12
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
Separation of Methane from Hydrogen and Carbon Monoxide by an Absorption/Stripping Process VI-DUONG DANG The Catholic University of America, Department of Chemical Engineering and Materials Science, Washington, DC 20064
An absorption/stripping process calculation using propane as the absorption solvent for separation of methane from hydrogen and carbon monoxide has been performed. Detailed material and energy balances for the process as well as the dimensions of the absorber and the stripper are reported. Other major pieces of equipment such as heat exchangers pumps, and compressors were evaluated in order to determine the equivalent electrical energy of the process as approximately 13550 cal(e)/gm-mole methane produced. The purity of methane in the final stream is 96% by volume at 100°F and 1000 psia. The present process appears to be a potential working process for methane separation in large quantity. In c o a l g a s i f i c a t i o n processes such as the f l a s h hydropyr o l y s i s o r t h e E x x o n c a t a l y t i c p r o c e s s , methane i s t h e m a j o r d e s i r e d end p r o d u c t . H o w e v e r , methane i s u s u a l l y p r o d u c e d a l o n g w i t h hydrogen and/or carbon monoxide. To o b t a i n p i p e l i n e g r a d e m e t h a n e , i t i s n e c e s s a r y t o d e v e l o p e c o n o m i c a l methods o f s e p a r a t i n g methane f r o m h y d r o g e n a n d / o r c a r b o n m o n o x i d e m i x t u r e s . The hydrogen and c a r b o n monoxide a r e t h e n r e c y c l e d i n t h e p r o c e s s . S e v e r a l s e p a r a t i o n t e c h n o l o g i e s such as a b s o r p t i o n / s t r i p p i n g , c r y o g e n i c , c l a t h r a t e f o r m a t i o n h a v e been e x a m i n e d ( 1 ) . In t h i s r e p o r t , a method o f a b s o r p t i o n / s t r i p p i n g u s i n g p r o p a n e a s t h e s o l vent i s presented. A b s o r p t i o n / s t r i p p i n g i s a well-known chemical e n g i n e e r i n g o p e r a t i o n and c a n be r e a d i l y d e s i g n e d and c o n s t r u c t e d on a l a r g e s c a l e . T h e r e f o r e , t h e p r e s e n t method c a n be c o n s i d e r e d as a p o t e n t i a l l y u s e f u l method. I n t h e p r e s e n t w o r k , a f e e d g a s m i x t u r e o f 40% CH4, 45% H 2 , and 15% CO a t 1 0 0 ° F and 500 p s i a i s t o be s e p a r a t e d . A production c a p a c i t y o f 250 χ 10^ s c f / d a y o f CH4 i s a s s u m e d . The m e t h a n e i s d e l i v e r e d t o t h e p i p e l i n e a t 1 0 0 ° F and 1000 p s i a . For the a p p l i c a t i o n of a b s o r p t i o n / s t r i p p i n g , i t i s d e s i r a b l e to u t i l i z e a 0097-6156/83/0223-0235$06.00/0 © 1983 American Chemical Society In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
I N D U S T R I A L GAS
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
236
SEPARATIONS
s o l v e n t w h i c h h a s a h i g h s o l u b i l i t y f o r methane. T a b l e I shows some s o l u b i l i t y d a t a f o r methane i n w a t e r a n d i n v a r i o u s o r g a n i c solvents. I t i s s e e n t h a t methane h a s a h i g h e r s o l u b i l i t y i n propane than i n any o f t h e o t h e r s o l v e n t s l i s t e d . Therefore, pro pane was c h o s e n a s t h e s o l v e n t f o r t h e a b s o r p t i o n / s t r i p p i n g s e p a r a t i o n process investigated i n t h i s report. O p e r a t i n g c o n d i t i o n s f o r t h e a b s o r p t i o n and s t r i p p i n g towers a r e i m p o r t a n t d e s i g n p a r a m e t e r s f o r t h e p r o c e s s . Due t o v a p o r p r e s s u r e a n d e n t r a i n m e n t , p r o p a n e w i l l be p r e s e n t i n t h e e f f l u e n t gas s t r e a m s f r o m b o t h t h e a b s o r b e r a n d s t r i p p e r . Usually this q u a n t i t y o f propane i s n o t r e c o v e r e d and i s c o n s i d e r e d an economic loss. The amount o f p r o p a n e i n t h e g a s p h a s e i s m a i n l y d e p e n d e n t on t h e o p e r a t i n g t e m p e r a t u r e a n d p r e s s u r e o f t h e t o w e r s . F i g u r e 1 shows t h e v a p o r p r e s s u r e o f some o f t h e r e l e v a n t compounds a s a f u n c t i o n o f t e m p e r a t u r e . A t -230.8°F a n d -184°F, t h e v a p o r p r e s s u r e o f p r o p a n e i s a b o u t 0.1 mm Hg a n d 1 mm Hg respectively. Absorption/stripping process i s a conventionally p r a c t i c a l p r o c e s s so i t i s d e c i d e d t o e v a l u a t e t h e s e p a r a t i o n o f methane f r o m h y d r o g e n a n d c a r b o n m o n o x i d e by t h i s p r o c e s s . Since the o p e r a t i n g p r e s s u r e s o f t h e a b s o r b e r and s t r i p p e r a r e about 500 p s i a a n d 487 p s i a r e s p e c t i v e l y , t h e m o l e f r a c t i o n s o f p r o p a n e i n t h e o u t l e t gas streams o f t h e a b s o r b e r and s t r i p p e r a r e about 6.75 χ 1 0 " a n d 1 χ 10~4 a t -230.8°F a n d -184°F r e s p e c t i v e l y . When t h e a b s o r b e r o p e r a t e s a t h i g h e r t e m p e r a t u r e a s shown i n T a b l e I I , p r o p a n e l o s s e s i n c r e a s e . When t h e a b s o r b e r a n d s t r i p p e r o p e r a t e a t -230.8°F a n d -184°F r e s p e c t i v e l y , t h e p r o p a n e l o s s i s e q u i v a l e n t t o a b o u t 0.0850% and 3.28% r e s p e c t i v e l y o f t h e c o s t o f methane a s s u m i n g t h e c o s t o f methane a n d p r o p a n e i s t h e same. T h i s l o w p e r c e n t a g e o f p r o p a n e l o s s was c o n s i d e r e d a c c e p t a b l e . Hence i t was d e t e r m i n e d t o o p e r a t e t h e a b s o r b e r a t -230.8°F a n d t h e s t r i p p e r a t -184°F. 6
Process Description A s c h e m a t i c p r o c e s s f l o w s h e e t i s shown i n F i g u r e 2. I n l e t g a s , a m i x t u r e o f m e t h a n e , h y d r o g e n a n d c a r b o n m o n o x i d e a t 100°F and 500 p s i a ( s t r e a m 1) i s s u c c e s s i v e l y c o o l e d t o -140°C b y t h e o u t l e t g a s s t r e a m f r o m t h e a b s o r b e r a n d some r e c y c l e g a s . The a b s o r b e r i s a packed column o f 1 - i n . b e r l s a d d l e s w i t h 50% v o i d fraction. The r i c h l i q u i d f r o m t h e b o t t o m o f t h e a b s o r b e r i s h e a t exchanged w i t h t h e bottom l i q u i d from t h e s t r i p p e r . The s t r i p p e r i s a l s o a p a c k e d c o l u m n w i t h 1 - i n . b e r l s a d d l e s . The d i s s o l v e d methane, hydrogen, and c a r b o n monoxide i s s t r i p p e d o u t by h e a t i n g a t t h e bottom o f t h e s t r i p p e r . The o u t l e t g a s s t r e a m f r o m t h e s t r i p p e r i s h e a t e d i n a h e a t e x c h a n g e r by a r e c y c l e g a s s t r e a m a n d i s f u r t h e r c o m p r e s s e d t o p r o d u c e t h e f i n a l methane p r o d u c t a t 100°F a n d 1000 p s i a . To p e r f o r m a f u r t h e r d e t a i l e d p r o c e s s c a l c u l a t i o n o n t h i s multi-component a b s o r p t i o n and s t r i p p i n g p r o c e s s , vapor l i q u i d e q u i l i b r i u m d a t a f o r methane, hydrogen, and c a r b o n monoxide i s
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983. 2.0 41.0 29.5 174 144 129 120 110 83 59 43 32
1.8 29.5 21.5 125 107 97 89 80 56 41 31 23
1.2 19.0 14.5 83 71 63 59 51 33 24 20 16
0.9 9.0 7.5 41 37 33 30 24 15 11 10 8
Water Methanol^ Ethanol Propane Butane Pentane Hexane Octane Cyclohexane Benzene Heavy N a p h t h a Gas O i l 164
— — 140 — 80 — 41
2.6 55.0 38.0 200 ( 9 0 atm)
100
48.0
— — — — — — — — — 62
3.3 ( 1 2 0 atm)
140
i n 1.0 c c s o l v e n t a t p r e s s u r e
(1) The s o l u b i l i t y o f methane i n n - p r o p a n o l , i s o p r o p a n o l , n - b u t a n o l a n d i s o - b u t a n o l i s , w i t h i n e x p e r i m e n t a l e r r o r , t h e same a s i n m e t h a n o l .
80
60
40
77°F a n d 760 mm) d i s s o l v e d
20
ce CH. ( a t 4
The S o l u b i l i t y o f Methane i n W a t e r a n d i n O r g a n i c S o l v e n t s a t 77°F a n d a t P r e s s u r e s up t o 140 A t m o s p h e r e s
P r e s s u r e , atm
Table I .
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
I N D U S T R I A L GAS
SEPARATIONS
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
238
l/T F i g u r e 1.
(K-*)
V a p o r p r e s s u r e o f s e l e c t e d compounds v s .
l/T.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983. 5
4
1.19xl0 1.319xl0 8892
8415 8415 8415
6
5
5
3
2
1.58xl0
4.81xl0
l.llxlO
4.77xl0
4.77xl0
- 76
-112
-148
-200
-230.8
Absorber + Stripper
6
Stripper
2.79xl0
Absorber
lb/day l o s s o f Propane
6
0.085
0.126
1.133
% o f Propane Cost L o s s Assuming Methane and Propane C o s t t o be t h e Same
Propane Losses a t D i f f e r e n t Absorber Temperatures ( S t r i p p e r T e m p e r a t u r e = -184°F) Plant Capacity: 2 5 0 x l 0 SCF/Day
- 58
T(°F)
Table I I .
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
240
F i g u r e 2. method.
I N D U S T R I A L GAS
SEPARATIONS
F l o w d i a g r a m f o r methane s e p a r a t i o n b y a b s o r p t i o n / s t r i p p i n g
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
12.
DANG
Methane
Separation
from Hydrogen
and
Carbon
241
Monoxide
n e e d e d . E q u i l i b r i u m K - v a l u e s o f methane a n d p r o p a n e a r e o b t a i n e d f r o m D e P r i e s t e r (2). S o l u b i l i t y d a t a f o r hydrogen i n propane i s o b t a i n e d f r o m T r u s t a n d K u r a t a (3)· S o l u b i l i t y o f carbon monoxide i n propane i s o b t a i n e d from P r a u s n i t z and S h a i r ( 4 ) . The a b s o r b e r c a l c u l a t i o n i s b a s e d o n 1 l b - m o l e o f g a s s t r e a m e n t e r i n g i n t o t h e b o t t o m o f t h e a b s o r b e r . The e n t e r i n g l i q u i d i s f e d a t a r a t e o f 1.5 l b - m o l e / l b m o l e o f g a s . F o r 9 5 % methane removed, a p r e l i m i n a r y e s t i m a t e o f methane a b s o r b e d i s 0.38 l b m o l e , c a r b o n m o n o x i d e a b s o r b e d i s 0.13 l b - m o l e , h y d r o g e n a b s o r b e d i s 0.1 l b - m o l e . The a b s o r b e r i s o p e r a t e d u n d e r i s o t h e r m a l c o n d i t i o n s o f -146°C. The l i q u i d t o g a s mass r a t i o a t t h e t o p o f t h e t o w e r i s 3.85 w h i l e a t t h e b o t t o m i t i s 2.11 w i t h a n a v e r a g e v a l u e o f 2.98. The k e y component i s m e t h a n e . U s i n g a method o f a v e r a g e a b s o r p t i o n f a c t o r w h i c h f o r methane i s 6.478 a n d 9 5 % methane r e m o v a l , i t i s p o s s i b l e t o d e t e r m i n e t h e number o f t h e o r e t i c a l t r a n s f e r u n i t s t o be 2. W i t h t h e s e c o n d i t i o n s , methane i n t h e o u t l e t g a s s t r e a m o f t h e a b s o r b e r i s 0.002 l b - m o l e , c a r b o n m o n o x i d e i s 0.13 l b - m o l e and h y d r o g e n 0.44 l b - m o l e . The m o l a r c o n c e n t r a t i o n s o f t h e a b s o r b e r e f f l u e n t g a s a r e CH^, 3.5 χ 1 0 ~ ; CO, 0.227; H , 0.769; C3H3, 6.75 χ 1 0 ~ . The m o l a r c o n c e n t r a t i o n s i n t h e l i q u i d p h a s e a r e CH4, 0.101; CO, 0.005; H , 0.003; C H , 0.891. Absorber design r e q u i r e s the c a l c u l a t i o n of the q u a n t i t y 3
2
6
2
L
_G
3
8
w h i c h i s 0.79 f o r t h e p r e s e n t c a s e w h e r e L a n d G a r e mass
P
v e l o c i t i e s o f l i q u i d and g a s , L a n d and g a s . A t f l o o d i n g c o n d i t i o n s
G are densities of l i q u i d
where ap i s s u r f a c e a r e a o f p a c k i n g p e r u n i t tower volume, ε i s f r a c t i o n a l v o i d v o l u m e o f d r y p a c k i n g y£ i s l i q u i d v i s c o s i t y , g i s l o c a l g r a v i t a t i o n a l c o n s t a n t . T h e r e f o r e assuming 60% o f f l o o d i n g c o n d i t i o n s , G i s 2920 I b / h r f t . Since i t i s desired to p r o d u c e 250 χ 1 0 ^ s c f / d a y methane, t h e i n l e t g a s f l o w i n t o t h e a b s o r b e r i s 2.35 χ 10° l b / h r . From t h i s a n d t h e g a s mass v e l o c i t y , i t i s d e t e r m i n e d t h a t 3 t o w e r s a r e n e e d e d , e a c h one w i t h a d i a m e t e r o f 18.5 f t . The t o w e r h e i g h t i s d e t e r m i n e d by t h e h e i g h t o f a t r a n s f e r u n i t w h i c h i s 20.7 f t . (_5) . T h e r e f o r e , t h e h e i g h t o f t h e p a c k e d t o w e r i s 41.4 f t . O t h e r d e t a i l e d t o w e r c h a r a c t e r i s t i c s a r e g i v e n i n Table I I I . The s t r i p p i n g t o w e r i s o p e r a t e d a t -120°C a n d 487 p s i a a n d t h e m o l a r r a t i o o f l i q u i d t o g a s i s 9.7. A g a i n t a k i n g methane a s t h e k e y component, and 9 5 % methane s t r i p p e d , a b o u t 0.0962 l b m o l e c
2
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
I N D U S T R I A L GAS
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
242
Table I I I .
SEPARATIONS
Summary o f D i m e n s i o n s a n d C h a r a c t e r i s t i c s of A b s o r b e r s and S t r i p p e r s
Absorbers Diameter o f Absorber Number o f A b s o r b e r H e i g h t o f P a c k e d Tower P r e s s u r e Drop i n P a c k e d W a l l T h i c k n e s s o f Tower
Tower
= = = = =
18.5 f t 3 41.4 f t 1.94 p s i a 2.98 i n . Strippers
Diameter o f S t r i p p e r Number o f S t r i p p e r H e i g h t o f P a c k e d Tower P r e s s u r e Drop i n Packed W a l l T h i c k n e s s o f Tower
Tower
= = = =
17.6 f t 3 22.8 f t 0.41 p s i a 2.35 i n .
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
12.
DANG
Methane
Separation
from Hydrogen
and
Carbon
243
Monoxide
o f m e t h a n e , 0.0045 l b - m o l e o f c a r b o n m o n o x i d e , 0.002 l b - m o l e o f hydrogen a r e s t r i p p e d . The p r e l i m i n a r y e s t i m a t e s o f t h e l i q u i d t o gas r a t i o i s 26.7 a t t h e t o p and 24.0 a t t h e b o t t o m w i t h a n a v e r a g e o f 25.4. The a v e r a g e s t r i p p i n g f a c t o r f o r methane i s 21.2 and two t r a n s f e r u n i t s a r e needed. Under t h e s e c o n d i t i o n s 0.0046 l b - m o l e o f m e t h a n e , 0.0032 l b - m o l e o f c a r b o n m o n o x i d e , and 0.00036 l b - m o l e of hydrogen remain i n t h e bottom l i q u i d phase. I n the bottom o u t l e t stream o f t h e l i q u i d phase, mole f r a c t i o n s o f t h e c h e m i c a l s p e c i e s a r e CH4, 0.0051; CO, 0.0036; H , 0.0004; C H g , 0.991. The o u t l e t m o l e f r a c t i o n o f t h e g a s p h a s e f r o m t h e s t r i p p e r i s CH4, 0.960; CO, 0.019; H , 0.021; C H , 0.0001. To d e s i g n t h e s t r i p p e r , a g a i n methane i s c h o s e n a s t h e k e y component. 2
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
2
P
L {G
3
i s t a k e n t o be 7.81.
3
g
At
flooding
^0.2 0.0018 g
P
P
c g L
2 T h e r e f o r e , t h e g a s mass v e l o c i t y i s 1372 l b / h r f t f o r 60% f l o o d i n g c o n d i t i o n w i t h a gas mass f l o w o f 1.28 χ 1 0 l b / h r . It is d e t e r m i n e d t h a t 3 t o w e r s a r e r e q u i r e d e a c h one 17.6 f t i n d i a m eter. The h e i g h t o f a t r a n s f e r u n i t i s a 11.4 f t and t h e t o t a l h e i g h t o f a p a c k e d t o w e r i s 22.8 f t . P r e s s u r e drop i n the tower i s 0.41 l b / i n . A summary o f t h e c o m p o s i t i o n o f v a r i o u s s t r e a m s i s g i v e n i n T a b l e I V and s t r i p p e r c h a r a c t e r i s t i c s a r e g i v e n i n Table I I I . A thermal energy b a l a n c e of the p r o c e s s i s performed f o r t h e c o o l e r s , f o r s t r e a m s 1 and 2 i n F i g u r e 2 and t h e h e a t e x c h a n g e r between s t r e a m s 5 and 7. The h e a t i n p u t f o r t h e h e a t e x c h a n g e r between t h e a b s o r b e r and t h e s t r i p p e r i s c o n s i d e r e d t o be n e g l i gible. The e l e c t r i c a l power i n p u t t o t h e c o m p r e s s o r i s 5135 horsepower. The t h e r m a l e n e r g y l o a d f o r t h e h e a t e r b e t w e e n s t r e a m s 13 and 9 i n F i g u r e 2 i s 2.2 χ 1 0 c a l / m i n and f o r t h e c o o l e r a t t h e o u t l e t gas s t r e a m f r o m t h e a b s o r b e r i s 5.06 χ 1 0 c a l / m i n . A f u r t h e r breakdown o f t h e t h e r m a l energy r e q u i r e m e n t o f t h e p r o c e s s i s g i v e n i n T a b l e V. Detailed calculations are given i n the Appendix. C o m b i n i n g t h e t h e r m a l e n e r g y and t h e pumping and c o m p r e s s i n g power r e q u i r e d f o r t h e p r o c e s s a s shown i n F i g u r e 2, t h e t o t a l t h e r m a l e n e r g y r e q u i r e d i s 30955 c a l / g - m o l e w h i c h i s a b o u t 11.8 t i m e s h i g h e r t h a n t h e minimum i d e a l s e p a r a t i o n e n e r g y r e q u i r e d w h i c h i s c a l c u l a t e d t o be 2621 c a l / g - m o l e CH^. 6
2
7
7
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
1000
487
487
487
-230.8
-184
-184
100
100
110
-110
-100
90
90
4
5
6
7
8
9
10
11
12
13
500
487
487
485
487
485
500
487
-230.8
-230.8
500
2
100
1
Pressure psia
6
7.1xl0
2xl0
8
6
1.77xl0
7.1xl0
7.1xl0
6
3.06xl0
3.06xl0
8.12xl0
3.06xl0
8.48xl0
2.23xl0
5.64xl0
5.64xl0
a . day y day /
Rate
8
0.0035
0.0035
0.0035
0.0035
0.0035
0.019
0.021
0.96
(4.64xl0 )
0.019
0.021
0.96
7
0.769
0.769
0.769
0.769
0.769
0.227
0.227
0.227
0.227
0.227
0.0036
0.0004
0.0051
7
0.019
0.021
0.96
0.0051
0.0025
8
0.227
0.1013
0.769
0.15
0.15
CO
7
0.0035
0.45
0.4
2
0.45
H
0.4
CH, 4
Mole F r a c t i o n H
0
0
3 8
6
6.75xl0"
6.75xl0"
6.75xl0"
6.75xl0"
6.75xl0"
0.0001
0.0001
0.999
0.0001
0.891
6.75xl0"
C
of Different
8
6
(8.68xl0 )
6
(9.5 x l O )
6
7
7
7
7
(2.32xl0 )
Flow
T e m p e r a t u r e , P r e s s u r e , F l o w R a t e , and M o l e F r a c t i o n Numbered S t r e a m s i n t h e F l o w D i a g r a m
3
Temp °F
Stream Number
Table IV.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
6
6
6
6
6
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Energy Requirement
=
cal(t)/g-mole
T o t a l T h e r m a l and E q u i v a l e n t E l e c t r i c a l
Energy
= =
cal(t)/g-mole cal(t)/g-mole
= =
cal(e)/g-mole cal(t)/g-mole
T h e r m a l E n e r g y S u p p l i e d t o H e a t e r B e t w e e n S t r e a m s 13 and 9 Thermal Energy Load t o C o o l e r i n A b s o r b e r O u t l e t
Thermal Energy Requirement
T o t a l Pumping Power/g-mole methane p r o d u c e d E q u i v a l e n t T o t a l T h e r m a l Pumping P o w e r / g - m o l e CH^
= = = = =
(Horsepower) (Horsepower) (Horsepower) (Horsepower)
E n e r g y R e q u i r e m e n t f o r t h e S e p a r a t i o n o f Methane by A b s o r p t i o n / S t r i p p i n g U s i n g P r o p a n e
C o m p r e s s o r Power ( H o r s e p o w e r ) Pumping Power R e q u i r e d f r o m B o t t o m o f A b s o r b e r t o Top o f S t r i p p e r Pumping Power R e q u i r e d f r o m B o t t o m o f S t r i p p e r t o Top o f A b s o r b e r Pumping Power o f I n l e t Gas B l o w e r E s t i m a t e d Pumping Power f o r F l u i d T r a n s p o r t
Electrical
T a b l e V.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
30955
36.5 84.1
12334 30834
5135 2.78x10^ 3.3x105 4973 1796
INDUSTRIAL
246
GAS
SEPARATIONS
Acknowledgment P a r t o f t h e w o r k was p e r f o r m e d a t B r o o k h a v e n N a t i o n a l o r a t o r y a n d was a c k n o w l e d g e d h e r e b y .
Lab-
Literature Cited 1.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
2.
3. 4. 5.
Dravo Corporation "Hydrogasification Gas Processing Studies"; Contract CPD-7209, February 27, 1978. DePriester, C. L. "Light-Hydrocarbon Vapor-Liquid Distribution Coefficients, Pressure-Temperature-Composition Charts and Pressure-Temperature Nomographs"; Chem. Eng. Progress Symp. 1953, 7, 49. Trust, D. B . ; Kurata, F. "Vapor-Liquid Phase Behavior of the Hydrogen-Carbon Monoxide-Propane Systems"; AIChE J . 1971, 17, 86. Prausnitz, J . M.; Shair, F. H. "A Thermodynamic Correlation of Gas Solubilities"; AIChE J . 1961, 7, 682. Bennett, C. O.; Myers, J . E. "Momentum, Heat and Mass Trans fer"; 2nd ed., McGraw-Hill Co., 1974, pp. 571-574.
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
DANG
12.
Methane
Separation
from Hydrogen
and Carbon
Monoxide
247
Appendix
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
Energy C a l c u l a t i o n f o r t h e S e p a r a t i o n o f Methane from P r o c e s s G a s i f i c a t i o n Stream U s i n g Propane A b s o r p t i o n / S t r i p p i n g The e n e r g y c a l c u l a t i o n s f o r t h e p r o c e s s a r e b a s e d o n e l e c t r i c a l and t h e r m a l energy. I t i s assumed t h a t t h e h e a t e x c h a n g e r b e t w e e n t h e a b s o r b e r and t h e s t r i p p e r o p e r a t e s i d e a l l y s o n o n e t heat l o s s o r g a i n w i l l be r e a l i z e d i n t h i s u n i t . The e l e c t r i c a l e n e r g y r e q u i r e m e n t s a r e f o r ( 1 ) t h e pumps b e t w e e n t h e a b s o r b e r a n d the s t r i p p e r , (2) t h e i n l e t gas blower, (3) t h e compressor a t t h e end f o r t h e p r o d u c t methane, a n d ( 4 ) pumping power f o r f l u i d transport. Thermal energy i s s u p p l i e d f o r (1) t h e h e a t e r between s t r e a m s 9 and 1 3 , a n d ( 2 ) t h e c o o l e r a t t h e o u t l e t o f t h e a b s o r b e r . The c a l c u l a t i o n s w i l l b e p e r f o r m e d s e p a r a t e l y i n t h e f o l l o w i n g sections. A.
Pumping Power R e q u i r e d t o T r a n s p o r t F l u i d f r o m B o t t o m o f A b s o r b e r t o Top o f S t r i p p e r
ο L i q u i d f l o w r a t e = 8.48 χ 10 l b / d a y 8.48xl0
m
8
l b / d a y χ 7.48 g a l / f t
36.52 l b / f t = 7.24xl0 D e n s i t y o f l i q u i d = 36.52
6
3
χ 24 h r / d a y
gal/hr = 1.21xl0 lb/ft
3
5
gal/min
3
H e i g h t o f s t r i p p i n g t o w e r p a c k i n g i s 22.8 f t . C o n s i d e r heading o f t h e tower i s 20% a d d i t i o n a l . Then t h e t o w e r h e i g h t ΔΖ i s 27.4 f t . The f l u i d i s t r a n s p o r t e d b y 30 p i p e s a n d t h e d i a m e t e r o f t h e p i p e i s a b o u t 0.25 f t . The e n e r g y b a l a n c e f o r each p i p e i s 2 ΔΖ + 0.8 W g
+
s
= 0 S
c
(A-l)
D C
8
. u 4 V e l o c i t y u i n each p i p e =
8.48xl0 x4 j 24x36.52 χ π χ 3 0 χ . 2 5
= 6.56xl0 Re = 6
=
Ρ
5
f t / h r = 182.4 f t / s e c
182.4 f t / s e c χ 0.25 f t χ 36.52 l b / f t «ι ο ί ο " 36.52 , - -4 1.2x10 χ ^ ^ χ 6.72x10
3 =
3
8 e
5
3
x
2
0n n
2
American Chemical Society Library t155 16th St. N. W.
In Industrial Gas Separations; Whyte, T., et al.; Washington, 0. C. Society: 20039 ACS Symposium Series; American Chemical Washington, DC, 1983.
l
0
I N D U S T R I A L GAS
248
SEPARATIONS
R e l a t i v e roughness f a c t o r and f r i c t i o n f a c t o r a r e t a k e n t o be 0.0006 a n d 0.004, r e s p e c t i v e l y . Therefore, the f r i c t i o n a l loss term i s 2
ι l
w
f
2x0.004x182.4 x37.4 32x0725
=
1
=
1
2
0 4
/ 4
_
/ f
t
l
b
-, f /
/ l
1
K
b
From E q . ( A - l ) , we c a n c a l c u l a t e t h e l o s s p e r s e t o f p i p e s ( 1 0 p i p e s ) c o n n e c t i n g each a b s o r b e r and s t r i p p e r i s w
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
s The
total
. - ( 1 2 4 4 χ 10 + 27.4) . O.o
5
5
8
4
f
t
l
/
l
b
r
=
8
l b / d a y χ 5.05χ1θ"
Τ
7
hr/ft-lb
f
24 h r / d a y = 2.78xl0
Β.
b
e l e c t r i c a l power r e q u i r e d f o r t h e 30 p i p e s i s
15584 f t - l b / l b χ 8 . 4 8 x l 0 F
1
Ρ
5
Pumping Power R e q u i r e d t o T r a n s p o r t F l u i d f r o m B o t t o m o f S t r i p p e r t o Top o f A b s o r b e r
Liquid flow rate = 8.12xl0
8
8.12xl0
8
36.52 l b / f t
=
1.15xl0
5
lb/day l b / d a y χ 7.48 g a l / f t 3
χ 24 h r / d a y
3
χ 60 m i n / h r
gal/min
A g a i n we t a k e 2 0 % a d d i t i o n a l h e i g h t f o r t h e h e i g h t o f t h e a b s o r b e r w h i c h h a s a p a c k i n g h e i g h t o f 41.4 f t so t h e t o t a l h e i g h t o f t h e a b s o r b e r i s 50 f t . L e t ' s a p p l y t h e same m e c h a n i c a l e n e r g y b a l a n c e Eq. ( A - l ) t o c a l c u l a t e t h e pumping power h e r e . Velocity of the fluid i s 8.12xl0 x4 8
v
m
m
24x36.52 χ π χ 3 0 x . 2 5
R
e
m
uDp μ
m
6
β
2
9
χ
1
0
5
174.9x0.75x36 52 l b / f t 1.2x10
f
t
/
h
r
=
1
7
4
#
9
f
t
/
s
e
c
2
χ Ι'. 62.4
3 m
χ 6.72x10
U s i n g t h e r e l a t i v e r o u g h n e s s f a c t o r a n d f r i c t i o n f a c t o r t o be 0.0006 a n d 0.004 a g a i n . The f r i c t i o n a l l o s s i n t h e p i p e i s
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
12.
DANG
Methane
ι l
w
f
=
Separation from Hydrogen
2x0.004x174.9 x50 32.2x.25
.
=
1
5
2
c
o
and Carbon
_ -
n
0
f
t
l
b
/
f
l
b
So t h e t o t a l e n e r g y r e q u i r e d p e r s e t o f p i p e ( 1 0 p i p e s ) each s t r i p p e r and a b s o r b e r i s w
S
_ - ( 1 5 2 0 χ 10 + 50) U.ο
=
1
9
0
6
3
_
f t
l b
249
Monoxide
/
l
connecting
b
I
The t o t a l pumping power i s 19063 f t - l b / l b χ 8 . 1 2 x l 0
8
l b / d a y χ 5.05χ1θ"
f
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
P
=
24
f
hr/day
Ρ = 3.3xl0 C.
Ρ hr/ft-lb
7
5
I n l e t Gas B l o w e r 7 Incoming gas t o absorber
3
i s 2.32x10
f t /day. Main f l o w r a t e a t
2 i s 2920 l b / h r f t a t a d e n s i t y PM Ρ = „ L , Τ = 230°F = 127°K g Ζ RT* ° av
absorber
a
K
CH, : 4
Τ
CO :
T
H
2
Ζ M
av av
5
T
r
= τ ί τ = 0.665, Ρ = = 0.7426, Z„ = 0.56 191 ' r 14.7x45.8 c
r
- § 1 - 0.955, P
fl
r " 3 0
3
" -
8 1 4
'
P
=
f
= 0.986,
2
r « ïOxfes
= '
6 5 7
- 0.32
' \
' °-
9 8
= 0.4x0.56 + 0.15x0.32 + 0.45x0.98 = 0.71 = 0.4x16 + 0.15x28 + 0.45x2 = 11.50
g G_ p
g
m
0.71x10.73x230
2970 l b / h r f t 3.28
lb/ft
2 =
^
= 3.28
f
t
/
h
r
=
J
lb/ft
Q
2
5
f
t
/
s
e
c
3
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
INDUSTRIAL
250
GAS
SEPARATIONS
Number o f t u b e s i n a b s o r b e r = η _
2.32xl0
7
1.231x10
3
ft /day χ 4 2 2 24 h r / d a y χ π χ nD f t
R
e
uDp ~7T~
=
342
=
2
μ
nD
6 f t / h r =|
2
2.38x10 nD
Dx3.28 l b / f t co =4 0.007 x 6 . 7 2 x 1 0
X
8
P
nD
ft ft-lb lb 291 2 5 η D
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
sec 1
W
f
=
_ 2fLU g D c
2 = =
2x0.004x10 f t 32.2 D X
n D
342 2
f
2
l e t η = 3 0 , D = 0.25 f t F r i c t i o n a l l o s s / t u b e = 330.63
g c B
gas f l o w = 2 . 3 2 x l 0
7
ft-lb /lb f
(A-2)
ΔΖ + l w + nW =0 f s
3
ft /day
r
(=5.64xl0
7
lb/day)
P r e s s u r e d r o p i n t o w e r = 1.3 i n H 0 / f t d e p t h , ΔΖ - 41.4 f t 2
1.3x41.4 f t H 0 £_ 12 o
T o t a l p r e s s u r e drop
λ
= 4.49 f t - l b . / l b f
g
A p p l y i n g E q . (A-2) t o o n e s e t o f p i p e ( 1 0 p i p e s ) f o r i n c o m i n g g a s i n t o t h e a b s o r b e r , one g e t s (41.4+4.49) + 330.63x10 + nW
W
s
=
4.49+41.4+3306.3 0.8
4190.2
- 0
ft-lb lb f
lb 7 sec
5.64x10 E n e r g y r e q u i r e d = 4 hr/day7*3600 s e c / h r
4190.2 X
D.
4
550
2
9
7
3
Γ
C o m p r e s s o r a t End o f P r o d u c t M e t h a n e Between S t r e a m s 7 a n d 8 k-1 IP =
3.03x10 k-1
p
l
q
f
h.
k
" -x
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
(A-3)
12.
DANG
Methane
Separation
from Hydrogen
and
Carbon
251
Monoxide
C where
k =
= 1.31 f o r methane ν
For t h e present
ρ
case
.
3
^3xl0"
5 χ
4
8
5
6
l
b
/
i
n
2
χ
M
4
3
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
= 4108
I f t h e compressor i s 80% e f f i c i e n t , = 5135 P. E.
Pumping Power f o r F l u i d
2
/ f t
2
.31" .31 ( ΙΟΟοΥ
4.64xl0 f t / d a y 24 h r / d a y χ 60 m i n / h r Ρ
± n
- 1
Ρ
t h e n t h e power r e q u i r e d
Transport
Pumping power i s r e q u i r e d t o t r a n s p o r t f l u i d i n t h e s t r e a m s 9, 1 0 , and 1 3 . Gas f l o w r a t e and d e n s i t y i n t h e s e s t r e a m s a r e 7 . 1 x l 0 l b / d a y and 0.44 l b / f t , r e s p e c t i v e l y . U s i n g a 0.25 f t diameter pipe, v e l o c i t y i n the pipe i s 6
3
7-lxlO 30x0.44 l b / f t uDp Re = — - = μ
6
lb/day χ 4
=
χ 24x3600 χ π χ
1
2
?
f
t
/
g
e
c
.25
127x2.5x0.44
- 8 τ = 2.65x10 0
7T (.0183x.23+.009x.77) χ
χ
n
6.72x10
R e l a t i v e roughness f a c t o r and f r i c t i o n f a c t o r a r e a g a i n t a k e n t o be 0.0006 and 0.004, r e s p e c t i v e l y . Assuming t h e t o t a l t r a n s p o r t l i n e a s 600 f t , f r i c t i o n a l l o s s i n f l u i d t r a n s p o r t i s 2 2fu L "TD~ c
ι l
w
f
=
2 2x0.004x127 x 6 0 0 32.2x0.25
=
=
Q 9
6
1
,7
n
C4 f
t
_ "
W i t h 8 0 % e f f i c i e n c y o f t h e pump, t o t a l e n e r g y l b ^ / l b and t h e pumping power r e q u i r e d i s 1.2xl0 P
4
=
ft-lb /lb f
χ 7.1xl0
6
24 = 1796
1 U l
b
/ 1 U
f
/
l
b
4 l o s s i s 1.2x10 f t -
l b / d a y χ 5.05χ1θ"
7
Ρ
-hr/ft-lb
hr/day
Ρ
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
f
INDUSTRIAL
252
F.
Thermal Energy R e q u i r e d i n Heat Exchanger and 9
Q = 7.1xl0
6
lb/day χ 7 Btu/lb-mole 8
= 1.13xl0
Btu/day
= 2.2xl0
7
cal/min
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch012
Thermal energy 7
B e t w e e n S t r e a m s 13
° F / 7 . 8 9 l b / l b - m o l e (110-90) ° F
χ 252 c a l / B t u j24
8
2.2xl0
SEPARATIONS
Btu/day
= 1.3xl0
=
GAS
s u p p l i e d t o t h e heat
h r / d a y χ 60 m i n / h r
exchanger
c a l / m i n χ 24 h r / d a y χ 60 m i n / h r
χ 16 g/g-mole
7
3 . 0 6 x l 0 l b / d a y χ 454 g / l b =36.5 cal(t)/g-mole «
G.
Energy
Required t o t h e Cooler i nAbsorber O u t l e t
(-Q) = 2 . 2 3 x l 0
7
lb/day χ 7 Btu/lb-mole
Stream
°F /9.73 l b / l b - m o l e
(-156 + 146) χ 1.8 = 2.89xl0
8
= 2.89xl0
8
Btu/day
= 5.06xl0
7
cal/min
Energy
Btu/day χ 252 c a l / B t u J 24 h r / d a y χ 60 m i n / h r
supplied to the cooler
_ 5.06xl0
7
c a l / m i n χ 24 h r / d a y χ 60 m i n / h r 3.06xl0
7
χ 16 g/g-mole
l b / d a y χ 454 g / l b
I t i s a l s o i n t e r e s t i n g t o r e p o r t t h e t h e o r e t i c a l minimum e n e r g y requirement f o r t h e present process P
W
= RT Σ x . F I n min,Τ j j Λ
x
2 P
jF l
For t h e p r e s e n t p r o c e s s , c o m p o s i t i o n temperature and p r e s s u r e o f i n c o m i n g g a s a r e : C H , 0.4; H , 0.45; CO, 0.15; 100°F a n d 500 psia, respectively. Temperature and p r e s s u r e o f f i n a l p r o d u c t g a s e s a r e a t 100°F a n d 1000 p s i a . For complete s e p a r a t i o n 4
2
In Industrial Gas Separations; Whyte, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
12.
W
DANG
Methane
Separation
from Hydrogen
and Carbon
Monoxide
0
. = 1 . 9 8 B t u / l b - m o l e °Rx560°R [0.4 I n J " ? ^ min,Τ 0.4x500 _ι_ η / «: ι + 0.45 1η
1000 .- .45x500
. -, c 1000 + 0.15 1η J .15x500 n
Ί
Ί
Ίc
g
n