Industrial Gas Separations - ACS Publications - American Chemical

more c r i t i c a l when the f u e l gas i s used i n combined c y c l e power generation or in fuel ... the final polishing step to reduce H2S level...
0 downloads 0 Views 1MB Size
13

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 13, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch013

High-Temperature Hydrogen Sulfide Removal Using a Regenerable Iron Oxide Sorbent S. S. TAMHANKAR and C. Y. WEN West Virginia University, Department of Chemical Engineering, Morgantown, WV 26506

A state-of-the-art review is presented of high temperature H S removal and sorbent regeneration using an iron oxide sorbent, with a particular emphasis on kinetic and mechanistic studies of the reactions involved. Selection criteria for a high temperature H S sorbent and the various sorbent regeneration options are f i r s t briefly discussed. Results are then presented on the kinetics of the various reactions involved in the absorption and the regeneration steps. These studies were conducted in a thermogravimetric analyzer (TGA). The weight change data obtained in the TGA was used in conjunction with x-ray and Mossbauer spectroscopic analyses of the solid samples to elucidate the mechanisms of the reactions. Conversion correlations are reported based on the grain model, which can be used for reactor design and for predicting reactor per­ formance. 2

2

S i g n i f i c a n t e f f o r t i s underway i n t h e U n i t e d S t a t e s t o d e v e l o p and c o m m e r c i a l i z e c o a l g a s i f i c a t i o n p r o c e s s e s f o r p r o d u c i n g gaseous f u e l s . One o f t h e m a j o r o b s t a c l e s i n t h e development o f such a p r o c e s s i s the p r e s e n c e o f u n d e s i r a b l e c o n t a m i n a n t s i n t h e p r o d u c t gas s t r e a m . The m a j o r c o n t a m i n a n t i n c o a l g a s i f i c a t i o n i s hydrogen s u l f i d e (H2S), which i s t o x i c , p o i s o n o u s t o d o w n s t r e a m c a t a l y s t s and e x t r e m e l y c o r r o s i v e i n nature. C o n t r o l o f H2S i n t h e f u e l gas t o a s a f e l e v e l i s therefore essential. The H S r e m o v a l r e q u i r e m e n t s a r e e v e n more c r i t i c a l when t h e f u e l gas i s u s e d i n c o m b i n e d c y c l e power generation or i n fuel c e l l s . C o n v e n t i o n a l methods o f H2S r e m o v a l use a c o l d s c r u b b i n g t e c h n i q u e , w h e r e i n t h e gas n e e d s t o b e c o o l e d t o n e a r room temperature. Although such techniques are e f f e c t i v e , they are a s s o c i a t e d w i t h a l o s s o f s e n s i b l e h e a t o f the g a s . The o t h e r 2

0097-6156/83/0223-0255$07.25/0 © 1983 A m e r i c a n Chemical Society

In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 13, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch013

256

I N D U S T R I A L GAS

SEPARATIONS

disadvantages o f c o l d scrubbing i n c l u d e r e s t r i c t i o n by a v a i l a b i l i t y o f water, sludge d i s p o s a l problem and condensation and mixi n g o f t a r s w i t h t h e scrubber water posing h a n d l i n g problems. I n v i e w o f t h e s e , a n d m a i n l y f o r t h e r m a l e f f i c i e n c y , r e m o v a l o f H2S at high temperatures i s very a t t r a c t i v e . Besides, fuel c e l l s and c o m b i n e d c y c l e power g e n e r a t i o n s y s t e m s u s e t h e h o t f u e l g a s directly. This f u r t h e r improves t h e o v e r a l l thermal e f f i c i e n c y . F i g u r e 1 shows a s c h e m a t i c o f t h e i n t e g r a t e d s y s t e m c o n f i g u r a tions for various applications. The f i g u r e a l s o i n c l u d e s t h e l i m i t v a l u e s o f H2S c o n c e n t r a t i o n f o r t h e s e a p p l i c a t i o n s . The s u b j e c t o f t h i s paper i s t h e b u l k s u l f u r r e m o v a l , whereby t h e c o n c e n t r a t i o n i s b r o u g h t down t o a b o u t 200 ppm. Sorbent S e l e c t i o n The c r i t e r i a u s e d i n s e l e c t i n g a s u i t a b l e s o r b e n t a r e : e f f i c i e n c y , s u l f u r capture c a p a c i t y , k i n e t i c s , c o s t , p h y s i c a l s t r e n g t h and r e g e n e r a b i l i t y . Sorbent e f f i c i e n c y i m p l i e s t h e maximum amount o f H2S t h a t c a n b e removed u n d e r a g i v e n s e t o f o p e r a t i n g c o n d i t i o n s , based on t h e thermodynamic e q u i l i b r i u m o f t h e s y s t e m . F i g u r e 2 ( 1 ) shows e q u i l i b r i u m H2S c o n v e r s i o n s i n t h e p r e s e n c e o f v a r i o u s s o r b e n t m a t e r i a l s i n r e l a t i o n t o t h e EPA s u l f u r emission standards. A t a l l t h e temperatures o f i n t e r e s t i r o n - b a s e d s o r b e n t s seem t o b e s a t i s f a c t o r y . Zinc oxide i s p r o b a b l y t h e b e s t i n t h i s r e s p e c t , and c a n i n f a c t be used f o r t h e f i n a l p o l i s h i n g s t e p t o r e d u c e H2S l e v e l t o l e s s t h a n 1 ppm. S u l f u r c a p t u r e c a p a c i t y o f a s o r b e n t depends on t h e s t o i c h i o m e t r y of the r e a c t i o n . I n t h e temperature range o f i n t e r e s t , i r o n o x i d e (Fe2Û3) c a p t u r e s a b o u t 44 w e i g h t % s u l f u r . An i m p o r t a n t a s s e t o f i r o n o x i d e a s a n H2S s o r b e n t i s i t s reactivity. The r e s u l t s o f a c o m p a r a t i v e s t u d y shown i n F i g u r e 3 ( 1 ) r e v e a l t h a t i r o n o x i d e i s b y f a r t h e most a c t i v e among the oxides considered. T h i s i s an i m p o r t a n t f a c t o r i n t h e c h o i c e o f Fe203 as a s o r b e n t . B a s e d on c r i t e r i a o f e f f i c i e n t H S r e m o v a l a b o v e 1000°F, p h y s i c a l s t r e n g t h , r e g e n e r a b i l i t y , sorbent l i f e and economic f e a s i b i l i t y , l a b o r a t o r y t e s t s (£,3) l e d t o t h e s e l e c t i o n o f i r o n o x i d e mixed w i t h f l y ash, i n extruded p e l l e t s , as a promising sulfur-removal sorbent. In a commercial s c a l e o p e r a t i o n p h y s i c a l s t r e n g t h o f the s o r b e n t p e l l e t s i s i m p o r t a n t , e s p e c i a l l y i f a moving o r a f l u i d i z e d - b e d r e a c t o r i s used. P e l l e t s o f i r o n o x i d e alone a r e n o t s t r o n g enough; a d d i t i o n o f a s u p p o r t m a t e r i a l i s necessary. I n so doing, the percentage o f i r o n oxide should be k e p t a s h i g h a s p o s s i b l e t o m a i n t a i n t h e o v e r a l l h i g h e f f i c i e n c y o f H2S r e m o v a l . E x t e n s i v e t e s t s were conducted a t METC ( 4 ) , a n d t h e b e s t s u p p o r t a n d a n o p t i m u m c o m p o s i t i o n w i t h i t were found. T h i s s o r b e n t c o n s i s t e d o f 45 w e i g h t % 2

In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

HYDROCARBONS> IF ANY

PARTICULATE REMOVAL

1Û0ÛOC

REGENERATOR!

SORBENT

BULK S REMOVAL

2QQ

S

ELEMENTAL SULFUR RECOVERY

M

PPM

POWER GENERATION

COMBINED CYCLE

^ 1 PPM S

TRACE S REMOVAL

< 0.5

FUEL CELLS

S

F i g u r e 1. A s c h e m a t i c o f a n i n t e g r a t e d c o a l g a s i f i c a t i o n s y s t e m f o r f u e l c e l l o r combined-cycle-power-generation a p p l i c a t i o n s .

MPC

m -

HEAT RECOVERY

CONVENTIONAL USES

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 13, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch013

258

I N D U S T R I A L GAS

EPA fe/FeO

1200 K (1700°F) Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 13, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch013

SEPARATIONS

CaO

Cr 0 2

3

K CO

CO

Pb

ZnO

Ni MnO|

2

V

3

2°3

C

1

10

10"

10"

3

EPA E-

10'

No2s3

3

Pb

CO

Ni

Sn Bi

Na C0 2

10

-6

10

-7

IcaCO,

OQ 2

-5

Fe/FeO

1000 Κ (1340°F) Cr 0

10

4

ZnO

3

Cd