Illustrating the Mass Transport Effect on Enzyme ... - ACS Publications

Illustrating the Mass Transport Effect on Enzyme Cascade Reaction. Kinetics Using a Rotating Ring Disk Electrode. Zeng-Qiang Wu‡, Jun-Jun Liu‡, Ji...
0 downloads 0 Views 972KB Size
Subscriber access provided by READING UNIV

Article

Illustrating the Mass Transport Effect on Enzyme Cascade Reaction Kinetics Using a Rotating Ring Disk Electrode Zeng-Qiang Wu, Jun-Jun Liu, Jin-Yi Li, Dan Xu, and Xing-Hua Xia Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.7b03780 • Publication Date (Web): 07 Nov 2017 Downloaded from http://pubs.acs.org on November 8, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Analytical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

Illustrating the Mass Transport Effect on Enzyme Cascade Reaction Kinetics Using a Rotating Ring Disk Electrode Zeng-Qiang Wu‡, Jun-Jun Liu‡, Jin-Yi Li, Dan Xu, Xing-Hua Xia* State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. *Email: [email protected] Tel: +86-025-89687436

ABSTRACT: Electrochemical biosensors based on enzymatic reaction have been applied into a wide range of fields. As the trend continues to grow, these biosensors are approaching to the limit imposed by physics and chemistry. To further improve the performance of the biosensors, the interplay of mass transport and enzymatic reaction kinetics, especially in the enzyme cascade systems, should be considered at the design of biosensors. Herein, we propose a simple approach to the studying on the influence of mass transport and enzyme molecules motion on the kinetics of enzyme cascade reactions. β-galactosidase (β-Gal) and glucose oxidase (GOx) of the enzyme cascade reaction are precisely immobilized onto the disk and ring electrodes of rotating ring disk electrode (RRDE) via covalent attachment method, respectively. At a low rotating speed (600 rpm in the present case), the kinetics control and product inhibition effect of enzymatic catalytic reaction become obvious, resulting in decreased activity of enzymes and in turn the kinetics of enzyme cascade reaction. Thus, the highest kinetics of the enzyme cascade reaction can be achieved at intermediate rotating speed (e.g., 600 rpm) where difference between the positive contribution from convective flow and enzymatic catalytic reaction reaches maximum. In addition, the conformation change of the enzymes caused by larger centrifugal force might not be neglected, which would also result in a decrease of the enzymes activity. The present RRDE approach may help in exploring the influence of centrifugal force on the conformation change of proteins which is undergoing in our group.

ASSOCIATED CONTENT Supporting Information The detailed information for additional experiments and theory section is available free of charge on the ACS Publications website, which includes the preparation of cascade enzymes modified electrode, the optimization of experimental condition, the collect efficiency of enzyme modified electrode and FEM simulation. Supporting information (PDF)

AUTHOR INFORMATION Corresponding Author * E-mail: [email protected] (X.H. Xia)

Author Contributions ‡These authors contributed equally.

ACKNOWLEDGMENT This work was supported by grants from the National Natural Science Foundation of China (21775066, 21327902, 21635004, 21627806). We also gratefully acknowledge the HPCC (High-Performance Computing Center) of Nanjing University.

REFERENCES (1) Wang G.; Xu J.J.; Chen H.Y.; Lu Z.H.; Biosens. Bioelectron. 2003, 18, 335-343. (2) Lu J.; Li H.; Cui D.; Zhang Y.; Liu S.; Anal. Chem. 2014, 86, 80038009. (3) Hernandez-Santos D.; Diaz-Gonzalez M.; Gonzalez-Garcia M. B.; Costa-Garcia A.; Anal. Chem. 2004, 76, 6887-6893. (4) Arduini F.; Errico I.; Amine A.; Micheli L.; Palleschi G.; Moscone D.; Anal. Chem. 2007, 79, 3409-3415. (5) Hu, C.; Yang, D.-P.; Zhu, F.; Jiang, F.; Shen, S.; Zhang, J., ACS Appl. Mater. Interfaces 2014, 6, 4170-4178. (6) Lin, Y. H.; Lu, F.; Tu, Y.; Ren, Z. F., Nano Lett. 2004, 4, 191-195. (7) Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G., ACS Nano 2013, 7, 3540-3546.

Figure 3. Simulated concentration profiles of H2O2 (a) of the βGal/GOx cascade reaction at rotating speeds of 200, 600 and 1600 rpm. (b) Simulated ring electrode current of H2O2 generated from the cascade reaction with 30 mM lactose versus rotating speed.

CONCLUSION In summary, we propose a novel strategy to explore the mass transport effect on the kinetics of β-Gal/GOx cascade reaction

5

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(8) Sacks, V.; Eshkenazi, I.; Neufeld, T.; Dosoretz, C.; Rishpon, J., Anal. Chem. 2000, 72, 2055-2058. (9) Everett, W. R.; Rechnitz, G. A., Anal. Chem. 1998, 70, 807-810. (10) Zhang, D.; Zhang, K.; Yao, Y. L.; Xia, X. H.; Chen, H. Y., Langmuir 2004, 20, 7303-7307; (11) Song, Y.; Lu, X.; Li, Y.; Guo, Q.; Chen, S.; Mao, L.; Hou, H.; Wang, L., Anal. Chem. 2016, 88, 1371-1377. (12) Rasmussen, M.; West, R.; Burgess, J.; Lee, I.; Scherson, D., Anal. Chem. 2011, 83, 7408-7411 (13) Eguilaz, M.; Villalonga, R.; Yanez-Sedeno, P.; Pingarron, J. M., Anal. Chem. 2011, 83, 7807-7814. (14) Wu, D.; Ren, X.; Hu, L.; Fan, D.; Zheng, Y.; Wei, Q., Biosens. Bioelectron. 2015, 74, 391-397. (15) Zhang, M.; Karra, S.; Gorski, W., Anal. Chem. 2014, 86, 93309334. (16) de Oliveira, R. F.; de Moraes, M. L.; Oliveira, O. N., Jr.; Ferreira, M., J. Phys. Chem. C 2011, 115, 19136-19140. (17) Yang, H.; Wei, W.; Liu, S., Spectrochim. Acta, Part A 2014, 125, 183-188. (18) Yuan, G.; Yu, C.; Xia, C.; Gao, L.; Xu, W.; Li, W.; He, J., Biosens. Bioelectron. 2015, 72, 237-246. (19) Boujakhrout, A.; Sanchez, E.; Diez, P.; Sanchez, A.; MartinezRuiz, P.; Parrado, C.; Pingarron, J. M.; Villalonga, R., ChemElectroChem 2015, 2, 1735-1741. (20) Vaterrodt, A.; Thallinger, B.; Daumann, K.; Koch, D.; Guebitz, G. M.; Ulbricht, M., Langmuir 2016, 32, 1347-1359. (21). Zhao, W.; Xu, J.-J.; Chen, H.-Y., Electroanalysis 2006, 18, 17371748. (22). Ferreira, M.; Fiorito, P. A.; Oliveira, O. N.; de Torresi, S. I. C., Biosens. Bioelectron. 2004, 19, 1611-1615. (23). Yao, H.; Hu, N., J. Phys. Chem. B 2010, 114, 9926-9933. (24) Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I., Nat. Nanotechnol. 2009, 4, 249-254. (25) Fu, J.; Liu, M.; Liu, Y.; Woodbury, N. W.; Yan, H., J. Am. Chem. Soc. 2012, 134, 5516-5519. (26) Fu, J.; Yang, Y. R.; Johnson-Buck, A.; Liu, M.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan, H., Nat. Nanotechnol. 2014, 9, 531-536. (27) Wheeldon, I.; Minteer, S. D.; Banta, S.; Barton, S. C.; Atanassov, P.; Sigman, M., Nat. Chem. 2016, 8, 299-309. (28) Abejon, R.; Gijiu, C. L.; Belleville, M. P.; Paolucci-Jeanjean, D.; Sanchez-Marcano, J., J. Membr. Sci. 2015, 473, 189-200. (29) Li, S.-J.; Wang, C.; Wu, Z.-Q.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y., Chem. Eur. J. 2010, 16, 10186-10194. (30) Liu, A.-L.; Zhou, T.; He, F.-Y.; Xu, J.-J.; Lu, Y.; Chen, H.-Y.; Xia, X.-H., Lab Chip 2006, 6, 811-818. (31) Nagy, E.; Dudas, J.; Mazzei, R.; Drioli, E.; Giorno, L., J. Membr. Sci. 2015, 482, 144-157. (32) Wang, C.; Li, S.-J.; Wu, Z.-Q.; Xu, J.-J.; Chen, H.-Y.; Xia, X.-H., Lab Chip 2010, 10, 639-646. (33) Wang, C.; Sheng, Z.-H.; Ouyang, J.; Xu, J.-J.; Chen, H.-Y.; Xia, X.-H., ChemPhysChem 2012, 13, 762-768. (34). Wang, C.; Ye, D.-K.; Wang, Y.-Y.; Lu, T.; Xia, X.-H., Lab Chip 2013, 13, 1546-1553. (35) Wu, Z.-Q.; Li, Z.-Q.; Li, J.-Y.; Gu, J.; Xia, X.-H., Phys. Chem. Chem. Phys. 2016, 18, 14460-14465. (36) Karim, M. R.; Ikeda, Y.; Ide, T.; Sugimoto, S.; Toda, K.; Kitamura, Y.; Ihara, T.; Matsui, T.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y.; Hayami, S., New J. Chem. 2014, 38, 2120-2127. (37) Wang J.; Wang K.; Wang F.B.; Xia X.H.; Nat. Commun. 2014, 5, 5285. (38) Bao W. J.; Yan Z. D.; Wang M.; Zhao Y.; Li J.; Wang K.; Xia X. H.; Wang Z.L., Chem. Commun. 2014, 50, 7787-7789. (39) Darder M.; Takada K.; Pariente F.; Lorenzo E.; Abruna H. D., Anal. Chem. 1999, 71, 5530-5537. (40) Mano, N.; Yoo, J. E.; Tarver, J.; Loo, Y.-L.; Heller, A., J. Am. Chem. Soc. 2007, 129, 7006-7007. (41) Park, Ah-Reum; Oh, Deok-Kun, Appl. Microbiol. Biotechnol. 2010, 85, 1279-1286.

Page 6 of 7

(42) Probstein R. F.; Physicochemical Hydrodynamics A Introduction, Wiley-VCH, Weinheim, 1995, pp.58-59 (43) Bard A. J.; Faulkner L. R., Electrochemical Methods Fundamentals and Applications 2nd ed.; Wiley-VCH, Weinheim, 2001. (44) Haider, T.; Husain, Q., Int. J. Biol. Macromol. 2007, 41, 72-80. (45) Arteca, G. A.; Tapia, O., J. Phys. Chem. B 2002, 106, 1081-1089. (46) Arteca, G. A.; Tapia, O., J. Chem. Phys. 2001, 115, 10557-10565. (47) Reimann, C. T.; Velazquez, I.; Tapia, O., J. Phys. Chem. B 1998, 102, 2277-2283.

6

ACS Paragon Plus Environment

Page 7 of 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

for TOC only

7

ACS Paragon Plus Environment