w

m vvw w vvw

vvw m w

vw

0 Quite different from A.S.T.M. data, vhich relate to substances of wong identity. b In good agreement with B.S.T.11. data. c Do not fully agree with A.S.T.11. data, which appear to have been obtained from impure material. d Agrees with published data (8). e Agrees n-ith published data ( 2 ) .

Ray Diffraction of Polycrystalline ?*Iaterials," 1955. (7) IIahis, -1.J., Quimby, 0. T., ANAL. CHEM.2 5 , 1814 (1953). ( 8 ) Morel.. G. IT.,J . Am. Chenz. SOC.75. 5794 (1953): Raistrici 19

W .. m .-.

Revs. 54, 892 ( Volff, P. 11. de (1948). RECEIVED for review July 5 , 1957. Accepted Sovemher 20, 1957.