1
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
Helium Recovery Using Semipermeable Membranes F. E. MARTIN Westinghouse Oceanic Division, Annapolis, MD 21404 T. S. SNYDER and E. J. LAHODA Westinghouse Research & Development Center, Pittsburgh, PA 15235 A series of pure gas and gas mixture tests were performed, using a unique closed-circuit experimental loop. Based on data from continuous loop operations, a preliminary system design and economic evaluation were performed to recover helium from deep sea diving gas applications. This program was performed under Navy Contract N60921-79-C-A037 for the Naval Surface Weapons Center G-52. Membrane permeability was deter mined as a function of driving pressure and feed concentration for a single membrane element. Based on this data, a hypothetical design of a system to meet naval specifications was performed only as a con tractual requirement with the Navy and i s not intended as a specific Westinghouse system. Westinghouse at this time plans no such system for market. Projections based on the experimental data for the hypothetical system show that the least pure gas considered for the design, 58 mole % helium, could be enriched to better than 99.99% helium i n five permeator stages. This gas could be enriched, hypothetically, to a physiologically acceptable quality i n 3 stages. Carbon dioxide con centration i n the gas i s the design l i m i t i n g parameter. This i s a very conservative design estimate. The con servatism i s necessary due to the limited nature of the design data. The U . S . N a v y , i n p u r s u i t o f i t s many deep d i v i n g p r o g r a m s , must c u r r e n t l y d e a l w i t h e x p o n e n t i a l l y r i s i n g c o s t s and numerous supply d i f f i c u l t i e s concerning i t s prime d i l u e n t f o r b r e a t h i n g gas-helium. The l o g i s t i c s p r o b l e m s o f p r o v i d i n g l a r g e q u a n t i t i e s o f h i g h p r e s s u r e gas t o r e m o t e d i v i n g s i t e s o v e r e x t e n d e d d i v e i n t e r v a l s , r e g a r d l e s s of weather c o n d i t i o n s , a r e d i f f i c u l t to quantify. H o w e v e r , p r o v i s i o n f o r an i n d e f i n i t e s u p p l y o f d i l u e n t v i a an o n - b o a r d d e v i c e t h a t r e c y c l e s expended g a s , w i t h r e l a t i v e l y m i n o r p e n a l t y t o o p e r a t i o n a l / m a i n t e n a n c e c o s t s and d e c k s p a c e , 0097-6156/83/0223-0001$07.25/0 © 1983 American Chemical Society In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
2
INDUSTRIAL
GAS
SEPARATIONS
would appear t o be d e s i r a b l e . The b e n e f i t b o t h t o p r o g r a m c o n t i n g e n c y p l a n n i n g and t o d i v e s a f e t y c o u l d be s u b s t a n t i a l , even i f t h e d e v i c e w e r e r e l e g a t e d t o a b a c k u p o r s u p p l e m e n t a l mode o f operation. M o r e amenable t o q u a n t i t a t i v e and o b j e c t i v e a n a l y s i s i s t h e economic i n c e n t i v e f o r d e v e l o p i n g a r e c y c l e system. I t was p r e d i c t e d i n 1974(1) t h a t , f o r h e l i u m r e c o v e r y a t t h e w e l l - h e a d , a c o s t growth average o f 17.9% p e r y e a r c o u l d be a n t i c i p a t e d f o r t h e d e c a d e s u c c e e d i n g t h a t r e p o r t . However, i t i s f u r t h e r p r e d i c t e d t h a t n a t u r a l gas f i e l d s b e a r i n g ^ 0 . 3 % h e l i u m w i l l be d e p l e t e d b y 1990-95, a t w h i c h t i m e f i e l d s b e a r i n g < 0.1% must b e used. This would produce a sharp p r i c e e s c a l a t i o n t o wholesale p r i c e s f i v e times then-current r a t e s . Thereafter, projections a r e e n t i r e l y d e p e n d e n t o n how, w h e t h e r , a n d when h e l i u m c o n s e r v a t i o n and r e s e r v e s t o r a g e p o l i c i e s a r e i m p l e m e n t e d , a n d o n whether f u t u r e a i r s e p a r a t i o n technology w i l l enable c o m p e t i t i v e e x t r a c t i o n o f h e l i u m from t h e atmosphere. The Navy, w h i c h , b y o u r c o n s e r v a t i v e e s t i m a t e , ( 2 ) i s a c u r r e n t u s e r o f some 2,800,000 s t d f t ^ o f h e l i u m p e r y e a r , w o u l d b e n e f i t s u b s t a n t i a l l y from a s h i p b o a r d system t h a t c o u l d c a p t u r e 9 0 - 9 5 % o f c u r r e n t l y w a s t e d h e l i u m and c o n d i t i o n i t t o a c c e p t a b l e p u r i t y f o rre-use. The d e f i n i t i o n o f a c c e p t a b l e p u r i t y i s a s shown i n T a b l e I , w h e r e i n t h e d e s i g n g o a l s and d e s i g n r e q u i r e m e n t s are s e t f o r t h . The d e s i g n g o a l r e f l e c t s h e l i u m p u r i t y a s f o u n d i n b o t t l e s u p p l i e s m e e t i n g t h e r e f e r e n c e d s p e c i f i c a t i o n , G r a d e A, whereas t h e d e s i g n requirement i s d e r i v e d from an assortment o f a n a l y s e s b a s e d on t h e p r a c t i c a l , o p e r a t i o n a l c o n s t r a i n t s on a d i v e r ' s d i l u e n t g a s . As p e r n o t e 2 o f T a b l e I , t h e d e s i g n r e q u i r e m e n t c a n a l l o w a s much a s 1% 02 and 1% N 2 , and c o n s e q u e n t d r o p o f He t o 9 7 . 8 % , w i t h o u t i m p a i r i n g o r j e o p a r d i z i n g t h e u s e r ; h o w e v e r , t h e d e s i g n was t o i n c l u d e s i z i n g t o t h e 99.995% d e s i g n g o a l l e v e l t o o b t a i n a n e s t i m a t e f o r maximum d e s i g n c a p a c i t y needed. E x p e r i m e n t a l System D e s c r i p t i o n Figure 1 i s a schematic of the experimental loop c o n s t r u c t e d by t h e W e s t i n g h o u s e O c e a n i c D i v i s i o n t o e v a l u a t e s e m i p e r m e a b l e g a s e o u s membranes f o r h e l i u m r e c o v e r y . The k e y s y s t e m components i n F i g u r e 1 a r e the permeator modules, compressor, a f t e r c o o l e r , h u m i d i f i e r and t h e o n l i n e g a s c h r o m a t o g r a p h f o r s a m p l e a n a l y s e s . T h i s t e s t s y s t e m was u n i q u e i n t h a t i t a l l o w e d c l o s e d c i r c u i t f l o w o f m u l t i c o m p o n e n t g a s m i x t u r e s t o t h e membrane f o r s e p a r a t i o n , f o l l o w e d b y i m m e d i a t e r e c o m b i n a t i o n o f t h e p e r m e a t e and r e s i d u a l streams f o r r e c y c l e t o t h e feed s i d e . T h i s arrangement p e r m i t t e d a c o n s t a n t v o l u m e t r i c f e e d r a t e t o t h e membrane f o r p r o l o n g e d p e r i o d s w i t h o u t r e q u i r i n g p r o h i b i t i v e and c o s t l y g a s i n v e n t o r y . F u r t h e r , the e x p e r i m e n t a l c o n f i g u r a t i o n p r o v i d e d complete m o n i t o r i n g and c o n t r o l c a p a b i l i t i e s o v e r s u c h p a r a m e t e r s a s b a c k - p r e s s u r e , s p l i t - s t r e a m f l o w r a t e s , g a s t e m p e r a t u r e , h u m i d i t y and c o m p o s i t i o n .
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
1.
MARTIN
ET
AL.
Helium
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
Table I .
3
Recovery
H e l i u m P u r i t y G o a l s and R e q u i r e m e n t s
Component
Design^ ) Goal
Helium (minimum %)
99.995
Water Vapor (ppm)
10
Design^ Requirement 99
8
(2)
200
Rationale for Requirements Federal Specification BB-H-11680, Type I , Grade Β 3 0 ° F dew point at 1000 ft
Oxygen (ppm)
2
1%
p 0 2 = 0.3 atm at 850 ft
Nitrogen (%)
0
1%
Results i n same p N 2 at 850 ft as initially pressurizing chamber to 14 ft with air
Carbon Dioxide (ppm)
0
100
Carbon Monoxide (ppm)
0
12
Gaseous Hydrocarbons measured as Methane (ppm)
1
1
Federal Specification BB-H-11686, Type I, Grade C
Oil (mg/liter)
0
0.001
O S H A exposure limit
A l l others (ppm)
NOTES:
(1) (2)
37
37
p C 0 2 = 0.003 atm at 850 ft O S H A exposure limit
Federal Specification BB-H-11680, Type I, Grade A
M a x i m u m values by volume, unless otherwise indicated May be further reduced by the amount of oxygen and nitrogen present
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
INDUSTRIAL
GAS
SEPARATIONS
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
4
ο •Η
ϊ Φ
ϋ
Ό) -Ρ 03
φ
-Ρ •Η
αϊ Η ϋ
Membrane
Feed
Residue
Circumferential Seal
Spacer
Between Element O.D. And Pressure Housing, I.D. (Actually Set Within
Two Asymmetric Membrane
Special Seal-Carrying
Sheets, Sandwiching A Porous
Fitting)
"Spacer", Are Adhesively Bonded At Edges And Spirally Wrapped About Permeate "Core", To Which "Spacer" Empties Through Penetrations. These Spiral Wraps Are Separated From One Another By An
Permeate Flow Entering Core Penetration
Open-Lattice Feed-Channelling Material, Concurrently
Permeator Housing
Wrapped With The Membrane "Sandwich". The Resultant Permeator Element Is Then Over-Wrapped With Fiberglass
Feed Channel (Thickness Exaggerated -
Lay-Up, And Provided Necessary
Actually < 1/32 Inch
Seals And Fittings.
Thickness Allowing Smooth Cylindrical Over-Wrap Sidewall)
Figure 2 .
Spiral-wound permeator
configuration.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
8
INDUSTRIAL
GAS
SEPARATIONS
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
= p a r t i a l p r e s s u r e o f component i = p e r m e a b i l i t y c o n s t a n t f o r component i T a b l e I I I d e s c r i b e s t h e p e r m e a b i l i t y c o n s t a n t s as d e t e r m i n e d by t h i s s e t of experiments. As F i g u r e 3 shows, s t r i c t a p p l i c a t i o n o f E q u a t i o n 1 r e s u l t s i n 11 e q u a t i o n s i n 11 unknowns and an i t e r a t i v e s o l u t i o n f o r t h e d e s i g n s e q u e n c e . To c i r c u m v e n t t h i s cumbersome c a l c u l a t i o n , t h e s y s t e m p e r m s e l e c t i v i t y was u s e d t o e s t i m a t e t h e number o f s t a g e s r e q u i r e d i n t h e d e s i g n s e q u e n c e f o r t h e s e p a r a t i o n , and E q u a t i o n (1) was t h e n u s e d t o e s t i m a t e t h e a r e a r e q u i r e m e n t s k n o w i n g t h e s t a g e o u t l e t c o m p o s i t i o n s o f t h e p e r m e a t e and r e s i d u a l s t r e a m s . I n a d d i t i o n , s e p a r a t i o n f a c t o r s w e r e s e l e c t e d as t h e method of s c a l i n g the d a t a , r a t h e r than the p e r m e a b i l i t y c o e f f i c i e n t s , b e c a u s e t h i s method p r o v i d e s a more r e l i a b l e f i t o f t h e l i m i t e d data a v a i l a b l e . The d a t a was l i m i t e d b e c a u s e t h e 58% h e l i u m m i x t u r e i n T a b l e I I was n o t s t u d i e d e x p e r i m e n t a l l y due t o p l a s t i c i z a t i o n by w a t e r v a p o r o f t h e l a s t w o r k a b l e membrane m o d u l e . In a d d i t i o n t o b e i n g t h e most common h e l i u m m i x t u r e w h i c h t h e p r o t o type would encounter, t h i s m i x t u r e r e p r e s e n t s lower v a l u e s of the r a t i o 8 = [He]/[component i ] than s t u d i e d e x p e r i m e n t a l l y . U s i n g the s e p a r a t i o n f a c t o r s , the v a l u e s of 3feed/Bpermeate f o r the 58% h e l i u m m i x t u r e l i e b e t w e e n t h e o r i g i n ( 0 , 0 ) , a f i x e d b o u n d a r y , and t h e e x i s t i n g d a t a when p l o t t i n g 6 f e e d / B p e r m e a t e * Use o f p e r m e a b i l i t i e s w o u l d r e q u i r e e x t r a p o l a t i o n as o p p o s e d t o s e p a r a tion factor interpolation. T h e r e f o r e , t h e s e p a r a t i o n f a c t o r was selected for scaling. The p e r m s e l e c t i v i t i e s , o r s e p a r a t i o n f a c t o r s , d e f i n e d by E q u a t i o n (3) were u s e d t o s c a l e t h e e x p e r i m e n t a l d a t a f o r d e s i g n purposes. The s y s t e m p e r m s e l e c t i v i t y i s a n a l o g o u s t o t h e d i s t i l lation separation factor
rc [Sep.
( p
c + i factor]
H
e
He
}
= — x
v p
( P
feed
;
}
He , permeate / ~r~~r x'permeate
, . (3)
v p
x feed
d i s c u s s e d by McCabe & Smith(_3) and by T r e y b a l ( 5 ) , d e f i n e d by E q u a t i o n ( 4 ) , t h e r e l a t i v e v o l a t i l i t y cC i j , f o r a b i n a r y s y s t e m . a
i j
- PÎ'Pj -
(
P
/ P A
)
B vapor
/ ( p
a
/ p
)
B liquid
(4)
The p e r m s e l e c t i v i t y f o r membrane s e p a r a t i o n s can a l s o be c a l c u l a t e d by s u b s t i t u t i n g f u g a c i t i e s c a l c u l a t e d f r o m an e q u a t i o n o f s t a t e , here u s i n g the Beattie-Bridgeman e q u a t i o n , i n t o Equation (3) f o r t h e p a r t i a l p r e s s u r e v a l u e s ( 4 ) . The v a l u e s o f t h e perms e l e c t i v i t i e s i n T a b l e IV a r e r e l a t i v e l y c o n s t a n t a t a f i x e d f e e d c o m p o s i t i o n i n agreement w i t h the a p p r o x i m a t e l y l i n e a r b e h a v i o r n o t e d i n F i g u r e s 9-11.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
©Dalton
2
A
7.43
6.31
183
184
185
5.75
201
28.9
36.7
37.6
38.4
181.8
186.8
190.7
(211.6)
31.3
77.3
2
Q f r o m ratio of Permeate Concentrations
Qj from Permeation Rates calculated by Dalton's Law
0.65 r«- 147.7
6.08 («'715.5 0.85 r«' 176.8
567.7
204
116.8
6.2
(μ
203
0.56
86.0
5.9
417.1
0.46
28.0
202
(«>
0.79 0" 35.3
7.2 Φ> 704.2
194
266.4
0.78
7.7 («> 529.7
0.72 r«' 20.7
193
(0.48)
K
130.6
Ν .
(w
Δ
0.59 r«' 31.4
Ν / *
0.44 & 20.4
Κ
164.8
He " 2%C02 I Q 200 psia
V2/|
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
CO*,
He
Composition (Vol. %)
Stage 1
2.92 71.03 25.20 0.85
Recovery
58.0 30.0 11.5 0.526
84.85
Row
(SLPM)
System Feed
Θ
Stream Name And Number
Format For All Streams
33.61
1st Stage Residual
©
99.32 0.21 0.36 0.12 96%
94.1 3.08 2.50 0.31
98%
1.23
3rd Stage Residual
©
99.994 99.98 0.006 0.01 0.01 92%
99.90 0.01 0.05 0.05 94%
90%
0.0061
44.47
5th Stage Permeate
© 45.39
4th Stage Permeate
Stage 5
99.15
0.92
5th Stage Residual
Qo;
46.36
3rd Stage Permeate
0.97
4th Stage Residual
©
Figure 1 2 . Helium reclaimer m a t e r i a l balance.
47.58
2nd Stage Permeate
51.24
1st Stage Permeate
3.65
2nd Stage Residual
Θ
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
0.0061
99.994
44.47
Storage
«··»»
to w
S'
S3
>
M H
3
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
24
INDUSTRIAL
GAS
SEPARATIONS
3. F o r a h y p o t h e t i c a l s y s t e m d e s i g n , b a s e d o n t h e e x i s t i n g d a t a , m u l t i s t a g e systems a r e r e q u i r e d t o r e c o v e r t h e h e l i u m from v e n t e d d i v i n g chamber g a s e s i n o r d e r t o meet t h e d e s i g n s p e c i f i cations o u t l i n e d i n Table I . 4. F i v e s t a g e s a r e r e q u i r e d t o a c h i e v e t h e h e l i u m p u r i t y g o a l and t h e c a r b o n d i o x i d e r e q u i r e m e n t i n T a b l e I . 5. C a r b o n d i o x i d e i s t h e l i m i t i n g g a s f o r t h e d e s i g n a s o x y g e n and n i t r o g e n r e q u i r e o n l y two s t a g e s t o meet t h e i r d e s i g n requirement l e v e l s . Use o f o t h e r membranes, h a v i n g d i f f e r e n t p r o p e r t i e s , w i l l , of course, r e s u l t i n a system d i f f e r e n t from t h a t i n d i c a t e d a b o v e . D e p e n d i n g o n t h e c h o i c e o f membrane m a t e r i a l , f e w e r o r more, s m a l l e r o r l a r g e r s t a g e s w o u l d b e r e q u i r e d f o r t h e s y s t e m . The e x p e c t e d c o s t o f r e c l a i m e d h e l i u m w o u l d b e c o r r e s p o n d i n g l y affected. Nomenclature J
k ρ Τ ρ L [i]^
p e r m e a b i l i t y c o e f f i c i e n t (STD f t / f t * h r 100 p s i ) p r e s s u r e (atm) t e m p e r a t u r e (°K e x c e p t a s n o t e d ) d e n s i t y (g/cc) some c h a r a c t e r i s t i c l e n g t h (cm) permeate c o n c e n t r a t i o n mole %
[i]^
r e s i d u a l c o n c e n t r a t i o n mole %
[i]^
feed c o n c e n t r a t i o n mole %
A F3 Fi F2 p?
area r e s i d u a l f l o w r a t e (SLPM) f e e d f l o w r a t e (SLPM) p e r m e a t e f l o w r a t e (SLPM) v a p o r p r e s s u r e o f component i
x.. iJ a..
i d e a l s e p a r a t i o n f o r d i s t i l l a t i o n = p!/p! i j separation factor or permselectivity
Literature Cited 1.
Howland, H. R.; Hulm, J . K. The Economics of Helium Conser vation, Final Report to Argonne National Laboratory, Contract No. 31-109-38-2820, December,1974. 2. Helium Reclaimer Study, Westinghouse Electric Corporation, Proposal No. Y7420, April.1978. 3. McCabe, W. G.; Smith, I.C. Unit Operations of Chemical Engineering, McGraw-Hill, 1967, Second Edition. 4. Balzhizer, R. W.; Samuels, M. R.; Eliassen, J. D. Chemical Engineering Thermodynamics, Prentice Hall, 1972. 5. Treybal, R.E. Mass Transfer Operations, McGraw-Hill, 1968.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by INDIANA UNIV PURDUE UNIV AT IN on July 1, 2012 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch001
1. MARTIN ET AL.
Helium Recovery
6.
Hwang, S. J.; Kemmermeyer, K. Membranes in Separation, Wiley & Sons, 1975.
7.
Bird, R. Β.; Stewart, W. E . ; Lightfoot, E.M. Transport Phenomena, Wiley & Sons, 1960.
8.
Schell, W. J. "Membrane Applications to Coal Conversion Processes," Envirogenics Systems Company, October, 1976, NTIS No. FE2000-4.
9. Li, Ν. N . , Ed.; Recent Developments in Separation Science, Vol. II, CRC Press, Cleveland, Ohio, 1972. RECEIVED January
18, 1983
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.