13
I n d u s t r i a l P o t e n t i a l of F u n g a l a n d B a c t e r i a l Polysaccharides
I. W. COTTRELL
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
Kelco Division of Merck & Co., Inc., 8225 Aero Dr., San Diego, CA 92123
Polysaccharides, or gums as they are known i n industry, have utility because they thicken, suspend, or stabilize aqueous systems. Some gums produce gels, or act as emulsifiers, flocculants, binders, film-formers, lubricants, and f r i c t i o n reducers. Traditionally, these gums have been derived from algal and botanical sources, but more recently, some gums have been derived from microbial sources. These gums are shown i n Table I. Table I. Gums Derived From Algal, Botanical, and Microbial Sources Algal
Botanical
Microbial
agar
guar gum
dextran
algin
gum
arabic
xanthan gum
carrageenan
gum
ghatti
furcellaran
gum
tragacanth
karaya gum l o c u s t bean gum pectin The major o b j e c t i v e o f t h i s article is t o d e s c r i b e the d i v e r s i t y o f p r o p e r t i e s a s s o c i a t e d with p o l y s a c c h a r i d e s d e r i v e d from m i c r o b i a l , i.e., fungal and b a c t e r i a l sources. A l s o I will provide d e t a i l s o f some o f the new b a c t e r i a l p o l y s a c c h a r i d e s o r i g i n a t i n g from our l a b o r a t o r i e s . I will p l a c e emphasis on the key p r o p e r t y or p r o p e r t i e s o f each p o l y s a c c h a r i d e t h a t I d i s c u s s . I will not d i s c u s s p r o p e r t i e s which are not r e l a t e d t o the potential utility of the p o l y s a c c h a r i d e s . I have a l s o d e l i b e r a t e l y omitted d i s c u s s i o n o f the economic aspects o f these polysaccharides. For the p a s t t h i r t y t o f o r t y years, c o n s i d e r a b l e research has been devoted t o the study o f p o l y s a c c h a r i d e s produced by
0-8412-0555-8/80/47-126-251$05.00/0 © 1980 American Chemical Society
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
252
FUNGAL
POLYSACCHARIDES
Table I I . Polysaccharides Produced by Fungi
Polysaccharide Pu1lulan
Organism Aureobasidium
(Pullularia)
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
Sclerotium
1, ^ - D - g l u c o s e 0C
l 6 -D-glucose
- pullulans Scleroglucan
Structure/ Composition
f
glucanicum
1,3β-D-glucose l,6|3-D-g lucose
Table I I I . Polysaccharides Produced by B a c t e r i a Polysaccharide
Organism
Xanthan gum
Xanthomonas
Curdlan
Alcaligenes faecalis var. myxogenes
Dextran
campestris
Leuconostoc species
Structure/ Composition D-glucose, D-mannose, D-glucuronic a c i d 1,3 β-D-glucose l ^ ^ - D - g l u c o s e 1,2; 1,3; 1,4 -D-glucose Œ
PS-7 Gum
Beijerinckia indica var. myxogenes
glucose (73%), rhamnose (16%), g l u c u r o n i c a c i d (11%)
PS-10 Gum
Soil
bacterium
glucose (39%), g a l a c t o s e (29%), fucose (13%), g l u c u r o n i c a c i d (19%)
PS-21 Gum
Soil
bacterium
mannose (33%), glucose (29%) , galactose (21%), g l u c u r o n i c a c i d (17%)
PS-53 Gum
Soil
bacterium
glucose (41%), fucose (40%), g l u c u r o n i c a c i d (19%)
PS-60 Gum
Pseudomonas species
glucose (41%), rhamnose (30%), u r o n i c a c i d (29%)
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
coTTRELL
Industrial
Potential
of
253
Polysaccharides
microorganisms i n order to determine t h e i r i n d u s t r i a l potent i a l . (1) During t h i s p e r i o d , s e v e r a l microorganisms have been shown to produce p o l y s a c c h a r i d e s which have i n t e r e s t i n g propersties. These p o l y s a c c h a r i d e s are l i s t e d i n Tables I I and I I I . These tables provide a summary of the major p o l y s a c c h a r i d e s produced by microorganisms which e i t h e r have the p o t e n t i a l , based on t h e i r p r o p e r t i e s , to become commercial products or which have already become products of commerce.
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
Pullulan
(2)
P u l l u l a n i s the e x t r a c e l l u l a r p o l y s a c c h a r i d e produced by Aureobasidium p u l l u l a n s . The p o l y s a c c h a r i d e i s composed of maltot e t r a o s e u n i t s l i n k e d together through the 1 and 6 p o s i t i o n s on adjacent t r i o s e or t e t r a o s e u n i t s . P u r i f i e d p u l l u l a n i s a white, non-hygroscopic powder which d i s s o l v e s i n hot or c o l d water. P u l l u l a n does not provide high v i s c o s i t y s o l u t i o n s a t low c o n c e n t r a t i o n . The most important property of p u l l u l a n i s the a b i l i t y to form f i l m s . The f i l m s are prepared by d i s s o l v i n g p u l l u l a n i n water at 5-10% c o n c e n t r a t i o n and c o n t i n u a l l y drying the s o l u t i o n a p p l i e d to a smooth s u r f a c e . The major advantage of p u l l u l a n f i l m s i s the very low oxygen permeability. The oxygen p e r m e a b i l i t y of p u l l u l a n f i l m s and three f i l m s of commerce are shown i n Table IV. (3) Table IV. Oxygen Permeability
of P u l l u l a n Films Oxygen Permeability (cc/m , 24 h, atm., 25°C) 2
Sample Pullulan films Cellophane
0.60
-
2.50
4.70
Cellophane (moisture proof)
8.58
Polypropylene
1100
P u l l u l a n f i l m s have s e v e r a l other advantages. The f i l m s are c o l o r l e s s , t a s t e l e s s , odorless, transparent, r e s i s t a n t to o i l and grease, and heat s e a l a b l e . The p r o p e r t i e s of the f i l m s can be modified by chemical m o d i f i c a t i o n of p u l l u l a n , blending with p o l y v i n y l a l c o h o l , g e l a t i n , or amylose, and by a d d i t i o n of p l a s t i c i z e r s . These p r o p e r t i e s i n d i c a t e that p u l l u l a n can be used as a coating or packaging f o r foods to prevent t h e i r o x i d a t i o n . This i s the only apparent outstanding a p p l i c a t i o n f o r p u l l u l a n . Scleroglucan
(4)
S c l e r o g l u c a n i s a capsular p o l y s a c c h a r i d e produced by species of the genus Sclerotium. The p o l y s a c c h a r i d e produced by Sclerotium glucanicum c o n s i s t s of a l i n e a r chain of glucopyranosyl u n i t s
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
254
FUNGAL POLYSACCHARIDES
l i n k e d (3-g-(l-*3) with s i n g l e glucopyranosyl u n i t s l i n k e d 3-g-(l->6) t o every t h i r d glucose u n i t of the main chain. P u r i f i e d s c l e r o g l u c a n d i s s o l v e s i n hot or c o l d water t o produce high v i s c o s i t y s o l u t i o n s , whereas the crude i s o l a t e from the fermentation broth produces low v i s c o s i t y s o l u t i o n s . These data are shown i n Table V. Table V. V i s c o s i t y of Crude and P u r i f i e d Scleroglucan
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
Crude Scleroglucan Viscosity*
(1% cone.)
Viscosity*
(0.5% cone.)
Gum
Content
20 - 80 cP
Purified Scleroglucan 1600
cP
500
cP
— 46 - 50%
* B r o o k f i e l d LVT Viscometer, 60
90%
rpm.
Scleroglucan s o l u t i o n s are pseudoplastic or shear t h i n n i n g . The r e l a t i o n s h i p between the v i s c o s i t y of s o l u t i o n s of crude and p u r i f i e d s c l e r o g l u c a n and shear r a t e i s shown i n Figure 1. Based on these curves, s c l e r o g l u c a n does not have a y i e l d value, although the very high v i s c o s i t y at low shear r a t e i n d i c a t e s that s c l e r o g l u c a n may have suspending p r o p e r t i e s . The v i s c o s i t y of s c l e r o g l u c a n at 0.5% concentration and 2% concentration i s e s s e n t i a l l y constant over the range 10° to 9 0 ° C This r e l a t i o n s h i p i s shown i n Table VI. Table VI. E f f e c t of Temperature on the V i s c o s i t y of Crude Scleroglucan S o l u t i o n s Temp. (°C)
V i s c o s i t y a t 2% Cone.
15
1500
25
1400
40
1400
V i s c o s i t y at 0.5% 160
60
1400
80
1400
— — — —
90
1400
140
B r o o k f i e l d LVT Viscometer, 30
Cone.
rpm
The v i s c o s i t y of s o l u t i o n s of s c l e r o g l u c a n i s not changed by changes i n pH over the range 1 to 11. Prehydrated s c l e r o g l u c a n i s compatible with e l e c t r o l y t e s such as 5% sodium c h l o r i d e , 20% calcium c h l o r i d e , 5% sodium s u l f a t e , and 10% disodium hydrogen
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
COTTRELL
Industrial
Potential
of
255
Polysaccharides
phosphate. Based on these p r o p e r t i e s , i t has been suggested t h a t s c l e r o g l u c a n has u t i l i t y i n p o r c e l a i n and ceramic g l a z e s , extruded r e f r a c t o r y products, p a i n t s , i n k s , p e s t i c i d e sprays, secondary o i l recovery, d r i l l i n g muds, and as a binder f o r ceramics. Xanthan Gum {S_
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
r
Xanthan gum i s the e x t r a c e l l u l a r p o l y s a c c h a r i d e produced by 5C. campestris. The r e p e a t i n g - u n i t s t r u c t u r e o f xanthan gum i s shown i n F i g u r e 2. (9) As shown i n the f i g u r e , each r e p e a t i n g u n i t contains two glucose u n i t s , two mannose u n i t s , and one glucuronic acid u n i t . The main chain i s b u i l t up of β-D-glucose u n i t s l i n k e d through the 1- and 4- p o s i t i o n s ; i . e . , the chemical s t r u c t u r e o f the main chain i s i d e n t i c a l t o that o f c e l l u l o s e . The s i d e c h a i n c o n s i s t s o f a t e r m i n a l (3-D-mannose u n i t g l y c o s i d i c a l l y l i n k e d t o the 4 - p o s i t i o n o f the β-D-glucuronic a c i d u n i t , which i n turn i s g l y c o s i d i c a l l y l i n k e d t o the 2 - p o s i t i o n o f ^-D-mannose. This three-sugar s i d e - c h a i n i s l i n k e d t o the 3 - p o s i t i o n o f every other glucose residue i n the main chain. Also, approximately h a l f o f the terminal D-mannose residues c a r r y a p y r u v i c a c i d k e t a l i c a l l y l i n k e d t o the 4- and 6- p o s i t i o n s . The nonterminal D-mannose u n i t contains an a c e t y l group a t the 6 position. Xanthan gum d i s s o l v e s i n e i t h e r hot o r c o l d water t o produce high v i s c o s i t y s o l u t i o n s a t low c o n c e n t r a t i o n . The r e l a t i o n s h i p between v i s c o s i t y and c o n c e n t r a t i o n i s shown i n F i g u r e 3. Xanthan gum has a v i s c o s i t y o f approximately 300 cP a t a c o n c e n t r a t i o n o f 0.5% and 1400 cP a t a c o n c e n t r a t i o n o f 1.0% when measured a t 60 rpm with a B r o o k f i e l d Model LVF viscometer a t -25C. Xanthan gum s o l u t i o n s have unique r h e o l o g i c a l p r o p e r t i e s . Aqueous s o l u t i o n s o f xanthan gum are h i g h l y p s e u d o p l a s t i c ; that i s , the v i s c o s i t y decreases r a p i d l y as the shear r a t e i s increased. This decrease i s instantaneous and r e v e r s i b l e . This aspect o f the r h e o l o g i c a l p r o p e r t i e s of xanthan gum s o l u t i o n s i s shown i n F i g . 4. The property o f p s e u d o p l a s t i c i t y i s a l s o r e f e r r e d t o as shearthinning. Xanthan gum s o l u t i o n s a l s o have a r h e o l o g i c a l y i e l d p o i n t t h a t i s apparent a t concentrations g r e a t e r than 0.75%. The shear s t r e s s , shear r a t e curve i s shown i n F i g u r e 5. These data were obtained by use o f the Wells-Micro B r o o k f i e l d viscometer and the r e l a x a t i o n technique o f Patton (1966). The working y i e l d p o i n t i s d e f i n e d as the shear s t r e s s a t a shear rate o f 0.01 s e c " . As can be seen from the f i g u r e , a 1.0% xanthan gum s o l u t i o n has a working y i e l d p o i n t o f 50 dynes cm~^, whereas guar has e s s e n t i a l l y no working y i e l d p o i n t . Xanthan gum s o l u t i o n s a r e remarkably r e s i s t a n t t o thermal degradation. Exposure t o temperatures as high as 80°C f o r extended p e r i o d s has l i t t l e e f f e c t on the v i s c o s i t y o f xanthan gum s o l u t i o n s . This r e s i s t a n c e t o thermal degradation i s enhanced by the presence o f 1
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
256
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
FUNGAL POLYSACCHARIDES
Figure 2.
Xanthan gum structure
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
COTTRELL
Industrial
Potential
of
Polysaccharides
257
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
10K
0.5
1.0 1.5 2.0 2.5 Concentration (%)
0.1
Figure 3. Relationship between viscosity and concentration for xanthan gum with 0.1% NaCl
3.0
1
10 100 1K 10K 100K Shear Rate (sec ) -1
Paint
Paint Brushing
Pouring Mixing
Sagging Suspension Brookfield Haake
•
""
Spraying •
1
Paper Coating
Hercules Zahn cup
Figure 4.
Rehtionship between shear rate and viscosity for xanthan gum
In Fungal Polysaccharides; Sandford, P., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
FUNGAL POLYSACCHARIDES
258
10
m
Downloaded by MONASH UNIV on December 4, 2014 | http://pubs.acs.org Publication Date: June 10, 1980 | doi: 10.1021/bk-1980-0126.ch013
GUAR / GUM/
0.1
. 100
Figure 7. Viscosity of xanthan gum, locust bean gum solutions (