Incorporating Risk Assessment into the Resource Conservation and

Jul 23, 2009 - This paper reviews the types of risk assessments being conducted to develop regulations for the control of hazardous wastes under the R...
1 downloads 7 Views 793KB Size
9 Incorporating Risk Assessment into the Resource Conservation and Recovery Act Regulatory Process CURTIS HAYMORE

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

U.S. Environmental Protection Agency, Office of Solid Waste, Washington, DC 20460 T h i s paper reviews the types o f r i s k a s s e s s ments being conducted to develop r e g u l a t i o n s f o r the c o n t r o l of hazardous wastes under the Resource Cons e r v a t i o n and Recovery A c t . B e t t e r data and Executive Order 12291 have spurred the development of more d e t a i l e d r i s k assessment models in our r e g u l a tory analyses. The first of three p r o j e c t s is a broad policy overview of the e n t i r e hazardous waste program t h a t focuses on the r i s k s and costs of different combinations of wastes, t e c h n o l o g i e s , and environmental s e t t i n g s . The second p r o j e c t is a s e r i e s of Regulatory Impact Analyses t h a t will r e view our first wave of s e v e r a l r e g u l a t i o n s . The third p r o j e c t is designed t o tailor r e g u l a t i o n s to specific i n d u s t r i e s and waste streams. The r e g u l a t i o n of hazardous waste i s one of the most complex problems with which the Environmental P r o t e c t i o n Agency has had to d e a l . Hazardous wastes g e n e r a l l y c o n t a i n many substances t h a t adversely a f f e c t human h e a l t h and the environment. The types of e f f e c t s d i f f e r ; the t i m i n g of t h e i r occurrence v a r i e s ; the waste streams change through time, and o f t e n no two batches a r e the same, even when they are from the same p l a n t that runs the same process continuously. And the wastes come from firms i n a l l i n dustries, large and small, p r o f i t a b l e and marginal. T h i s comp l e x i t y has prevented EPA from r e g u l a t i n g hazardous waste a c t i v i t i e s as q u i c k l y and as thoroughly as we and Congress had hoped. We w i l l , however, soon have a f u l l s e t of r e g u l a t i o n s t h a t the States and EPA can implement. We are now r e a s s e s s i n g those regul a t i o n s and hope to propose any necessary r e v i s i o n s i n 1983. One of the most important goals of the Resource Conservation and Recovery A c t of 1976 was t o p r o t e c t human h e a l t h and the environment from the r i s k s posed by hazardous waste. The measurement of those r i s k s and the determination of how best t o reduce them i n v o l v e a s s e s s i n g t h e inherent hazards of different 0097-6156/82/0204-0117$06.00/0 © 1982 American Chemical Society

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

118

RISK

ASSESSMENT

AT

HAZARDOUS

WASTE

SITES

chemicals/ t h e i r p o t e n t i a l f o r exposure/ and the consequent e f f e c t s of various waste streams and t h e i r chemical c o n s t i t u e n t s on people and the environment. Analyzing these r i s k s / even i f i n a very crude way, i s a b s o l u t e l y e s s e n t i a l to the development of our regulatory program. We cannot determine what we want our r e g u l a t i o n s to accomplish/ we cannot compare a l t e r n a t i v e methods of a c h i e v i n g our goals/ and we cannot gauge our success without some form of r i s k assessment. Even though there i s considerable uncertainty i n v o l v e d i n t h i s area, we i n the O f f i c e of S o l i d Waste are deeply committed t o u s i n g such assessments to improve our a b i l i t y to produce f a i r and e f f e c t i v e r e g u l a t i o n s . We hope t o use these types of analyses i n making a l l of our major d e c i s i o n s . Although i n many areas we w i l l only be able to analyze gross d i f f e r e n c e s i n r i s k / we f e e l that some information i s b e t t e r than none. Comprehensive r i s k assessments are our goal/ but the p r e c i s i o n of our e f f o r t s w i l l vary g r e a t l y i n d i f f e r e n t p r o j e c t s depending on the data and p r e d i c t i v e models available. In the past/ the O f f i c e of S o l i d Waste d i d not e x p l i c i t l y use formal r i s k assessments i n developing r e g u l a t i o n s . The regul a t i o n s f o r hazardous waste f a c i l i t i e s proposed by EPA i n 1978 were l a r g e l y design and performance standards. We d i d t h i s because we had very l i m i t e d data, and there was no recognized s t a t e of the a r t . In 1981/ we incorporated r i s k assessment i n t o what was c a l l e d the best engineering judgment (or BEJ) approach to r e g u l a t i n g the land d i s p o s a l and i n c i n e r a t i o n of hazardous waste. These assessments were to be done on a s i t e - b y - s i t e b a s i s , w i t h the owners and operators r e s p o n s i b l e f o r demonstrating t h a t t h e i r f a c i l i t i e s would not pose a t h r e a t to human h e a l t h and the e n v i ronment. Some members of the regulated community objected t o the u n c e r t a i n t y i n v o l v e d i n t h a t approach. They f e l t requirements would vary i n unpredictable ways f o r each s i t e . EPA now agrees that we should provide b e t t e r guidance about what l e v e l s of cont r o l are acceptable. EPA's new r e g u l a t i o n s f o r land d i s p o s a l r e f l e c t t h i s need f o r b e t t e r guidance and w i l l p r i m a r i l y use e n v i ronmental performance standards. I f f a c i l i t i e s cannot meet those standards/ they can s t i l l attempt t o make a demonstration based on a r i s k assessment t h a t t h e i r operation i s acceptably safe even i f the performance standard i s v i o l a t e d . In the reexamination of our e x i s t i n g r e g u l a t i o n s and f o r t h coming land d i s p o s a l r e g u l a t i o n s / the O f f i c e of S o l i d Waste i s u s i n g r i s k assessments as a p a r t of i t s i n t e r n a l review. We bel i e v e / f i r s t of a l l / t h a t as much a n a l y s i s as p o s s i b l e should be done beforehand and be i n c o r p o r a t e d i n t o the r e g u l a t i o n s to m i n i mize costs and promote consistency. Second/ we now have and are c o n t i n u i n g to o b t a i n much b e t t e r data. Such information/ which was not a v a i l a b l e to the Agency p r i o r to promulgation of the c u r rent r e g u l a t i o n s , w i l l c o n t r i b u t e s i g n i f i c a n t l y to our knowledge of the number/ types/ and l o c a t i o n s of hazardous waste management f a c i l i t i e s and the wastes they handle, and/ consequently/ to

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

9.

HAYMORE

Incorporating Assessment in Regulatory Process

119

meaningful r i s k a n a l y s i s . A t h i r d reason f o r u s i n g more r i s k assessment i n our development and review of r e g u l a t i o n s i s the f r i e n d l y encouragement of Executive Order 12291, which r e q u i r e s t h a t c o s t - b e n e f i t s t u d i e s be completed on a l l major r e g u l a t i o n s to the g r e a t e s t extent p o s s i b l e . We must recognize, however, t h a t our a b i l i t i e s may be l i m i t ­ ed by a lack of other types of data and by the l i m i t a t i o n s of the r a p i d l y e v o l v i n g s c i e n c e of r i s k assessment. In an e f f o r t t o minimize these l i m i t a t i o n s , the O f f i c e of S o l i d Waste i s i n v e s t i ­ gating the best a v a i l a b l e r i s k assessment techniques. These i n ­ clude e s t i m a t i o n of the movement of p o l l u t a n t s through s o i l , a i r , and water; p r e d i c t i o n of adverse human h e a l t h and environmental e f f e c t s on the basis of a v a i l a b l e t o x i c i t y data; and p r e d i c t i o n of the e f f e c t s of simultaneous exposures to numerous t o x i c sub­ stances. OSW i s , i n a d d i t i o n , a c t i v e l y compiling data r e l a t i v e to the cost, a p p l i c a b i l i t y , and e f f e c t i v e n e s s of c u r r e n t l y a v a i l ­ able waste treatment, storage, and d i s p o s a l t e c h n o l o g i e s . S p e c i f i c work we now have under way f a l l s i n t o three catego­ r i e s : our RCRA strategy p r o j e c t , a s e r i e s of Regulatory Impact Analyses, and d e t a i l e d s t u d i e s on s p e c i f i c i n d u s t r i e s and waste streams. The s t r a t e g y p r o j e c t i s our broadest approach to e v a l u ­ a t i n g r i s k s and costs. I t i s an attempt to achieve an overview of our program and to determine our general c o n s t r a i n t s . What are the approximate c o s t s to s o c i e t y f o r d i f f e r e n t degrees of environmental s a f e t y ? What happens when wastes are c o n t r o l l e d to d i f f e r e n t l e v e l s by means of d i f f e r e n t technologies? To what extent do wastes flow from s a f e r t e c h n o l o g i e s to l e s s s a f e t e c h ­ nologies because of lower costs of d i s p o s a l and treatment? We are t r y i n g to answer these questions by l o o k i n g at waste manage­ ment s i t u a t i o n s i n a s p e c i a l way. We ask what wastes we have, what we are doing with them (that i s , what type of technology we are u s i n g and t o what l e v e l of c o n t r o l ) , and where we are p h y s i ­ c a l l y i n terms of the environmental s e t t i n g or l o c a t i o n . These combinations of wastes, environments, and t e c h n o l o g i e s c o n s t i t u t e our u n i t of a n a l y s i s . Some people c a l l t h i s the W Ε Τ o r WET approach. I t allows us to compare the degree of hazard posed by d i f f e r e n t waste management s i t u a t i o n s . Our p r o j e c t d i f f e r s from other degree of hazard approaches i n two important r e s p e c t s . F i r s t , we are not simply t r y i n g to take a l i s t of wastes and waste streams and d i v i d e them i n t o c a t e g o r i e s of i n t r i n s i c hazard. We are attempting, i n general, to consider t h e i r p o t e n t i a l f o r e f f e c t s on humans, and t h a t r e ­ q u i r e s a c a r e f u l c o n s i d e r a t i o n of t e c h n o l o g i e s and environmental s e t t i n g s , as w e l l as inherent hazard. What may r e s u l t from t h i s approach are groupings of wastes whose hazards vary a c c o r d i n g to the environmental s e t t i n g or the technology used. The second important advantage over other degree of hazard approaches i s that we are a s s e s s i n g not j u s t r i s k . We are, i n a d d i t i o n , t r y i n g to assess the costs of a c h i e v i n g the v a r i o u s l e ­ v e l s of c o n t r o l . T h i s combination of the amount of environmental

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

120

RISK

ASSESSMENT

AT

HAZARDOUS WASTE

SITES

and h e a l t h s a f e t y we c a n b a y w i t h v a r y i n g amounts o f s o c i e t y ' s resources i s t h e important and r e l e v a n t p o l i c y i s s u e . How c a n we do t h i s a s s e s s m e n t f o r t h e e n t i r e r a n g e o f h a z a r d o u s w a s t e s i t u a t i o n s ? We o b v i o u s l y h a v e h a d t o make many s i m p l i f y i n g assumptions. F i r s t , we a r e i n i t i a l l y l i m i t i n g o u r r e v i e w t o human h e a l t h e f f e c t s . S e c o n d , we t r e a t r i s k very b r o a d l y — o u r system o n l y d i s t i n g u i s h e s between t e n f o l d d i f f e r ences i n r i s k . T h i r d , o n l y d i r e c t c a p i t a l and o p e r a t i n g expenses are estimated. F o u r t h , we a r e a s s u m i n g t h a t d i f f e r e n t c h r o n i c h e a l t h e f f e c t s c a n be a g g r e g a t e d i n t o a s i n g l e v a l u e by s c o r i n g the p r o b a b i l i t y o f i n c i d e n c e s p e r u n i t dose. And, f i n a l l y , we are i n i t i a l l y i g n o r i n g acute e f f e c t s such as t h o s e from f i r e s and explosions. L e t me s p e n d a m i n u t e d e s c r i b i n g o u r m e t h o d o l o g y . We s p e c i f y 22 t r e a t m e n t t e c h n o l o g i e s and 9 d i s p o s a l t e c h n o l o g i e s . Our t r e a t m e n t t e c h n o l o g i e s i n c l u d e s u c h t h i n g s a s vacuum f i l t e r s , chemical p r e c i p i t a t i o n , and four l e v e l s o f i n c i n e r a t i o n . Disposal technologies include three l e v e l s of l a n d f i l l s (distinguished by t h e d e g r e e o f s t r i n g e n c y ) , one t y p e o f u n d e r g r o u n d i n j e c t i o n w e l l , t h r e e t y p e s o f s u r f a c e impoundments, a n d s o f o r t h . For e a c h t e c h n o l o g y , we s p e c i f y t h e t y p e s o f w a s t e s t r e a m s i t c a n a n d c a n n o t h a n d l e . W a s t e s t r e a m s composed o f p r i m a r i l y h e a v y m e t a l s , f o r e x a m p l e , w i l l n o t be i n c i n e r a t e d . We s p e c i f y what e f f e c t t h e t r e a t m e n t s t e p s have on t h e w a s t e s t r e a m s i n t e r m s o f v o l u m e s , concentrations of hazardous c o n s t i t u e n t s , and so f o r t h . We t h e n e s t i m a t e what p o r t i o n o f t h e waste s t r e a m e n t e r i n g each t e c h nology, b o t h treatment and d i s p o s a l , escapes i n t o t h e d i f f e r e n t e n v i r o n m e n t a l media — a i r , s u r f a c e water, and ground water. F o r e a c h volume o f w a s t e g o i n g t h r o u g h t h e m o d e l , t h e r e l e a s e s t o e a c h m e d i a a r e summed. We a l s o compute t h e c o s t o f u s i n g t h i s s t r i n g o r c h a i n o f treatment and d i s p o s a l t e c h n o l o g i e s , i n c l u d i n g high, low, and t y p i c a l c o s t s . Costs, i n t h i s model, a r e d i r e c t c a p i t a l a n d o p e r a t i n g e x p e n s e s a n d e x c l u d e t r a n s f e r payments s u c h a s t a x e s a n d f e e s . We e x p r e s s t h e s e c o s t s a s a s c o r e , where e a c h higher value represents roughly a doubling of cost p e r u n i t of w a s t e . A t t h i s p o i n t , we have r e l e a s e r a t e s o f w a s t e s t r e a m s a n d t h e i r c h e m i c a l components f r o m d i f f e r e n t c o m b i n a t i o n s o f t e c h n o l o g i e s and t h e a s s o c i a t e d c o s t s . Now we must d e t e r m i n e how d a n gerous t h e s e r e l e a s e s a r e . To do s o , we s w i t c h t o t h e r i s k s i d e of o u r model. To e s t a b l i s h r i s k , we have i n i t i a l l y s c o r e d 140 c h e m i c a l compounds o n what we a r e c a l l i n g t h e i n h e r e n t h a z a r d o f t h e comp o u n d . F o r t h e f i r s t r o u n d o f t h e p r o j e c t , we a r e o n l y l o o k i n g a t t h e r i s k t o human h e a l t h a n d a r e e x c l u d i n g e c o n o m i c a n d e c o logical risks. Our g o a l when s c o r i n g f o r r i s k t o human h e a l t h i s t o have a s i n g l e value r e p r e s e n t a l l types o f e f f e c t s from d i f f e r e n t types of cancers t o d i f f e r e n t kinds o f graded responses s u c h a s l i v e r damage. The c o n c e p t u a l l i n k we a r e t r y i n g t o u s e i s , a s I mentioned e a r l i e r , t h e p r o b a b i l i t y o f an i n c i d e n t p e r u n i t d o s e . A s c o r e o f " 2 " on o u r s c a l e , f o r e x a m p l e , i s i n t e n d e d

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

9.

HAYMORE

Incorporating Assessment in Regulatory Process

121

to represent roughly a 1 percent r i s k o f e i t h e r c o n t r a c t i n g cancer o r having an adverse e f f e c t from consuming 1 mg of p o l l u t a n t f o r every 1 k g of body weight p e r day. We obviously make some gross assumptions t o allow our conceptual model t o use p u b l i s h e d data. The model assumes, s p e c i f i c a l l y , a l i n e a r dose response f o r carcinogens. I t a l s o assumes t h a t most reported MEDs, or minimum e f f e c t i v e doses, correspond t o a r i s k o f about 10 p e r cent. We w i l l t r y t o t e s t the s e n s i t i v i t y of our r e s u l t s i n r e l a t i o n to these assumptions as the p r o j e c t continues. The system then adjusts these scores t o account f o r t h e way d i f f e r e n t compounds r e a c t i n the d i f f e r e n t media — a i r , ground water, and s u r f a c e water. On the b a s i s p r i m a r i l y of a compound's h a l f - l i f e i n a medium and on d i s p e r s i o n patterns, we a s s i g n each compound a separate inherent r i s k score f o r each medium. The s c a l e we use i s very coarse: each l e v e l i s 10 times greater than the previous l e v e l . The data now i n the model i s , t h e r e f o r e , i n s e n s i t i v e t o r i s k s t h a t are only two or thre times as great as others. We found i t convenient t o express the t e n - f o l d d i f f e r ences on a l o g a r i t h m i c u n i t s c a l e . We next attempt to c a l i b r a t e the model, o r e x p l a i n what a score of "8," f o r instance, means i n our system i n terms of r e leases to the environment. We conclude with a s e r i e s of r e l e a s e rates f o r compounds i n t o d i f f e r e n t media that r e f l e c t e s s e n t i a l l y the same r i s k . A score of "8," f o r example, may mean a r e l e a s e of 32 tons p e r year t o a i r of copper o r 63 tons p e r year of n i c k e l t o surface water. L e t us q u i c k l y review. On the technology s i d e , we develop the r e l e a s e r a t e s o f d i f f e r e n t waste streams i n t o d i f f e r e n t med i a . On the waste side, we have a way o f expressing and compari n g how hazardous these r e l e a s e s of the chemical components i n the waste stream are. A f t e r making some adjustments f o r d i f f e r ent environmental s e t t i n g s , we can score the r i s k and corresponding cost of d i s p o s i n g waste streams using d i f f e r e n t technologies in different places. By p u t t i n g c o n s t r a i n t s on the volumes of waste streams and the c a p a c i t i e s of d i f f e r e n t technologies, we can then use a l i n e a r programming model t o achieve some o b j e c t i v e function, o r goal. We a r e t r y i n g s e v e r a l d i f f e r e n t o b j e c t i v e f u n c t i o n s , but we w i l l i n general look a t the cost of a c h i e v i n g various l e v e l s of r i s k . The work i s being done under c o n t r a c t by ICF, Inc., SCS Engineers, and Clement A s s o c i a t e s . A computer model i n c o r p o r a t i n g these assumptions should be b u i l t and documented by May. We w i l l then be a d j u s t i n g , t e s t i n g , and expanding the model t o improve i t s performance. We intend t o be able t o use the model, even i n the short run, f o r a number of purposes. We can perhaps i d e n t i f y combinations of wastes, environments, and technologies where r e g u l a t o r y c o n t r o l can decrease or increase o r where, a t the extreme, we can p r o h i b i t c e r t a i n p r a c t i c e s o r t o t a l l y e l i m i nate r e g u l a t o r y requirements. We can i d e n t i f y those a l t e r n a t i v e s that seem most promising f o r d e t a i l e d c o s t - b e n e f i t analyses. The

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

122

RISK

ASSESSMENT

AT

HAZARDOUS

WASTE

SITES

RCRA strategy p r o j e c t i s — i t must be s t r e s s e d — a broad p o l i c y p l a n n i n g t o o l ; i t does not, and i s incapable of, developing and r e v i s i n g s p e c i f i c r e g u l a t i o n s . The second category of r i s k assessments being done by OSW i s p a r t of our l a r g e s t a n a l y t i c a l e f f o r t ; a s e r i e s of Regulatory Impact Analyses (RIAs) t h a t we are conducting as r e q u i r e d by Execut i v e Order 12291. These c o s t - b e n e f i t analyses are the r e a l b a s i s for any r e g u l a t o r y r e v i s i o n s we w i l l make i n the f u t u r e . Most of the RIAs focus on s p e c i f i c technologies — storage f a c i l i t i e s , l a n d f i l l s , i n c i n e r a t o r s , surface impoundments, and land treatment facilities. Two are r e l a t e d to environmental s e t t i n g s : seismic areas and f l o o d p l a i n s . One, waste o i l , i s focused on a p a r t i c u l a r waste stream. The RIAs c o n s i s t , i n general, of three steps — i d e n t i f y i n g the problem, s e l e c t i n g promising a l t e r n a t i v e s to solve the problem, and performing the d e t a i l e d c o s t - b e n e f i t a n a l yses needed t o s e l e c t appropriate r e g u l a t o r y requirements. I d e n t i f y i n g the extent of the problem r e q u i r e s extensive data. We are now c o l l e c t i n g these data through about 300 site v i s i t s and about 3,000 q u e s t i o n n a r i e s to hazardous waste f a c i l i t i e s and generators. The r e s u l t s of these s i t e v i s i t s and quest i o n n a i r e s , along with our other t e c h n i c a l , economic, and p o l i c y s t u d i e s , should provide the necessary information on which we can base f u t u r e a c t i o n . Some of the RIAs w i l l be more s o p h i s t i c a t e d than o t h e r s . The RIA on i n c i n e r a t i o n , f o r example, w i l l be able t o model and, to some extent, q u a n t i f y the r e l a t i v e r i s k to h e a l t h u s i n g a c t u a l i n c i n e r a t o r data, a t l e a s t f o r a few chemicals and waste streams, f o r the most exposed i n d i v i d u a l and f o r the e n t i r e exposed popul a t i o n . The RIA on i n c i n e r a t i o n uses the I n d u s t r i a l Source Complex d i s p e r s i o n model developed by EPA's O f f i c e of A i r Q u a l i t y Planning and Standards. We have or are r e c e i v i n g i n h a l a t i o n toxi c i t y data from the Environmental C r i t e r i a and Assessment O f f i c e i n EPA f o r most of the compounds l i s t e d i n Appendix VIII of our r e g u l a t i o n s . We w i l l run the model assuming d i f f e r e n t d e s t r u c t i o n e f f i c i e n c i e s , d i f f e r e n t stack heights, d i f f e r e n t waste streams, and d i f f e r e n t p o p u l a t i o n d i s t r i b u t i o n s . The model c a l c u l a t e s the r i s k t o people i n the "hot s p o t s , " t h a t i s the most exposed i n d i v i d u a l s , i n terms of l i f e t i m e r i s k of cancer. (We are p r i m a r i l y e s t i m a t i n g h e a l t h r i s k s from cancer at t h i s p o i n t . ) The model a l s o c a l c u l a t e s the numbers of probable cancers f o r the community and region as a whole. We b e l i e v e that l i n k i n g t h i s d i s p e r s i o n model to the t o x i c i t y estimates y i e l d s s t a t e of the a r t r e s u l t s i n q u a n t i f y i n g the h e a l t h hazards (or h e a l t h b e n e f i t s i n terms of avoided h e a l t h e f f e c t s ) a s s o c i a t e d with i n c i n e r a t o r s . The RIA on land d i s p o s a l , conversely, w i l l probably not be as q u a n t i t a t i v e o r s p e c i f i c about the r i s k s posed. In both i n c i n e r a t i o n and land d i s p o s a l , however, we b e l i e v e we w i l l be using the s t a t e of the a r t i n assessing r i s k s f o r hazardous waste f a c i l i t i e s . These r i s k assessments are under way, and we expect r e s u l t s sometime next year. You must remember though,

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by CORNELL UNIV on October 16, 2016 | http://pubs.acs.org Publication Date: October 20, 1982 | doi: 10.1021/bk-1982-0204.ch009

9.

HAYMORE

Incorporating Assessment in Regulatory Process

123

t h a t the purpose o f these s t u d i e s i s t o help develop r e g u l a t i o n s . The methods u s e d i n d e v e l o p i n g t h e R I A s a r e n o t , i n g e n e r a l , d e signed f o r assessing the a c t u a l r i s k s of s p e c i f i c , individual sites. The t h i r d c a t e g o r y o f a c t i v i t i e s we a r e p u r s u i n g i n r i s k a s sessment i s the d e t a i l e d a n a l y s i s o f s p e c i f i c i n d u s t r i e s o r waste streams. T h i s i n d u s t r y s t u d i e s program w i l l r e s u l t i n t a i l o r e d r e g u l a t i o n s , b a s e d on s p e c i f i c w a s t e s t r e a m a n a l y s e s , i d e n t i f i e d i n d u s t r i a l processes, and p a r t i c u l a r l o c a t i o n s . We may e i t h e r i n c r e a s e o r decrease the s t r i n g e n c y o f c u r r e n t c o n t r o l s o r c l a s s i f y new w a s t e s t r e a m s a s h a z a r o u s o n t h e b a s i s o f o u r f i n d i n g s . We a r e now e x a m i n i n g c h l o r i n a t e d o r g a n i c chemicals and o r g a n i c c h e m i c a l p r o d u c t s such a s p e s t i c i d e s , dyes, a n d pigments. We w i l l soon e x p a n d o u r e f f o r t t o c o v e r o t h e r a s p e c t s o f t h e o r g a n i c c h e m i c a l s i n d u s t r y . The d a t a g a t h e r e d u n d e r t h e w a s t e c h a r a c t e r i z a t i o n component w i l l d e t e r m i n e t h e w a s t e s t r e a m s o f c o n c e r n from s p e c i f i c production processes f o rlisting as hazardous wastes. The w a s t e management component w i l l a l s o h e l p i n l i s t i n g wastes by c h a r a c t e r i z i n g e x i s t i n g p r a c t i c e s . I n addition, the approach w i l l p r o v i d e decisionmakers w i t h i n f o r m a t i o n t h a t they can u s e i n t a i l o r i n g management s t a n d a r d s . How s u c c e s s f u l w i l l we be i n a l l o u r e f f o r t s ? I b e l i e v e we w i l l g r e a t l y a d v a n c e o u r u n d e r s t a n d i n g o f t h e a c t i v i t i e s we a r e r e g u l a t i n g , and, a s a r e s u l t , we a r e v e r y l i k e l y t o be a b l e t o i m p r o v e t h e e f f i c i e n c y o f o u r r e g u l a t i o n s . We s h o u l d be a b l e t o o b t a i n more s a f e t y , a t a l o w e r c o s t , w i t h f e w e r b u r d e n s and m i s p l a c e d i n c e n t i v e s t o i n d u s t r y , a n d w i t h more c o n s i s t e n c y t h a n we do now. Our RCRA s t r a t e g y p r o j e c t s h o u l d e n a b l e u s t o a v o i d b i g mistakes and s h o u l d p r o v i d e a b a s i s f o r making b e t t e r d e c i s i o n s than i n the p a s t . Our a s s e s s m e n t o f t h e r i s k s p o s e d b y i n c i n e r a t o r s s h o u l d be t h e most s t r u c t u r e d o f o u r R e g u l a t o r y Impact A n a l y s e s . The d e t a i l we w i l l b e a b l e t o a c h i e v e i n t h e o t h e r a r e a s i s u n c e r t a i n , b u t we b e l i e v e o u r work w i l l r e p r e s e n t t h e b e s t t h a t c a n be a c c o m p l i s h e d now. We need b e t t e r t o o l s t o a n a l y z e t h e e f f e c t s o f our programs. Our two p r i m a r y t o o l s a r e e c o n o m i c a n a l y s i s a n d risk analysis. We p l a n t o r e l y h e a v i l y o n them. T o do l e s s w o u l d be s h o r t - s i g h t e d a n d i r r e s p o n s i b l e . RECEIVED

June 16, 1982.

Long and Schweitzer; Risk Assessment at Hazardous Waste Sites ACS Symposium Series; American Chemical Society: Washington, DC, 1982.