Article pubs.acs.org/crystal
Pillaring Role of 4,4′-Azobis(pyridine) in Substituted MalonateContaining Manganese(II) Complexes: Syntheses, Crystal Structures, and Magnetic Properties Mariadel Déniz,† Irene Hernández-Rodríguez,† Jorge Pasán,*,† Oscar Fabelo,†,§,∥ Laura Cañadillas-Delgado,†,§,‡ Consuelo Yuste,⊥,∇ Miguel Julve,∇ Francesc Lloret,∇ and Catalina Ruiz-Pérez*,† †
Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física Fundamental II, Facultad de Física, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, E-38204 La Laguna (Tenerife), Spain § Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, E-50009 Zaragoza, Spain ∥ Institut Laue-Langevin, Grenoble, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble Cedex 9, France ⊥ Physics Department, CEMDRX Rua Larga, Universidade de Coimbra, P-3004-516 Coimbra, Portugal ∇ Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), C/Catedrático José Beltrán no. 2, 46980 Paterna (Valencia), Spain S Supporting Information *
ABSTRACT: Six new manganese(II) complexes of formulas [Mn2(Rmal)2(H2O) 2(azpy)]n (1−3), [Mn(Phmal)(H2O)(azpy)]n (4), [Mn2(Et2mal)2(H2O)4(azpy)2]n (5), and [Mn(Bzmal)(H2O)3(azpy)] (6) [azpy = 4,4′-azobispyridine (1−6), Rmal = methylmalonate (Memal) (1), dimethylmalonate (Me2mal) (2), and butylmalonate (Butmal) (3), Phmal = phenylmalonate (4), Et2mal = diethylmalonate (5), and Bzmal = benzylmalonate (6)] were synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1−3 are three-dimensional compounds whose structure consists of corrugated layers of manganese(II) linked through syn−anti carboxylate (Rmal) bridges, which are pillared through the bismonodentate azpy molecule. Complex 4 has a layered structure of manganese(II) ions connected by carboxylate (Phmal) bridges in the syn−anti coordination mode as in 1−3, the azpy group acting here as a terminally bound monodentate ligand. The structure of 5 consists of Et2mal−Mn(II) neutral chains linked through the azpy ligand, giving rise to a complex threedimensional network. Complex 6 is constituted by neutral [Mn(Bzmal)(H2O)3(azpy)] mononuclear units, which are interlinked through O−H···O, O−H···N, and π−π type intermolecular interactions to afford a three-dimensional supramolecular structure. The topological analysis of these crystallographic structures shows the occurrence of four different nets: a (3,4)-connected InStype (1−3), a binodal layered hcb (4), a uninodal CdS-type (5), and a (4,5)-connected tcs topology (6). The magnetic properties of 1−5 were investigated in the 2.0−300 K temperature range. Overall antiferromagnetic behavior occurs in 1−4 with susceptibility maxima in the range 2.8−5.5 K, the exchange pathway being provided by the syn−anti carboxylate (substituted malonate) bridge [manganese−manganese separation in the range 5.4365(3)−5.5274(1) Å]. Very weak antiferromagnetic interactions are observed in 5 through the trans-bis-monodentate Et2mal ligand, the intrachain manganese−manganese separation being 7.328(3) Å. The much larger manganese−manganese separation through the bis-monodentate azpy ligand in 1−5 (values greater than 13.5 Å) accounts for the lack of any significant magnetic interaction though this extended bridge.
■
INTRODUCTION Design and synthesis of new coordination polymers, or metal− organic frameworks (MOFs), have been developing greatly in the past decade.1 These kinds of complexes, which are constructed from a metal ion and polynuclear motifs assembled by organic linkers, are of special relevance due to the variety of new topologies that they can give rise and also to their potential applications as multifunctional materials in catalysis, optoelectronics, and luminescent or magnetic devices.2 An appropriate choice of the suitable molecular building blocks can provide the © 2012 American Chemical Society
synthetic chemist with some degree of control over the resultant architecture and properties. In this sense, carboxylate ligands such as oxalate or malonate (dianion of propanedioic acid, H2mal) have been frequently used as linkers of metal ions3 because of their good complexing ability and also the capability of the carboxylate bridges to Received: May 16, 2012 Revised: July 30, 2012 Published: July 30, 2012 4505
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Elemental analyses (C, H, and N) were performed on an EA 1108 CHNS-O microanalytical analyzer of the SEGAI service of the University of Laguna (Tenerife). Synthesis of [Mn2(Rmal)2(H2O)2(azpy)]n [Rmal = Memal (1), Me2mal (2) and Butmal (3)], [Mn(Phmal)(H2O)(azpy)]n (4), [Mn2(Et2mal)2(H2O)4(azpy)2]n (5) and [Mn(Bzmal)(H2O)3(azpy)] (6). Complexes 1−6 were obtained by slow diffusion in a test tube through the following procedure: An aqueous solution (9 cm3) containing the substituted-malonic acid [0.5 mmol, 59 (1), 66 (2), 80 (3), 90 (4), 80 (5), and 97 mg (6)], manganese(II) chloride tetrahydrate (0.5 mmol, 99 mg), and sodium carbonate (0.5 mmol, 53 mg) was placed at the bottom of a test tube, and an interface of water/ ethanol (50%, 7 cm3) was added dropwise. Then an ethanolic solution of azpy (0.5 mmol, 92 mg) was dropped slowly on the interface. The tube was covered with parafilm and left at room temperature. X-ray quality crystals as orange prisms were grown at the interface after a few days. Yield ca. 78 (1), 75 (2), 73 (3), 68 (4), 72 (5), and 64% (6). Anal. Calcd for C9H10MnN2O5 (1): C, 38.43; H, 3.59; N, 9.97. Found: C, 38.44; H, 3.24; N 9.93%. Anal. Calcd for C10H12MnN2O5 (2): C, 40.68; H, 4.10; N, 9.49. Found: C, 40.39; H, 4.16; N, 9.41%. Anal. Calcd for C12H12MnN2O5 (3): C, 45.14; H, 3.79; N, 8.78. Found: C, 45.39; H, 3.65; N, 8.62%. Anal. Calcd for C19H16MnN4O5 (4): C, 52.41; H, 3.71; N, 12.87. Found: C, 52.15; H, 3.67; N, 12.63%. Anal. Calcd for C34H44Mn2N8O5 (5): C, 54.10; H, 5.88; N, 14.85. Found: C, 54.64; H, 5.36; N, 14.54%. Anal. Calcd for C20H22MnN4O7 (6): C, 49.48; H, 4.57; N, 11.55. Found: C, 49.44; H, 4.32; N, 11.81%. Selected IR peaks (KBr, cm−1): 3205w, 1562vs, 1443 m, 1335s, 840 m, 694s (1); 3236w, 1547vs, 1434 m, 1327s, 841 m, 667s (2); 3248w, 1551vs, 1443 m, 1339s, 837 m, 667s (3); 3217w, 1566s, 1412 m, 1315 m, 837 m, 706s (4); 3302w, 1539 m, 1416 m, 1312 m, 841 m, 667 m (5); 3368w, 1601vs, 1420 m, 1327s, 841 m, 698s (6). Physical Techniques. IR spectra were recorded on a Bruker IF S66 spectrophotometer with an ATR module for solid samples over the range 4000−500 cm−1. The thermogravimetric analyses were performed on a Perkin-Elmer Pyris Diamond, TGA/DTA equipment. Samples were heated in Al2O3 crucibles from 25 to 500 °C in flowing N2 atmosphere with a heating rate of 5 °C min−1. Magnetic susceptibility measurements on polycrystalline samples of compounds 1−5 were carried out in the temperature range 2.0−300 K with a Quantum Design SQUID magnetometer under applied dc magnetic field of 1 T (15 ≤ T ≤ 300 K) and 1000 G (2 ≤ T ≤ 15 K) (1), 1 T (15 ≤ T ≤ 300 K) and 250 G (2 ≤ T ≤ 15 K) (2), 1 T (30 ≤ T ≤ 300 K), 3000 G (15 ≤ T ≤ 30 K), and 100 G (2 ≤ T ≤ 15 K) (3), 1 T (15 ≤ T ≤ 300 K) and 250 G (2 ≤ T ≤ 15 K) (4), and 1 T (50 ≤ T ≤ 300 K) and 1000 G (2 ≤ T ≤ 50 K) (5). Diamagnetic corrections of the constituent atoms were estimated from Pascal’s constants:14 −135 × 10−6 (1), −146 × 10−6 (2), −171 × 10−6 (3), −223 × 10−6 (4), and −234 × 10−6 cm3 mol−1 (5) [per one manganese(II) ion]. Experimental susceptibilities were also corrected for the magnetization of the sample holder (a plastic bag). X-ray Data Collection and Structure Determination. Data collection of 1 and 4 were carried out on a Bruker-Nonius KappaCCD diffractometer, and the crystallographic data were collected at 293(2) K using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å), while data for complex 3 were measured on an Agilent SuperNova Xray source at the same temperature using Cu Kα radiation (λ = 1.54184 Å). Single crystals of 2, 5, and 6 were measured at the BM16 beamline in the ESRF synchrotron facilities (Grenoble, France) with λ = 0.7380 Å at 100(2) K. The data were indexed, integrated, and scaled with the EVALCCD15 software (1−4), CrysAlis PRO16 (3), and HKL200017 (2, 5, and 6) programs. The crystal structures of 1, 5, and 6 were solved by direct methods by using the SHELXS-97 package,18 while those of 2−4 were solved using the SIR92 software.19 The structures were refined with the full-matrix least-squares technique on F2 with SHELXL-97 programs18 included in the WINGX20 software package. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of the organic ligands in 1−6 were set on geometrical positions and refined with a riding model. Those of the coordinated water molecules were located from Fourier differences and refined with isotropic thermal factors, except for 5 where the hydrogen atoms
mediate magnetic interactions whose magnitude and nature are dependent on the anti−anti, syn−anti, or syn−syn coordination modes that they can adopt.4 The number and symmetry of the magnetic orbitals of the spin carriers together with their possible overlap through this bridging ligand account for the ferro- or antiferromagnetic nature of the magnetic coupling observed in them.5,6 Rigid carboxylate type ligands such as oxalate or benzene-1,4dicarboxylate have been extensively used since they allow a priori a quite good prediction of the resulting crystal structure and spin topology. However, MOFs based on more flexible spacers have been less developed due to their greater versatility as ligands. An example of this more complex situation is represented by the malonate dianion, which can not only act as a terminally bound monodentate or bidentate ligand but also adopt several bridging modes through its carboxylate groups.5j,7 At first sight, subtle modifications at the methylene carbon of the malonate group could be a suitable strategy to exert some control over the coordination modes of the modified malonate and also on the intermolecular interactions.8 In this respect, the influence that the alkyl or aryl substituents would exert on the solubility in polar and nonpolar solvents of the resulting modified malonate, the electron donor or acceptor effects, the hydrophobic character and, finally, the possibility of additional intermolecular interactions and new coordination modes deserves to be outlined. The introduction of a coligand in the metal assembling with substituted malonate would contribute to the interconnection or isolation of the spin carriers as a function of its bridging or blocking character. A rod-like spacer such as the 4,4′azobispyridine (azpy) seems a good choice aimed at designing high-dimensional structures with substituted malonate-containing complexes. This rigid N-donor ligand has two coordination sites involving the pyridyl-nitrogen atoms, and it can act as a bridging ligand either in trans or in cis modes. The possibility of π···π9 and C−H/π10 type intermolecular interactions between the azpy ligand and the alkyl or aryl groups of the substituted malonate could play a significant structural role and even modify the final network.11 Only one complex combining the malonate and the azpy ligand of formula [Cu(mal)(H2O)(azpy)1/2]·H2O has been previously reported.12 Its structure consists of syn−anti malonate-bridged copper(II) chains, which are linked through azpy to build a two-dimensional network where ferro- (intrachain) and antiferromagnetic (interchain) interactions coexist. In the present work, we present a magnetostructural study of six new manganese(II) complexes of different dimensionality with formulas [Mn2(R-mal)2(H2O)2(azpy)]n (1−3), [Mn(Phmal)(H2O)(azpy)]n (4), [Mn2(Et2mal)2(H2O)4(azpy)2]n (5), and [Mn(Bzmal)(H2O)3(azpy)] (6) [Rmal = methylmalonate (Memal) (1), dimethylmalonate (Me2mal) (2), and butylmalonate (Butmal) (3), Phmal = phenylmalonate (4), Et2mal = diethylmalonate (5), and Bzmal = benzylmalonate (6)], which result from the metal assembling with alkyl/arylsubstituted malonate and azpy as ligands.
■
EXPERIMENTAL SECTION
Materials. The malonic acid derivatives, H2Memal, H2Me2mal, H2Butmal, H2Phmal, H2Et2mal, and H2Bzmal, MnCl2·4H2O, Na2CO3, and ethanol were purchased from commercial sources and used without further purification. The azpy molecule was synthesized by following the previously reported procedure, which consists of the oxidation of 4-aminopyridine with a solution of sodium hypochlorite.13 4506
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Table 1. Crystallographic Data for Complexes 1−6 formula FW cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) Z μ(Mo Kα) (cm−1) T (K) ρcalc (g cm−3) λ (Å) index ranges
indep reflns (Rint) obsd reflns [I > 2σ(I)] params GOF R [I > 2σ(I)] Rw [I > 2σ(I)] R (all data) Rw (all data)
1
2
3
4
5
6
C9H10MnN2O5 281.13 monoclinic P21/n 7.300(3) 20.927(10) 7.5480(7)
C10H12MnN2O5 295.16 monoclinic P21/n 7.4740(15) 21.371(4) 7.5710(15)
C12H12MnN2O5 319.18 orthorhombic Pnnm 7.2570(3) 25.9657(10) 7.5506(3)
C19H16MnN4O5 435.30 orthorhombic Pnma 37.055(2) 7.3447(6) 7.3447(5)
91.40(2)
90.12(3)
1152.8(8) 4 1.156 293(2) 1.620 0.71073 −9 ≤ h ≤ 6 −27 ≤ k ≤ 26 −9 ≤ l ≤ 9 2610 (0.0381) 1960 162 1.110 0.0566 0.0943 0.0854 0.1025
1209.3(4) 4 1.218 100(2) 1.621 0.73800 −9 ≤ h ≤ 9 −27 ≤ k ≤ 27 −9 ≤ l ≤ 9 2632 (0.0676) 2238 209 1.085 0.0583 0.1622 0.0653 0.1702
1422.78(10) 4 7.746 293(2) 1.490 1.54184 −8 ≤ h ≤ 9 −32 ≤ k ≤ 28 −8 ≤ l ≤ 9 1563 (0.0438) 1370 117 1.142 0.0793 0.2326 0.0863 0.2403
1998.9(2) 4 0.698 293(2) 1.446 0.71073 −47 ≤ h ≤ 47 −9 ≤ k ≤ 9 −9 ≤ l ≤ 6 2464 (0.0580) 1824 173 1.125 0.0797 0.2268 0.1068 0.2418
C34H40Mn2N8O12 862.62 triclinic P1̅ 12.947(3) 13.527(3) 14.019(3) 92.85(3) 114.30(3) 112.22(3) 2009.2(7) 2 0.697 100(2) 1.426 0.73800 −16 ≤ h ≤ 16 −17 ≤ k ≤ 17 −17 ≤ l ≤ 17 7749 (0.0464) 5416 511 1.258 0.1072 0.2967 0.1291 0.3212
C20H22MnN4O7 485.36 triclinic P1̅ 5.9390(12) 10.612(2) 16.723(3) 80.24(3) 89.46(3) 84.87(3) 1034.5(4) 2 0.759 100(2) 1.558 0.73800 −7 ≤ h ≤ 7 −12 ≤ k ≤ 13 −21 ≤ l ≤ 21 4244 (0.0690) 4049 314 1.047 0.0670 0.1840 0.0683 0.1855
could not be found. The refinement indices in 5 are slightly high, and large values for the anisotropic displacement parameters of the diethyl groups of the Et2mal ligand are observed although 5 was measured in a synchrotron beamline at 100 K. The final geometrical calculations and the graphical manipulations were carried out with the PLATON21 and DIAMOND22 programs. The topology of these complexes has been determined by using the TOPOS software package.23 A summary of the crystallographic data and structure refinement is given in Table 1. Selected bond distances and angles together with the hydrogen bonds are listed in Tables 2 (1−3), 3 (4), 4 (5), and 5 (6), while the C− H···π (complexes 2−4) and π−π interactions (complexes 5 and 6) are shown in Tables 6 (2−4) and 7 (5 and 6). Crystallographic data (excluding structure factors) for the compounds 1−6 have been deposited at the Cambridge Crystallographic Data Centre with CCDC reference numbers 878821 (1), 878822 (2), 878823 (3), 878824 (4), 878825 (5), and 878826 (6).
Å (3), whereas the shortest interlayer metal−metal distances are 9.409(4) (1), 9.724(2) (2), and 11.337(2) Å (3). Two features are responsible for this intermetallic shortening: (i) the corrugation of the layers [the values of the dihedral angle between the involved equatorial planes being 88.69(4) (1), 83.79(2) (2), and 82.77(5)° (3)], and (ii) the angle subtended by the azpy ligand and the normal to the planes [48.017(5) (1), 45.459(2) (2), and 34.673(5)° (3)]. These two parameters are correlated: the smaller the corrugation angle is, the lower the angle between the azpy ligand and the normal to the plane, and the greater the interlayer distance. The interlayer distance in complex 3 is limited by the butyl group, not by the azpy ligand as in 1 and 2, and this accounts for the greater interlayer Mn− Mn distance exhibited in 3. There are no π−π interactions in 2 and 3 since the shortest centroid−centroid distances between adjacent aromatic rings are much longer than those expected between the pyridyl rings for this type of interaction [values in the range 5.223(3)− 8.075(2) Å for 2 and a value of 7.551(3) Å for 3], but they occur in 1 [centroid−centroid distance of 4.472(2) Å with an offset angle of 32.15(13)°].10 C−H/π type intermolecular interactions are discarded in 1 since the shortest hydrogen− centroid distance is 3.9124(6) Å, a value that is longer than the average one for this type of interaction between C−H and C(π).11 However, these interactions occur in 2 and 3, where the shortest hydrogen−centroid distances are 3.18(4) and 3.17(3) Å (2) and 3.12(2) Å (3) (Table 6). Moreover, there are several intralayer hydrogen bonds in these three complexes between the coordinated water molecule and the oxygen atoms of the carboxylate bridges (Table 2). Each manganese atom in 1−3 is six-coordinated in a somewhat distorted octahedral environment (Figure 4) with
■
RESULTS AND DISCUSSION Description of the Structures. [Mn2(Rmal)2(H2O)2(azpy)]n [Rmal = Memal (1), Me2mal (2), and Butmal (3)]. Complexes 1−3 are three-dimensional isostructural compounds whose structure consists of [63 ] corrugated layers of manganese(II) ions with substituted malonate groups growing in the ac plane, which are pillared by bis-monodentate azpy ligands (Figures 1−4) leading to a topology of a 3,4-binodal net with a Schläfli symbol [63][658] ins net24,25 (Figure 5). The manganese atoms within each layer are connected by syn−anti carboxylate (from the substituted malonate) bridges. The same net has been reported in previous studies with other rod-like Ndonor coligands.8b,26 The aliphatic skeleton of the substituted malonate ligand is located alternatively above and below these layers, inversely to the position of the azpy molecule. The values of the manganese−manganese separation across the bridging azpy are 13.562(4) (1), 13.583(2) (2), and 13.588(2) 4507
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Table 2. Selected Bond Lengths (Å) and Angles (deg) and Hydrogen Bonds in 1−3a 1 Mn(1)−O(2) Mn(1)−O(4) Mn(1)−O(1a1) Mn(1)−O(3b1) Mn(1)−O(1W) Mn(1)−N(1) O(2)−Mn(1)−O(4)
2.175(2) 2.147(2) 2.174(2) 2.150(2) 2.226(3) 2.290(3) 82.49(9)
O(2)−Mn(1)−O(1a1) O(2)−Mn(1)−O(3b1) O(4)−Mn(1)−O(1a1) O(4)−Mn(1)−O(3b1) O(1a1)−Mn(1)−O(3b1) O(2)−Mn(1)−O(1W) O(2)−Mn(1)−N(1)
Mn(1)−O(2) Mn(1)−O(4) Mn(1)−O(1c1) Mn(1)−O(3a1) Mn(1)−O(1W) Mn(1)−N(1) O(2)−Mn(1)−O(4)
2.160(2) 2.162(2) 2.171(2) 2.166(2) 2.216(2) 2.279(3) 82.05(9)
O(2)−Mn(1)−O(1c1) O(2)−Mn(1)−O(3a1) O(4)−Mn(1)−O(1c1) O(4)−Mn(1)−O(3a1) O(1c1)−Mn(1)−O(3a1) O(2)−Mn(1)−O(1W) O(2)−Mn(1)−N(1)
Mn(1)−O(2) Mn(1)−O(1g1) Mn(1)−O(1W) Mn(1)−N(1) O(2)−Mn(1)−O(1g1) D−H···A
2.150(4) 2.157(4) 2.218(5) 2.288(6) 171.6(2)
O(2)−Mn(1)−O(1d1) O(2)−Mn(1)−O(2f1) O(1g1)−Mn(1)−O(1d1) O(2)−Mn(1)−O(1W)
170.32(10) 85.19(10) 88.17(10) 167.34(9) 104.00(10) 94.01(10) 91.45(11)
O(4)−Mn(1)−O(1W) O(4)−Mn(1)−N(1) O(1a1)−Mn(1)−O(1W) O(1a1)−Mn(1)−N(1) O(3b1)−Mn(1)−O(1W) O(3b1)−Mn(1)−N(1) O(1W)−Mn(1)−N(1)
92.15(10) 88.56(11) 88.84(10) 85.77(10) 91.57(10) 88.89(11) 174.54(11)
169.60(10) 88.71(9) 88.53(9) 169.77(10) 100.31(10) 97.54(10) 89.61(11)
O(4)−Mn(1)−O(1W) O(4)−Mn(1)−N(1) O(1c1)−Mn(1)−O(1W) O(1c1)−Mn(1)−N(1) O(3a1)−Mn(1)−O(1W) O(3a1)−Mn(1)−N(1) O(1W)−Mn(1)−N(1)
97.92(10) 89.79(12) 88.06(9) 85.95(12) 87.61(9) 85.74(12) 170.12(11)
90.3 (2) 81.6(2) 97.8(2) 92.1(2)
O(2)−Mn(1)−N(1) O(1g1)−Mn(1)−O(1W) O(1g1)−Mn(1)−N(1) O(1W)−Mn(1)−N(1)
91.4(2) 90.33(14) 86.6(2) 175.4(2)
2
3
D−H (Å)
H···A (Å)
D···A (Å)
D−H···A (deg)
1.91(3) 1.86(2)
2.730(3) 2.711(3)
157(5) 161(4)
1.88(2) 1.89(3)
2.743(3) 2.735(3)
161(4) 156(4)
1.91(4)
2.730(4)
152(7)
1 O(1W)−H(1WB)···O(2a1) O(1W)−H(1WA)···O(4b1)
0.87(2) 0.88(2)
O(1W)−H(1WB)···O(2c1) O(1W)−H(1WA)···O(4a1)
0.90(2) 0.90(2)
O(1W)−H(1WB)···O(2d1)
0.89(2)
2
3
Symmetry code: (a1) = x + 1/2, −y + 1/2, z − 1/2; (b1) = x + 1/2, −y + 1/2, z + 1/2; (c1) = x − 1/2, −y + 1/2, z − 1/2; (d1) = x + 1/2, −y + 3/2, −z + 3/2; ( f1) = x, y, −z + 2; (g1) = x + 1/2, −y + 3/2, z + 1/2. a
Table 3. Selected Bond Lengths (Å) and Angles (deg) and Hydrogen Bonds for 4a 4 Mn(1)−O(2) Mn(1)−O(2c4) Mn(1)−O(1a4) Mn(1)−O(1d4) Mn(1)−O(1W) D−H···A
2.153(3) 2.153(3) 2.153(3) 2.153(3) 2.248(5)
O(1W)−H(1WA)···O(2a4) a
Mn(1)−N(1) O(2)−Mn(1)−O(1a4) O(2)−Mn(1)−O(1W) O(2)−Mn(1)−N(1) O(2)−Mn(1)−O(2c4) D−H (Å)
2.276(6) 89.99(14) 90.25(14) 91.71(16) 81.87(19) H···A (Å)
0.89(2)
1.83(2)
O(1d4)−Mn(1)−O(2c4) O(1d4)−Mn(1)−O(1a4) O(1d4)−Mn(1)−O(1W) O(1d4)−Mn(1)−N(1) O(1W)−Mn(1)−N(1) D···A (Å) 2.703(4)
89.99(14) 98.1(2) 91.68(13) 86.63(14) 177.4(2) D−H···A (deg) 165(5)
Symmetry code: (a4) = −x + 3/2, −y, z + 1/2; (b4) = −x + 2, y − 1/2, −z; (c4) = x, −y + 1/2, z; (d4) = −x + 3/2, y + 1/2, z + 1/2.
distortion parameters s/h and ϕ of 1.194 and 51.96° (1), 1.221 and 50.62° (2), and 1.234 and 53.39° (3) (the values for an ideal octahedron being s/h = 1.22 and ϕ = 60°).27 The equatorial plane is built by four carboxylate-oxygen atoms [O(1), O(2), O(3), and O(4) for 1 and 2 and O(1), O(2), and the symmetry-related atoms for 3], with average values for the Mn−O bond distance of 2.162(2) (1), 2.165(2) (2), and 2.153(4) (3) Å. The axial positions are filled by a nitrogen atom of the azpy ligand [N(1)] and a coordinated water molecule [O(1W)], the Mn−O1W bond length being shorter [values covering the narrow range 2.216(2)−2.226(3) Å] than the Mn−N bond distance [2.279(3)−2.290(3) Å]. The substituted malonate ligand in 1−3 adopts the μ3κO:κO′:κO″:κO‴ coordination mode acting simultaneously as bidentate through O(2) and O(4) toward Mn(1) (1 and 2)
and through O(2) and O(2f1) (3) [values of the bite angle of 82.48(9)° (1), 82.051(3)° (2), and 81.58(13)° (3); symmetry code (f1) = x, y, −z + 2] and as bis-monodentate through O(1) toward Mn(1h1) (1), Mn(1b1) (2), or Mn(1e1) (3) and through O(3) toward Mn(1c1) (1) and Mn(1h1) (2) [symmetry codes (b1) = x + 1/2, −y + 1/2, z + 1/2; (c1) = x − 1/2, −y + 1/2, z − 1/2; (e1) = x − 1/2, −y + 3/2, −z + 3/ 2; (h1) = x − 1/2, −y + 1/2, z + 1/2]. The metal−metal separation across the syn−anti carboxylate bridges [through O(1) and O(3) toward two adjacent equatorial positions] are 5.5274(15) and 5.4047(14) Å (1), 5.4486(15) and 5.4592(15) Å (2), and 5.4898(11) Å (3). The azpy ligand in 1−3 exhibits the bis-monodentate coordination mode acting as linker of adjacent parallel neutral layers. The aromatic rings of the N-donor ligand are coplanar 4508
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Table 4. Selected Bond Lengths (Å) and Angles (deg) and Hydrogen Bonds for 5a 5 Mn(1)−O(2) Mn(1)−O(1W) Mn(1)−N(1) O(2)−Mn(1)− O(1W) O(2)−Mn(1)−N(1) O(2)−Mn(1)−O(2l5) O(2)−Mn(1)− O(1Wl5) O(1W)−Mn(1)− O(1Wl5) O(1W)−Mn(1)− N(1) O(2l5)−Mn(1)−N(1) O(1Wl5)−Mn(1)− N(1) N(1)−Mn(1)−N(1l5) D···A
2.148(3) 2.155(3) 2.303(4) 89.47(12)
Mn(2)−O(3) Mn(2)−O(2W) Mn(2)−N(3) O(3)−Mn(2)−O(2W)
2.163(3) 2.150(4) 2.314(4) 89.39(14)
Mn(3)−O(6) Mn(3)−O(3W) Mn(3)−N(5) O(6)−Mn(3)−O(3W)
2.192(3) 2.183(3) 2.309(3) 92.98(13)
Mn(4)−O(8) Mn(4)−O(4W) Mn(4)−N(7) O(8)−Mn(4)−O(4W)
2.197(3) 2.168(3) 2.297(4) 92.16(12)
92.11(13) 180.00(9) 90.53(12)
O(3)−Mn(2)−N(3) O(3)−Mn(2)−O(3m5) O(3)−Mn(2)− O(2Wm5) O(2W)−Mn(2)− O(2Wm5) O(2W)−Mn(2)−N(3)
92.59(14) 180.0 90.61(14)
O(6)−Mn(3)−N(5) O(6)−Mn(3)−O(6c5) O(6)−Mn(3)− O(3Wc5) O(3W)−Mn(3)− O(3Wc5) O(3W)−Mn(3)−N(5)
90.15(13) 180.00(17) 87.02(13)
O(8)−Mn(4)−N(7) O(8)−Mn(4)−O(8e5) O(8)−Mn(4)− O(4We5) O(4W)−Mn(4)− O(4We5) O(4W)−Mn(4)−N(7)
90.74(14) 180.000(1) 87.84(12)
O(6c5)−Mn(3)−N(5) O(3Wc5)−Mn(3)− N(5) N(5)−Mn(3)−N(5c5) D···A
89.85(13) 88.65(13)
180.0 90.88(16) 87.89(13) 89.12(16)
180.000(1) 91.32(18)
O(3m5)−Mn(2)−N(3) 87.41(14) O(2Wm5)−Mn(2)− 88.68(18) N(3) N(3)−Mn(2)−N(3m5) 180.000(1) D···A (Å)
180.000(1)
O(1W)···O(1) O(1W)···O(5a5) O(2W)···O(4) O(2W)···O(7b5)
2.600(8) 2.646(8) 2.620(5) 2.630(6)
180.000(1) 91.35(13)
180.000(1)
180.000(1) 91.02(14)
O(8e5)−Mn(4)−N(7) 89.26(14) O(4We5)−Mn(4)− 88.98(14) N(7) N(7)−Mn(4)−N(7e5) 180.000(1) D···A (Å)
O(3W)···O(5c5) O(3W)···O(4d5) O(4W)···O(7e5) O(4W)···O(1f5)
2.635(5) 2.701(7) 2.638(7) 2.665(6)
Symmetry code: (a5) = x − 1, y − 1, z; (b5) = x, y − 1, z; (c5) = −x + 1, −y + 3, −z; (d5) = x, y + 1, z; (e5) = −x + 2, −y + 3, −z + 1; ( f5) = x + 1, y + 1, z; (l5) = −x, −y + 1, −z; (m5) = −x + 1, −y + 1, −z + 1. a
Table 5. Selected Bond Lengths (Å) and Angles (deg) and Hydrogen Bonds for 6a 6 Mn(1)−O(2) Mn(1)−O(4) Mn(1)−O(2W) Mn(1)−O(1W) Mn(1)−O(3W) Mn(1)−N(1) O(2)−Mn(1)−O(4) D−H···A
2.119(2) 2.154(2) 2.166(2) 2.189(2) 2.189(2) 2.296(2) 84.43(8)
O(1W)−H(1WA)···O(3a6) O(1W)−H(1WB)···O(3b6) O(2W)−H(2WA)···O(2c6) O(3W)−H(3WA)···O(1c6) O(3W)−H(3WB)···O(4a6) O(2W)−H(2WB)···N(4d6) a
O(2)−Mn(1)−N(1) O(2)−Mn(1)−O(1W) O(2)−Mn(1)−O(2W) O(2)−Mn(1)−O(3W) O(4)−Mn(1)−N(1) O(4)−Mn(1)−O(1W) O(4)−Mn(1)−O(2W) D−H (Å)
174.53(8) 94.44(9) 92.22(9) 92.36(8) 90.41(9) 93.13(9) 94.39(9) H···A (Å)
0.88(2) 0.89(2) 0.89(4) 0.90(2) 0.89(2) 0.89(2)
1.80(2) 1.87(2) 1.85(4) 1.78(2) 1.93(3) 1.97(2)
O(4)−Mn(1)−O(3W) 176.24(7) O(1W)−Mn(1)−N(1) 83.98(9) O(1W)−Mn(1)−O(2W) 170.40(8) O(1W)−Mn(1)−O(3W) 85.14(9) O(2W)−Mn(1)−N(1) 90.00(9) O(2W)−Mn(1)−O(3W) 87.69(9) O(3W)−Mn(1)−N(1) 92.72(9) D···A (Å) D−H···A (deg) 2.667(3) 2.746(3) 2.729(3) 2.682(3) 2.799(3) 2.847(3)
168(4) 170(4) 170(4) 173(6) 165(6) 166(4)
Symmetry code: (a6) = x − 1, y, z; (b6) = −x + 1, −y, −z + 1; (c6) = −x, −y + 1, −z + 1; (d6) = −x + 1, −y + 1, −z.
Table 6. C−H···π-type Interactions in 2−4a C−H···π
C−H (Å)
Table 7. π−π-type Interactions Present in 5 and 6a
H···π (Å)
C···π (Å)
C−H···π (deg)
3.18(4) 3.17(3)
3.883(2) 3.874(2)
130(3) 130(2)
3.12(2)
3.953(9)
3.20(2)
3.883(2)
centroid−centroid distance (Å)
0.98(3) 0.98(3)
C(6)−H(6)···π(1e1)
0.96(2)
146(2)
π(1)···π(2) π(3)···π(4) π(4)···π(2g5) π(1)···π(3h5)
4.039(2) 4.092(2) 4.2636(10) 4.2763(10)
132(2)
π···π(d6)
3.5967(9)
3 4 C(18)− H(18)···π(azpyb4)
0.93(1)
dihedral angle (deg)
28.96(11) 30.51(11) 34.69(10) 35.63(12)
6.6(2) 5.3(2) 6.1(2) 6.2(2)
18.86(2)
6.12(3)
5
2 C(5)−H(5B)···π(2a1) C(19)−H(19)···π(1a1)
offset angle (deg)
6
Symmetry code: (g5) = −x + 1, −y + 2, −z + 1; (h3) = −x + 1, −y + 2, −z; (d6) = −x + 1, −y + 1, −z. a
a Symmetry code: (a1) = x + 1/2, −y + 1/2, z − 1/2; (e1) = x − 1/2, −y + 3/2, −z + 3/2; (b4) = −x + 2, y − 1/2, −z.
positions in complex 2, with occupancy factors of 0.54 and 0.46 and an angle of 40.112(9)° between the aromatic rings. [Mn(Phmal)(H2O)(azpy)]n (4). The structure of 4 consists of [63] corrugated layers of manganese(II) ions with phenyl-
since the whole molecule is centrosymmetric due to the presence of an inversion center located at the middle of the inner NN bond. The azpy ligand is disordered between two 4509
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Figure 2. Perspective views of the crystal packing of 1 along the crystallographic a axis.
Figure 1. (a) A view of the Rmal−Mn(II) layers in 1−4, along the b axis. (b) Detail of the [63] layer built through the syn−anti carboxylate bridges where the yellow and black spheres represent the Mn(II) ions and the Rmal ligand, respectively.
malonate groups growing in the ac plane as in 1−3 (Figure 1), giving rise to a hcb-type Shubnikov hexagonal net.24,25e,28 The manganese atoms within each layer are linked through carboxylate (phenylmalonate) groups exhibiting the syn−anti bridging. In contrast to what occurs in 1−3, the azpy molecule in 4 acts as a terminally bound monodentate ligand and is located alternatively above and below the layers, inversely to the position of the phenyl group. No π−π type interactions occur in 4 [the shortest centroid−centroid distance between adjacent pyridyl rings being 5.8117(3) Å and minimum offset angle 18.8(2)°]10 because the presence of intra- and interlayer C−H/π interactions (Table 6) with values of hydrogen− centroid distances of 3.20(2) Å11 precludes the parallel facing between the aromatic rings and indeed leads to a threedimensional supramolecular network (Figure 6). Intralayer hydrogen bonds between the axially bound water molecule [O(1W)] and a carboxylate (phenylmalonate) oxygen [O(2a4)] also contribute to the stabilization of the structure (see end of Table 3). Each manganese in 4 is six-coordinated in a distorted octahedral environment (Figure 7) with values for s/h and ϕ of 1.231 and 54.20°.27 The equatorial plane is built by four carboxylate-oxygen atoms [O(1), O(2), O(3), and O(4)], while the axial positions are filled by a water molecule [O(1W)] and a nitrogen atom from the azpy ligand [N(1)], the
Figure 3. A view of the 3D structure of compound 1 along the crystallographic c axis showing the corrugated layers of the carboxylatebridged manganese(II) ions linked through the bis-monodentate azpy ligand.
equatorial bonds being shorter [average value for the Mn−O bond length of 2.153(3) Å] than the axial ones [2.248(5) and 2.276(6) Å for Mn(1)−O(1W) and Mn(1)−N(1), respectively]. The phenylmalonate ligand in 4 adopts the same μ3κO:κO′:κO″:κO‴ coordination mode than the Rmal ligands in 1−3: bidentate through O(2) and O(4) toward Mn(1) [the 4510
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Figure 4. A view of a fragment of 1 (a), 2 (b), and 3 (c) showing the numbering scheme and the symmetry codes of each atom. The disorder of the azpy ligand in 2 has been removed for clarity.
Figure 5. Topological representation of the three-dimensional ins topology in 1−3 (the black and yellow spheres represent the Rmal nodes and the Mn(II) ions, respectively).
Figure 7. A view of a fragment of the structure of 4 with the atom numbering. The disorder of the azpy ligand has been removed for clarity.
Figure 6. Views of the packing 4 along the crystallographic a axis showing the C−H···π type interactions (blue dashed lines).
between two positions with the same probability of occupation and an angle of 49.066(9)° between the aromatic rings. The shortest interlayer manganese−manganese distance is 19.4231(9) Å, a value much greater than those observed for complexes 1−3. The different coordination mode of the azpy ligand in 4 together with the C−H/π intermolecular interactions, which lead to the opposition between the free pyridyl ring from the azpy ligand and the aromatic ring from the phenylmalonate group, cause a larger separation between the neutral layers. Finally, the corrugation of these layers gives
angle subtended at the manganese atom being 81.9(2)°] and bis-monodentate through O(1) and O(1c4) toward Mn(1e4) and Mn(1f4), respectively [symmetry codes (e4) = −x + 3/2, −y, z − 1/2; (f4) = −x + 3/2, −y + 1, z − 1/2]. The Mn−Mn separation through the syn−anti carboxylate bridges is 5.4365(3) Å, these bridges connecting equatorial positions from adjacent metal ions. The value of the dihedral angle between the neighboring equatorial planes is 87.86(5)°. The aromatic rings of the monodentate azpy ligand in 4 are planar, and the free pyridyl ring is found to be disordered 4511
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
rise to a compact structure, the angle between the azpy ligand [a vector defined by the uncoordinated from the plane] and the normal to its corresponding layer being 38.55(8)°. [Mn2(Et2mal)2(H2O)4(azpy)2]n (5). The three-dimensional structure of 5 consists of chains of manganese(II) ions, which grow along the normal of the (101) plane where the diethylmalonate ligand acts as a linear connector through two carboxylate-oxygen atoms from its two carboxylate groups (Figure 8). Each chain is linked to other four chains through
Figure 9. Topological representation of the three-dimensional cds topology of 5. The yellow nodes and the black and yellow bonds correspond to the Mn(II) ions, the Rmal, and the connection through the azpy ligand, respectively.
Both π−π type interactions [the range of the centroid− centroid distances being 4.039(2)−4.2763(10) Å, with offset angles between 28.96(11)° and 35.63(12)°, respectively] (Table 7) and intra- and interchain hydrogen bonds occur in 5, and they contribute to the stabilization of the resulting supramolecular three-dimensional structure (Table 4). Four crystallographically independent manganese(II) ions are present in the structure of 5 (Figure 10), all of them with an almost ideal octahedral environment (values for s/h of 1.253 [Mn(1)], 1.263 [Mn(2)], 1.244 [Mn(3)], and 1.231 for [Mn(4)], with a parameter ϕ of 60.0° for all of them).27 The equatorial plane is built by two diethylmalonate-oxygen atoms and two water molecules with each manganese(II) ion located at an inversion center [O(2) and O(1W) at Mn(1), O(3) and O(2W) at Mn(2), O(6) and O(3W) at Mn(3), and O(8) and O(4W) at Mn(4)], the average values for the Mn−Oeq bonds being 2.185(5) Å. Two nitrogen atoms from two azpy ligands [N(1) and N(1l5) at Mn(1), N(3) and N(3m5) at Mn(2), N(5) and N(5c5) at Mn(3), and N(7) and N(7e5) at Mn(4)] occupy the axial positions with the mean value for the Mn−Nazpy bond lengths of 2.306(5) Å. The diethylmalonate ligand shows an unusual trans-bismonodentate coordination mode (μ-κO:κO‴), the manganese−manganese linking corresponding to the Mn(1)−O(2)− C(1)−C(2)−C(3)−O(3)−Mn(2) and Mn(3)−O(6)−C(19)− C(20)−C(21)−O(8) pathways. This coordination mode has been previously observed in Cd(II),31 Zn(II),31a,32 and Cu(II)33 chain compounds. The manganese−manganese intrachain separation in 5 is 7.328(3) Å, a value that is in the upper limit of the range observed for the previously reported complexes [5.958−7.629 Å]. The azpy molecule in 5 acts as bis-monodentate ligand linking a chain with four other ones, giving rise to a complex
Figure 8. Views of 5 along the normal of the (101) plane (a) and the crystallographic c axis (b) showing the chain interlinking through the bridging azpy.
the azpy ligand, which occupies the two axial positions in the distorted octahedral metal environment, giving rise to a complex topology corresponding to a (65.8)-cds-type network24,29,30 (Figure 9). There are several examples of this type of network in MOFs, most of them being constructed by means of flexible linear spacers and exhibiting highly distorted and even interpenetrated nets.30 4512
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Figure 10. View of the asymmetric unit of 5 together with the numbering scheme. Figure 11. View of 6 along the crystallographic a axis, showing the π−π type interactions plus the hydrogen bonds.
network with interchain metal−metal separations of 13.527(3) [Mn(2)···Mn(2d5) and Mn(3)···Mn(3b5)] and 13.534(8) Å [Mn(1)···Mn(4)] (symmetry codes (b5) = x, y − 1, z; (d5) = x, y + 1, z). The azpy molecule is coplanar and centrosymmetric since there is an inversion center at the middle of the inner NN bond. [Mn(Bzmal)(H2O)3(azpy)]n (6). The structure of 6 consists of neutral [Mn(Bzmal)(H2O)3(azpy)] mononuclear units where the Bzmal and azpy groups act as bidentate and monodentate blocking ligands, respectively, three coordinated water molecules in a mer arrangement completing the six-coordination around the manganese(II) ion. The neutral units are interconnected through an extensive network of hydrogen bonds involving all the carboxylate-oxygen atoms from the Bzmal ligand and the coordinated water molecules (Table 5) leading to layers where the N-donor ligand is alternatively located above and below, inversely to the position of the benzyl group. These layers grow in the ab plane and are pillared through O−H···N and π−π type interactions [values of the shortest centroid−centroid distance and offset angle of 3.5967(9) Å and 18.86(2)°, respectively] (Tables 5 and 7; Figure 11), affording a supramolecular three-dimensional tcstype topology34 (Figure 13). Each manganese atom exhibits a somewhat distorted octahedral environment (Figure 12) [values for s/h and ϕ of 1.263 and 53.75°, respectively].27 The equatorial plane is built by two carboxylate-oxygen atoms [O(2) and O(4)], one nitrogen atom from the azpy ligand [N(1)], and a water molecule [O(3W)], while the axial positions are filled by two other water molecules [O1W) and O(2W)]. The shortest and longest bond lengths at the manganese atom are 2.119(2) [Mn(1)−O(1)] and 2.296(2) Å [Mn(1)−N(1)], the Mn(1)− Ow bond distances [2.166(2) and 2.189(2) Å] lying within this range.
Figure 12. View of a fragment of the structure of 6 showing the atom numbering.
The benzylmalonate group in 6 acts only as a bidentate ligand through O(2) and O(4) toward Mn(1) [bite angle of 84.435(15)°]. The hydrogen bonds involving all the carboxylate-oxygen atoms and the coordinated water molecules lead 4513
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
observed in Bzmal-containing complexes only in one first-row transition metal complex [with copper(II)]37 although other coordination modes have been observed with alkaline-earth and second-row transition metal ions.38 Remarkably, the azpy acts as a terminal ligand despite the fact that three easy leaving groups (the three coordinated water molecules) build part of the metal environment. The constraints introduced by the bulky benzyl group of the Bzmal could be responsible for this situation. Thermogravimetric Studies. The curve of the thermal decomposition of 1 can be described as a plateau, and its structure is thermally stable until 210 °C. Then, the degradation process starts with a great weight loss on the TG curve (∼65%) in two overlapped steps [(DTG)peaks at 267 and 293 °C] and a strong endothermic effect on the DTA curve with a minimum at 255 °C, which are consistent with the loss of the coordinated water molecules and the final collapse of the lattice structure (vide supra). Further, the degradation continued without formation of any thermally stable intermediate up to 334 °C. Weak exothermic effects with maxima at 330 °C accompanied this part of the thermal decomposition, and it corresponds to the release and pyrolysis of the organic part of the complex. The thermal decay is finished at 334 °C when a solid residue (most likely ZnO) is formed. Complexes 2−5 show very similar thermogravimetric behaviors, which are comparable to that of 1 (Figure 13 and
to corrugated layers with values of the intralayer metal−metal distance of 5.2212(15) [through O(2W)···O(2) toward Mn(1c6)], 5.9390(12) [across O(3W)···O(4) toward Mn(1e6)], and 7.781(3) Å [through O(1W)···O(3) toward Mn(1b6); symmetry codes (b6) = −x + 1, −y, −z + 1; (c6) = −x, −y + 1, −z + 1; (e6) = x + 1, y, z]. The azpy molecule in 6 adopts a monodentate coodination mode as in 4, but in the present case there is an O−H···N intermolecular interaction [O(2W)−H(2W)···N(4d6) with a hydrogen−nitrogen distance of 1.97(2) Å; symmetry code (d6) = −x + 1, −y + 1, −z] that connects the adjacent layers giving rise to a three-dimensional supramolecular structure. The shortest interlayer manganese−manganese separation is 13.908(3) Å [Mn(1)···Mn(1f4); symmetry code (f6) = −x, −y + 1, −z], a value that is longer than those distances found in 1−3. As in previously studied complexes, the corrugation of the layers in 6 leads to a more compact structure, with an angle between the azpy ligand and the normal to its respective plane of 18.005(5)°. However, in this case the pyridyl rings of the Ndonor ligand are not coplanar [the dihedral angle between their mean planes is 6.12(3)°]. Structural Discussion. The substituted malonate ligand in complexes 1−4 shows the usual bidentate and bis-monodentate coordination mode leading to [63] layers,8g where the Rmal acts as a 3-fold connector and the metal ion acts as a 3-fold node. These layers can be pillared through a N-donor coligand like the azpy molecule to achieve a [63][658] ins-net, if the substituent of the Rmal is small enough. The honeycomb layers are usually corrugated, and this situation influences the interlayer distance, the stacking being directly dependent on the angle between the bridging coligand and the normal to these layers. For example, the Butmal ligand in 3 forces the azpy molecule to adopt a more perpendicular position with respect to the Rmal−Mn(II) layers, leading to a larger separation between them than in 1 and 2, where smaller substituents occur in the Rmal. The aliphatic (3) and aromatic (4) character of the bulky groups causes the butyl group to allow enough space for the azpy to bridge the layers whereas the phenyl precludes the pillaring. Since the structure of 4 is two-dimensional, the layers are engaged to ensure the maximum packing. In order to reduce the interlayer space, the phenyl group is faced with the azpy of the adjacent layer, a situation previously observed in a Cu(II)−Phmal compound where a monodentate 2,4′-bipyridine coligand was used.8h The structures of complexes 5 and 6 have a lower symmetry, crystallizing in the P1̅ space group. The diethyl group of the Et2mal in 5 is bulky enough to preclude the usual bidentate and bis-monodentate coordination mode of the malonate. In this case, the Rmal behaves as bis-monodentate through its two carboxylate groups, and it acts as a linear connector. This coordination mode for the Et2mal is rarely observed in complexes with other substituted malonates, although it has been previously observed in a Memal complex of formula [Cu(4,4′-bpy)2(Memal)(H2O)]n·nH2O (4,4′-bpy = 4,4′-bipiridine).8b However, seven of the eight diethylmalonatecontaining metal complexes found in the CCDC present this type of bis-monodentate coordination mode,35 and only one of them exhibits a bidentate one36 (a polynuclear manganese complex with the participation of other carboxylate ligands). These features suggest that this coordination mode seems to be the preferred one for the Et2mal ligand. The Bzmal in 6 acts as a bidentate ligand leading to isolated mononuclear entities. This coordination mode has been
Figure 13. TG curves represented as mass loss (%) of 1 (red), 2 (blue), 3 (dark yellow), 4 (green), 5 (pink), and 6 (purple).
Figure S8, Supporting Information). The thermal behavior of 2−5 showed substantially less stability than 1, being thermally stable up to 170 °C, followed by some complicated overlapped weight losses (Figure 13 and Figure S8, Supporting Information). One endothermic effect with minimum at 207 °C, which might be associated with melting of unstable intermediates, and various exothermic effects with maxima at 250, 317, and 827 °C accompany this part of the decomposition. These latter sharp exothermic effects can be connected with the release and pyrolysis of the organic parts of the complexes. Magnetic Properties of 1−6. The magnetic properties of 1−5 under the form of χM against T plot [χM is the magnetic susceptibility per one manganese(II) ion] are shown in Figures 14 (1−4) and 15 (5). At room temperature, the values of the χMT product for 1−5 vary in the narrow range 4.3−4.40 cm3 mol−1 K in agreement with the presence of a magnetically isolated spin sextet (χMT = 4.375 cm3 mol−1 K for SMn = 5/2 with g = 2.0). Upon cooling, a Curie law is obeyed in a wide range of temperature and a decrease of χMT occurs only at low temperatures reaching 0.819 (1), 0.231 (2), 0.801 (3), 0.785 (4), and 3.566 cm3 mol−1 K (5) at 2.0 K. The shape of these 4514
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
Figure 14. χM vs T plots for complexes 1 (a), 2 (b), 3 (c), and 4 (d). The solid line is the best fit (see text). The inset shows the maximum of χM vs T in detail for 1, 3, and 4.
to mediate magnetic interactions,39 allow us to conclude that the magnetic properties of 1−3 would correspond to those of a square grid system of spin sextets. This is also valid for compound 4 where the same layers of manganese(II) ions occur, a water molecule and a terminally bound azpy ligand filling the axial position at each metal atom. Consequently, the magnetic data of 1−4 were treated through the Lines approach for a quadratic layer of local spin sextets that interact across syn−anti carboxylate bridges [eq 1]:40 Nβ 2g 2 ⎡ ⎢3Θ + χM = |J | ⎢⎣
6
∑ n=1
−1 Cn ⎤ ⎥ Θn − 1 ⎦⎥
(1)
where N, β, and k have their usual meaning, Θ = kT/[|J|S(S + 1)], C1 = 4, C2 = 1.448, C3 = 0.228, C4 = 0.262, C5 = 0.119, and C6 = 0.017, the Hamiltonian being defined as Ĥ = −J∑ni=1Ŝi·Ŝi+1 + gβĤ ∑ni=1Ŝi. Least-squares best-fit parameters for 1−4 are J = −0.31(1) cm−1 and g = 1.98(1) (1), J = −0.41(1) and g = 2.02(1) (2), J = −0.36(2) cm−1 and g = 2.00(1) (3), and J = −0.31(1) cm−1 and g = 1.95(1) (4). The calculated curves for 1−4 reproduce the magnetic data in the whole temperature range investigated. Dealing with the three-dimensional structure of compound 5, two exchange pathways could be operative: the bis-monodentate Etmal and azpy ligands with values of the manganese− manganese separation through them of ca. 7.3 and 13.5 Å, respectively. By neglecting the more extended pathway, we would be faced with a uniform chain of interacting spin sextets, the intrachain magnetic coupling being weak and antiferromagnetic. Therefore, its magnetic data can be analyzed by means of Fisher’s law for a regular chain with classical spin moments [eq 2]:41
Figure 15. χM vs T plot for 5. The solid line is the best fit (see text).
plots is typical of an overall weak antiferromagnetic interaction, a feature that is supported by the occurrence of a maximum of the magnetic susceptibility at 3.0 (1 and 4), 5.5 (2), and 2.8 K (3). No maximum is observed for 5 down to 2.0 K suggesting a weaker magnetic interaction in this compound. Given the structural similarity of complexes of the threedimensional compounds 1−3, where square grids of Mn(II) ions with intralayer carboxylate (Rmal) bridges in the syn−anti conformation and interlayer connection through bis-monodentate azpy ligands occur, we will analyze first the magnetic data of this family of complexes. Although two exchange pathways could be involved in 1−3, the syn−anti carboxylate bridge and the more extended bis-monodentate azpy ligand, the much greater manganese−manganese separation through the latter pathway (values in the range 13.56−13.59 Å) compared with those across the former one (values from 5.40 to 5.52 Å), together with the well-known ability of the carboxylate bridge 4515
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design χM =
35Nβ 2g 2 ⎧ 1 + u(K ) ⎫ ⎨ ⎬ 12kT ⎩ 1 − u(K ) ⎭
Article
situation that is also observed for 5 through the uncommon and more extended Mn−OCCCO−Mn pathway.
(2)
where (K) = coth K − 1/K, K = 35J/4kT, and J is the intrachain magnetic coupling. Least squares analysis of the susceptibility data led to J = −0.045(1) cm−1 and g = 1.97(1). The calculated curve matches well the experimental data in the whole temperature range investigated. The magnetic couplings in 1−4 are weak and antiferromagnetic [values of J in the range −0.26 (1) to 0.41 cm−1 (2)], and they agree with the expected interactions between manganese(II) ions separated by ca. 5.4 Å through a single carboxylate (Rmal) in the syn−anti coordination mode.42 Subtle structural differences in the Mn−OCO−Mn bridging skeleton would account for the somewhat larger value of the magnetic coupling for 2. Finally, the weak antiferromagnetic coupling between the manganese(II) ions in the extended Mn− OCCCO−Mn pathway is also as expected given the great metal−metal separation (ca. 7.3 Å). This value could be compared with that through the same pathway in the copper(II) complex [Cu(4,4′-bpy)2(Memal)(H2O)]n·nH2O (J = −1.38 cm−1)8a where only one unpaired electron at the metal center occurs (versus five at each metal ion in 5).
■
ASSOCIATED CONTENT
■
AUTHOR INFORMATION
* Supporting Information S
Crystallographic information in the form of cif files, views of the crystal packing and the weak interactions present in the compounds 1−6, the topological representation of the supramolecular 3D structure of 6, thermogravimetric analyses of 1−6, and the magnetic susceptibility curves for 1−4 and 5. This material is available free of charge via the Internet at http://pubs.acs.org. Corresponding Author
*E-mail:
[email protected];
[email protected]. Present Address ‡
Centro Universitario para la Defensa, Academia General Militar, Ctra de Huesca s/n, 50090 Zaragoza, Spain. Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS Financial support by the Spanish Ministerio de Ciencia e Innovación through projects MAT2010-16981, CTQ201015364, DPI2010-21103-C04-03, “Factoriá de Crystalización” (Consolider Ingenio2010 CSD2006-0015), Molecular Nanoscience (Consolider Ingenio CSD2007-00010), ACIISI Gobierno de Canarias (PIL2070901), and Generalitat Valenciana (PROMETEO/2009/108, and ISIC/2012/002) is gratefully acknowledged. M. Déniz thanks the Spanish Ministerio de Ciencia e Innovación for a predoctoral fellowship. J.P. also thanks the Universidad de La Laguna as part of the Campus of Excellence Project ‘CEI Canarias: Campus Atlántico Tricontinental’.
■
CONCLUSIONS Although the substituted malonate presents in almost all these complexes common bidentate (6) or bidentate/bis-monodentate (1−4) coordination modes, an unusual trans-bismonodentate coordination mode occurs in compound 5. The carboxylate (Rmal) bridges lead to corrugated grids (1−4) or chains (5) of manganese(II) ions with Mn−Mn intralayer (1− 4) or intrachain (5) distances of 5.4047(14)−5.5274(15) Å or 7.328(3) Å. The coordination of the azpy molecule either as a bis-monodentate (1−3 and 5) or monodentate (4 and 6) ligand leads to three-dimensional networks in the case of 1, 3, and 5, where 4 and 6 are two-dimensional and mononuclear compounds, respectively. One can observe in these structures how the disposition of N-donor ligand and the alkyl-substituted malonate ligands used leaves no void space for the formation of cavities or pores in any case. From a structural point of view, four different topologies have been observed: (i) a binodal [63][65.8] ins-type topology (1−3), where the Rmal ligand and the Mn(II) ion act as 3- and 4connected nodes, respectively (ii) a hcb two-dimensional topology (4), which does not give rise to an ins topology because the azpy molecule acts as a blocking ligand (iii) a cds topology (5) obtained because of the unusual coordination mode of the Et2mal ligand, which acts as a 2-connected node leading to this kind of uninodal 4connected net (iv) a supramolecular [44.62][44.66] tcs network (6) where the Mn(II) ion and the Rmal ligand act as 5- and 4connected nodes, respectively. All these topologies have been previously reported with other transition metal ions, but they have been observed with manganese(II) ions for the fist time [except in case of the honeycomb layered topology (4)]. Weak antiferromagnetic interactions between the manganese(II) ions through the syn−anti carboxylate (Rmal) ligand occur in 1−4, as expected for this type of bridge, a
■
REFERENCES
(1) (a) Kahn, O. In Molecular Magnetism; VCH Publishers: New York, 1993. (b) Froster, P. M.; Cheetham, A. K. Angew. Chem., Int. Ed. 2002, 41, 457. (c) Barthelet, K.; Marrot, J.; Riou, D.; Ferey, G. Angew. Chem., Int. Ed. 2002, 41, 281. (d) Sun, H. L.; Gao, S.; Ma, B. Q.; Su, G. Inorg. Chem. 2003, 42, 5399. (e) Sun, B. W.; Gao, S.; Ma, B. Q.; Niu, D. Z.; Wang, Z. M. Dalton Trans. 2000, 4187. (f) Ribas, J.; Escuer, A.; Monfort, M.; Vicente, R.; Cortes, R.; Lezama, L.; Rojo, T. Coord. Chem. Rev. 1999, 193, 1027. (g) Konar, S.; Zangrando, E.; Drew, M. G. B.; Mallah, T.; Ribas, J.; Chaudhuri, N. R. Inorg. Chem. 2003, 42, 5966. (h) Chen, H. J.; Mao, Z. W.; Gao, S.; Chen, X. M. Chem. Commun. 2001, 2320. (i) Wang, R. H.; Gao, E. Q.; Hong, M. C.; Gao, S.; Luo, J. H.; Lin, Z. H. Inorg. Chem. 2003, 42, 5486. (j) Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P. Acc. Chem. Res. 1989, 22, 392. (2) (a) Janiak, C. Dalton Trans. 2003, 2781. (b) Lee, J.; Fartha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. (c) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330. (d) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. (3) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466. (4) (a) Hernández-Molina, M.; Lorenzo-Luis, P. A.; Ruiz-Pérez, C. CrystEngComm 2001, 3, 60. (b) Oldham, C. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, 1987; Vol. 2, p 435. (c) Towle, D. K.; Hoffmann, S. K.; Hatfield, W. E.; Singh, P.; Chaudhuri, P. Inorg. Chem. 1988, 27, 394. (d) Levstein, P. R.; Calvo, R. Inorg. Chem. 1990, 29, 1581. (e) Sapiña, F.; Escrivá, E.; Folgado, J. V.; Beltrán, A.; Fuertes, A.; Drillon, M. Inorg. Chem. 1992, 31, 3851. (f) Colacio, E.; Costes, J. 4516
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
P.; Kivekäs, R.; Laurent, J. P.; Ruiz, J. Inorg. Chem. 1990, 29, 4240. (g) Colacio, E.; Domínguez-Vera, J. M.; Costes, J. P.; Kivekäs, R.; Laurent, J. P.; Ruiz, J.; Sundberg, M. Inorg. Chem. 1992, 31, 774. (5) (a) Gómez-Saiz, P.; Gil-García, R.; Maestro, M. A.; Arnaiz, F. J.; Lezama, L.; Rojo, T.; Pizarro, J. L.; Arriortúa, M. I.; González-Alvarez, M.; Borrás, J.; Diez-Gómez, V.; García-Tojal, J. Eur. J. Inorg. Chem. 2009, 373. (b) Meng, W. L.; Liu, G. X.; Okamura, T.; Kawaguchi, H.; Zhang, Z. H.; Sun, W. Y.; Ueyama, N. Cryst. Growth Des. 2006, 6, 2092. (c) Delgado, F. S.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. CrystEngComm 2004, 6, 443. (d) Delgado, F. S.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. CrystEngComm 2006, 8, 507. (e) Delgado, F. S.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. CrystEngComm 2006, 8, 530. (f) Sain, S.; Maji, T. K.; Mostafa, G.; Lu, T. H.; Chaudhuri, N. R. New J. Chem. 2003, 27, 185. (g) Delgado, F. S.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Inorg. Chem. 2003, 42, 5938. (h) Liu, T. F.; Sun, H. L.; Gao, S.; Zhang, S. W.; Lau, T. Ch. Inorg. Chem. 2003, 42, 4792. (i) Rodríguez-Martín, Y.; HernándezMolina, M.; Delgado, F. S.; Pasán, J.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. CrystEngComm 2002, 4, 440. (j) Rodríguez-Martín, Y.; Hernández-Molina, M.; Delgado, F. S.; Pasán, J.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. CrystEngComm 2002, 4, 522. (k) Sanchiz, J.; Rodríguez-Martín, Y.; Ruiz-Pérez, C.; Mederos, A.; Lloret, F.; Julve, M. New J. Chem. 2002, 26, 1624. (l) RodríguezMartín, Y.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. CrystEngComm 2002, 4, 631. (m) Rodríguez-Martín, Y.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. Inorg. Chim. Acta 2001, 318, 159. (n) Ruiz-Pérez, C.; Sanchiz, J.; Hernández-Molina, M.; Lloret, F.; Julve, M. Inorg. Chem. 2000, 39, 1363. (o) Ruiz-Pérez, C.; HernándezMolina, M.; Lorenzo-Luis, P.; Lloret, F.; Cano, J.; Julve, M. Inorg. Chem. 2000, 39, 3845. (p) Rodríguez-Martín, Y.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. Inorg. Chim. Acta 2001, 326, 20. (q) Chattopadhyay, D.; Chattopadhyay, S. K.; Lowe, P. R.; Schalwe, C. H.; Mazumder, S. K.; Rana, A.; Ghosh, S. J. Chem. Soc., Dalton Trans. 1993, 913. (6) (a) Montney, M. R.; Suplowski, R. M.; LaDuca, R. L. Polyhedron 2008, 27, 2997. (b) Delgado, F. S.; Hernández-Molina, M.; Sanchiz, J.; Ruiz-Pér ez, C.; Rodríguez-Martín, Y.; Lloret, F.; Julve, M. CrystEngComm 2004, 6, 106. (c) Delgado, F. S.; Sanchiz, J.; RuizPérez, C.; Lloret, F.; Julve, M. CrystEngComm 2003, 5, 280. (d) Konar, S.; Mukherjee, P. S.; Drew, M. G. B.; Ribas, J.; Chaudhuri, N. R. Inorg. Chem. 2003, 42, 2545. (e) Gil de Muro, I.; Insausti, M.; Lezama, L.; Pizarro, J. L.; Arriortua, M. I.; Rojo, T. Eur. J. Inorg. Chem. 1999, 935. (f) Cuevas, A.; Kremer, C.; Suescun, L.; Russi, S.; Mombru, A. W.; Llorert, F.; Julve, M.; Faus, J. Dalton Trans. 2007, 5305. (g) Manna, S. C.; Zangrando, E.; Drew, M. G. B.; Ribas, J.; Chaudhuri, R. Eur. J. Inorg. Chem. 2006, 481. (h) Maji, T. K.; Sain, S.; Mostafa, G.; Lu, T. H.; Ribas, J.; Monfort, M.; Chaudhuri, N. R. Inorg. Chem. 2003, 42, 709. (i) Gil de Muro, I.; Insausti, M.; Lezama, L.; Urtiaga, M. K.; Arriortua, M. I.; Rojo, T. Dalton Trans. 2000, 3360. (7) (a) Pasán, J.; Delgado, F. S.; Rodríguez-Martín, Y.; HernándezMolina, M.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. Polyhedron 2003, 22, 2143. (b) Ruiz-Pérez, C.; Rodríguez-Martín, Y.; HernándezMolina, M.; Delgado, F. S.; Pasán, J.; Sanchiz, J.; Lloret, F.; Julve, M. Polyhedron 2003, 22, 2111. (c) Delgado, F. S.; Lahoz, F.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. Cryst. Growth Des. 2008, 8, 3219. (8) (a) Pasán, J.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. New J. Chem. 2003, 27, 1557. (b) Déniz, M.; Pasán, J.; Fabelo, O.; Cañadillas-Delgado, L.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. New J. Chem. 2010, 34, 2515. (c) Pasán, J.; Sanchiz, J.; Cañadillas-Delgado, L.; Fabelo, O.; Déniz, M.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. Polyhedron 2009, 28, 1802. (d) Gkioni, C.; Boudalis, A. K.; Sanakis, Y.; Raptopoulou, C. P. Polyhedron 2007, 26, 2536. (e) Pasán, J.; Sanchiz, J.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. CrystEngComm 2007, 9, 478. (f) Perkins, C. M.; Rose, N. J.; Stenkamp, R. E. Inorg. Chim. Acta 1990, 172, 119. (g) Pasán, J.; Sanchiz, J.; Ruiz-Pérez, C.; Campo, J.; Lloret, F.; Julve, M. Chem. Commun. 2006, 2857. (h) Pasán, J.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Inorg. Chem. 2005, 44, 7794. (i) Pasán, J.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Eur. J. Inorg. Chem. 2004, 4081.
(9) (a) Janiak, C. Dalton Trans. 2000, 3885−3896. (b) Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725. (c) Claessens, C. G.; Stoddart, J. F. J. Phys. Org. Chem. 1997, 10, 254. (d) Hirsch, K. A.; Wilson, S. R.; Moore, J. S. Chem.Eur. J. 1997, 3, 765. (10) (a) Okawa, H.; Numata, Y.; Mio, A.; Kida, S. Bull. Chem. Soc. Jpn. 1980, 53, 2248−2251. (b) Okawa, H.; Ueda, K.; Kida, S. Inorg. Chem. 1982, 21, 1594−1598. (c) Nakamura, M.; Okawa, H.; Inazu, T.; Kida, S. Bull. Chem. Soc. Jpn. 1982, 55, 2400−2403. (d) Nakamura, M.; Okawa, H.; Ito, T.; Kato, M.; Kida, S. Bull. Chem. Soc. Jpn. 1987, 60, 539−543. (e) Nishio, M.; Hirota, M.; Umezawa, Y. The CH/π Interaction. Evidence, Nature, and Consequences; Wiley-VCH: New York, 1998. (f) Okawa, H. Coord. Chem. Rev. 1988, 92, 1−28. (g) Suezawa, H.; Yoshida, T.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Eur. J. Inorg. Chem. 2002, 3148−3155. (h) Hirota, H.; Sakaibara, K.; Suezawa, H.; Yuzuri, T.; Ankai, E.; Nishio, M. J. Phys. Org. Chem. 2000, 13, 620− 623. (11) (a) Dey, R.; Ghoshal, D. Polyhedron 2012, 34, 24−30. (b) Zhao, L.-M.; Zhai, B.; Gao, D.-L.; Shi, W.; Zhao, B.; Cheng, P. Inorg. Chem. Commun. 2012, 13, 1014−1017. (c) Gai, Y.-L.; Jiang, F.-L.; Xiong, K.C.; Chen, L.; Yuan, D.-Q.; Zhang, L.-J.; Zhou, K.; Hong, M.-C. Cryst. Growth Des. 2012, 12, 2079−2088. (d) Zhao, L.-M.; Zhang, Z.-J.; Zhang, S.-Y.; Cui, P.; Shi, W.; Zhao, B.; Cheng, P.; Liao, D.-Z.; Yan, S.P. CrystEngComm 2011, 13, 907−913. (e) Zhao, L.-M.; Li, H.-H.; Wu, Y.; Zhang, S.-Y.; Zhang, Z.-J.; Shi, W.; Cheng, P.; Liao, D.-Z.; Yan, S.P. Eur. J. Inorg. Chem. 2010, 13, 1983−1990. (12) Li, B.; Wang, X.; Zhang, Y.; Gao, S.; Zhang, Y. Inorg. Chim. Acta 2005, 358, 3519−3524. (13) (a) Brown, E. V.; Granneman, G. R. J. Am. Chem, Soc. 1975, 97, 621. (b) Kirpal, A.; Reiter, E. Chem. Ber 1927, 60, 664. (c) Kirpal, A. Chem. Ber 1934, 67, 70. (d) Launay, J. P.; Tourrel-Pagois, M.; Lipskier, J. F.; Marvaud, V.; Joachim, C. Inorg. Chem. 1991, 30, 1033. (14) Earnshaw, A. In Introduction to Magnetochemistry; Academic Press: London, 1968. (15) Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M. J. Appl. Crystallogr. 2003, 36, 220−229. (16) CrysAlis PRO; Agilent Technologies Ltd: Yarnton, England, 2010. (17) Otwinowski, Z.; Minor, M. In Macromolecular Crystallography, A, Methods in Enzymology; Academic Press: New York, 1997; Vol 276; pp 307−326. (18) Sheldrick, G. M. SHELXL-97, SHELXS-97, Programs for Crystal Structure Refinement; Universität Göttingen: Germany, 1998. (19) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Gualardi, A. J. Appl. Crystallogr. 1993, 26, 343−350. (20) Farrugia, J. L. J. Appl. Crystallogr. 1999, 32, 837. (21) Spek, A. L. Acta Crystallogr. 2009, D65, 148. (22) DIAMOND 2.1d, Crystal Impact GbR, CRYSTAL IMPACT, K. Brandenburg & H. Putz GbR, Postfach 1251, D-53002 Bonn, Germany, 2000. (23) (a) Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. TOPOS, http://www.topos.ssu.samara.ru. (b) Blatov, V. A. IUCr CompComm Newslett. 2006, 7, 4−38. (24) (a) Friedrichs, O. D.; O’Keeffe, M.; Yaghi, O. M. Acta Crystallogr. 2003, A59, 22−27. (b) O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782−1789. (25) (a) Carlucci, L.; Ciani, G.; van Gudenberg, D. W.; Proserpio, D. M.; Sironi, A. Chem. Commun. 1997, 631. (b) Lin, J. D.; Chen, J. W.; Weng, H. S.; Du, S. W. Inorg. Chem. Commun. 2008, 11, 1136. (c) Chen, S. S.; Fan, J.; Okamura, T.; Chen, M. S.; Su, Z.; Sun, W. Y.; Ueyama, N. Cryst. Growth Des. 2010, 10, 812. (d) Kirillov, A. M.; Wieczorek, S. W.; da Silva, M. F. C. G.; Sokolnicki, J.; Smolenski, P.; Pombeiro, A. J. L. CrystEngComm 2011, 13, 6329. (e) Kathalikkattil, A. C.; Bisht, K. K.; Aliaga-Alcaide, N.; Suresh, E. Cryst. Growth Des. 2011, 11, 1631. (26) (a) Déniz, M.; Pasán, J.; Fabelo, O.; Cañadillas-Delgado, L.; Lorenzo-Luis, P.; Lahoz, F.; López, D.; Yuste, C.; Julve, M.; RuizPérez, C. C. R. Chim. 2012, http://dx.doi.org/10.1016/j.crci.2012.04. 007. (27) Stiefel, E. I.; Brown, G. F. Inorg. Chem. 1972, 11, 434. 4517
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518
Crystal Growth & Design
Article
(28) (a) Gong, Y.; Li, J. H.; Wu, T.; Qin, J. B.; Cao, R.; Li, J. CrystEngComm 2012, 14, 663−669. (b) Liu, Y. Y.; Wang, Z. H.; Yang, J.; Liu, B.; Liu, Y. Y.; Ma, J. F. CrystEngComm 2011, 13, 3811−3821. (c) Carlucci, L.; Ciani, G.; Maggini, S.; Proserpio, D. M. CrystEngComm 2008, 10, 1191−1203. (d) Jang, J. J.; Li, L.; Yang, T.; Kuang, D. B.; Wang, W.; Su, C. Y. Chem. Commun. 2009, 17, 2387−2389. (e) Zhang, L. P.; Ma, J. F.; Yang, J.; Liu, Y. Y.; Wei, G. H. Cryst. Growth Des. 2009, 9, 4660−4673. (f) Zhang, J.; Xue, Y. S.; Li, Y. Z.; Du, H. B.; You, X. Z. CrystEngComm 2011, 13, 2578−2585. (g) Su, Z.; Cai, K.; Fan, J.; Chen, S. S.; Chen, M. S.; Sun, W. Y. CrystEngComm 2010, 12, 100−108. (h) Liu, D. S.; Sui, Y.; Chen, W. T.; Huang, C. C.; Chen, J. Z. Chin. J. Inorg. Chem. 2011, 27, 1607−1612. (i) Wei, G. H.; Yang, J.; Ma, J. F.; Liu, Y. Y.; Li, S. L.; Zhang, L. P. Dalton Trans. 2008, 23, 3080−3092. (j) Xu, C.; Guo, Q.; Wang, X.; Hou, H.; Fan, Y. Cryst. Growth Des. 2011, 11, 1869−1879. (k) Jiang, T.; Zhang, X. M. Cryst. Growth Des. 2008, 8, 3077−3083. (29) (a) Bonneau, B.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Acta Crystallogr. 2004, A60, 517−520. (b) Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Solid State Sci. 2003, 5, 73−78. (c) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504−1518. (d) DelgadoFriedrichs, O.; Foster, M. D.; O’Keeffe, M.; Proserpio, D. M.; Treacy, M. M. J.; Yaghi, O. M. Solid State Chem 2005, 178, 2533−2554. (30) (a) Yang, J.; Ma, J. F.; Liu, Y. Y.; Batten, S. R. CrystEngComm 2009, 11, 151−159. (b) Lyons, E. M.; Braverman, M. A.; Supkowski, R. M.; LaDuca, R. L. Inorg. Chem. Commun. 2008, 11, 855−858. (c) Blake, A. J.; Brooks, N. R.; Champness, N. R.; Cunningham, J. W.; Hubberstey, P.; Schrö der, M. CrystEngComm 2000, 2, 41−45. (d) Carlucci, L.; Ciani, G.; Proserpio, D. M. Chem. Commun. 2004, 380−381. (e) Barnett, S. A.; Blake, A. J.; Champness, N. R.; Wilson, C. Chem. Commun. 2002, 1640−1641. (f) Tseng, T. W.; Luo, T. T.; Tsai, C. C.; Wu, J. Y.; Tsai, H. L.; Lu, K. L. Eur. J. Inorg. Chem. 2010, 3750− 3755. (g) Deng, Z. P.; Huo, L. H.; Gao, S.; Zhao, H. Z. Anorg. Allg. Chem. 2010, 636 (5), 835−839. (h) Zheng, Y. Q.; Zhang, J.; Liu, J. Y. CrystEngComm 2010, 12, 2740−2748. (31) (a) Zhang, Y.; Li, J.; Chen, J.; Su, Q.; Deng, W.; Nishiura, M.; Imamoto, T.; Wu, X.; Wang, Q. Inorg. Chem. 2000, 39, 2330. (b) Chung, K. H.; Hong, E.; Do, Y.; Moon, C. H. Dalton Trans. 1996, 3363. (c) Zhang, K. L.; Kuai, H. W.; Diao, G. W. J. Mol. Struct. 2006, 788, 134. (d) Sun, Y. G.; Gao, E. J.; Wei, D. Z.; Xing, Z. Q. Chin. J. Inorg. Chem 2005, 21, 897. (32) (a) Burrows, A. D.; Harrington, R. W.; Mahon, M. F.; Price, C. E. Dalton Trans. 2000, 3845. (b) Zhao, W.; Fan, J.; Okamura, T.; Sun, W. Y.; Ueyama, N. J. Solid State Chem. 2004, 177, 2358. (c) Basu, T.; Sparkes, H. A.; Bhunia, M. K.; Mondal, R. Cryst. Growth Des. 2009, 9, 3488. (d) Fujioka, H.; Kishida, S.; Ishizu, T.; Shiro, M.; Kinoshita, E.; Koike, T. Bull. Chem. Soc. Jpn. 2010, 83, 267. (e) Burrows, A. D.; Donovan, A. S.; Harrington, R. W.; Mahon, M. F. Eur. J. Inorg. Chem. 2004, 4686. (33) (a) Baldoma, R.; Monfort, M.; Ribas, J.; Solans, X.; Maestro, M. A. Inorg. Chem. 2006, 45, 8144. (b) Weng, C. H.; Cheng, S. C.; Wei, H. M.; Wei, H. H.; Lee, C. J. Inorg. Chim. Acta 2006, 359, 2029. (34) (a) Pearson, W. B. J. Solid State Chem. 1985, 56, 278−287. (b) Wang, C. Y.; Wilseck, Z. M.; Supkowski, R. M.; LaDuca, R. L. CrystEngComm 2011, 13, 1391−1399. (c) Farnum, G. A.; Wang, C. Y.; Supkowski, R. M.; LaDuca, R. L. Inorg. Chim. Acta 2011, 375, 280− 289. (d) Blake, K. M.; Lucas, J. S.; LaDuca, R. L. Cryst. Growth Des. 2011, 11, 1287−1293. (e) Chai, X. C.; Sun, Y. Q.; Lei, R.; Chen, Y. P.; Zhang, S.; Cao, Y. N.; Zhang, H. H. Cryst. Growth Des. 2010, 10, 658− 668. (f) Borel, C.; Ghazzali, M.; Langer, V.; Ö hrström, L. Inorg. Chem. Commun. 2009, 12, 105−108. (35) (a) Chrysomallidou, K. E.; Perlepes, S. P.; Terzis, A.; Raptopoulou, C. P. Inorg. Chim. Acta 2011, 373, 262. (b) Wengrovius, J. H.; Garbauskas, M. F. Organometallics 1992, 11, 1334. (c) Srivastava, R. S.; Fronczek, F. R. Inorg. Chim. Acta 2009, 362, 2650. (36) (a) Wemple, M. W.; Tsai, H. L.; Streib, W. E.; Hendrickson, D. N.; Christou, G. Chem. Commun. 1994, 1031. (b) Wemple, M. W.; Tsai, H. L.; Wang, S.; Claude, J. P.; Streib, W. E.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Inorg. Chem. 1996, 35, 6437.
(37) Castineiras, A.; Sicilia-Zafra, A. G.; González-Pérez, J. M.; Choquesillo-Lazarte, D.; Niclos-Gutiérrez, J. Inorg. Chem. 2002, 41, 6956. (38) (a) Yokomori, Y.; Hodgson, D. J. Inorg. Chem. 1988, 27, 2008. (b) Gao, E.; Sun, Y.; Liu, Q.; Duan, L. J. Coord. Chem. 2006, 59, 1295. (c) Rocho, F. D.; Massarweh, G. Inorg. Chim. Acta 2006, 359, 4095. (39) (a) Rodríguez-Fortea, A.; Alemany, P.; Alvarez, S.; Ruiz, E. Chem.Eur. J. 2001, 7, 627. (b) Rodríguez-Martín, Y.; HernándezMolina, M.; Sanchiz, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Dalton Trans. 2003, 2359−2365 and references therein.. (40) Lines, M. E. J. Phys. Chem. Solids 1970, 31, 101. (41) Fisher, M. E. Am. J. Phys. 1964, 32, 343. (42) Déniz, M.; Pasán, J.; Ferrando Soria, J.; Fabelo, O.; CañadillasDelgado, L.; Yuste, C.; Julve, M.; Cano, J.; Ruiz-Pérez, C. Inorg. Chem. 2011, 50, 10765−10776.
4518
dx.doi.org/10.1021/cg300670a | Cryst. Growth Des. 2012, 12, 4505−4518