lnfared Absorption Spectra of Compounds of High Nitrogen Content EUGENE LIEBEK', DEWEY ROBERT LEVERING, AND LORNA J . PATTERSON
Department of Chemistry and Armour Research Foundation, Illinois Institute of Technology, Chicago, Ill. eight substituted guanidines and related substances are presented. The groups which have been studied are the azide group, the nitrogen-nitrogen double bond, the nitrosoamino group, the carbon-nitrogen double bond, and the tetrazole ring. The fundamental data thus obtained can be used in the elucidation of the structures of new- compounds of high nitrogen content.
Compounds of high nitrogen content, such as may be derived from guanidine and its substitution products, are often unstable and in many cases offer very little means for chemical identification. However, the nitrogen groups present lend themseltes to infrared absorption studies, and the present investigation was undertaken to characterize such groups by this technique. Infrared absorption spectra of thirty-
T
HE; reactions of various substituted guanidines
have led t o the formation of compounds that have a large proportion of nitrogen, and for this reason are often unstable and difficult t o characterize. The nitrogen groups present lend themselves, however, t o infrared study and a n investigation of many of the known guanidine derivatives was undertaken in order t o characterize these groups. The final aim was t o use these findings t o establish the structures of new compounds ohtained in a n investigation of the reactions of the various guanidines, leading to the formation of compounds of high nitrogen content. In this paper the infrared absorption spectra of thirty-eight substituted guanidines and related sub-
Table I. Fig.
50.
STRAIGHT CHAM VbFOF
C-H DEFORMATION C-H BENDING
7
6
9
IO
1
I
1
I
12
13
14
15
LENGTH
IN
MICRONS
Figure 1. White Mineral Oil and Background
O
Calcd.
C.
1-Acetainido-3-nitroguanidine 194 144-148 Aminoguanidine nitrate 5-rlminotetrazole 199 ... .Inilinium-5-nitroaminotetrasole Azodicarbamidine dinitrate 5-Bromotetrazole .V-n-Butyl-N '-nitroguanidine Diaminoguanidine nitrate Diazoguanidine cyanide 1.7-Dicyclohexoxy-2,4,6-trinitru-2,4,6-tria~aheptane Di- (diethylammoniurn)-5-nitroaminotetrazole l,g-Dinitroxy-2,4,6,8-tetranitro-2,4,6,8-tetrazanonane Disodium azotetrazole pentahydrate .V-Ethyl-S '-nitroguanidine Guanidine nitrate Guanyl azide nitrate 11 1-Guanyl-4-nitrosoaminoguanylivotetrasene !,Ol$l 40 Hydrazine monohydrochloride 192-192 ?.I 14 5-Iodutetrazole 211-212 2 1 3-hlethy1-5-nitroamino-1.2.4-triazole 125 5-126 .j 32 N-m-hfethylphenyl-S'-nitroguanidine 202.5-203.1 31 N-o-hlethylphenyl-S '-nitroguanidine 189 26 Iiitroaminoguanidine 17 5-Nitroaminotetrazole 25 Kitroguanidine 4 Nitroguanyl azide 3 5 Sitroguanyl hydrazone of acetaldehyde 24 27 33 30 34 37 15 20 9 13 29 38 10 22 19 23 8 28 36 3
18 5
2 Sodium azide 6 Sodium tetrazolyl azide 1ii:s 12 Tetrazole 74 7 Tetrazolyl azide 199 16 Tetrazolyl hydrazine 214 39 Triaminoguanidine nitrate a Analyzed b y Micro Tech Laboratories, Skokie, Ill. b Obtained from U. S.Naval Ordnance Test Station, China. Lake, Calif. 0 Obtained from American Cyanamid Co. d Hydrazine (Ii2Hd content, e Obtained from Paragon Dirision of Matheson Co. -
8
WAVE
Compounds of High Nitrogen Content M.P., .-70Iiitrogen
Cornvound
I
I1
I
! 3 4 5
~.~ ~~
~
43.47 '51.08 82.33 43.93 46 66 37,61 34.98
55.26
74.98 19.2p 40 0 9 31.11 46.67 42 41' t 5 86 56 7 3 74.47 46 72d 28.59 48.91 28.85
28.85 58.81
64.62 n3.79 64 62 48.26 39.95 63.62 26.91 31.10 49.98 65.74 64.63 73.69 79.97 88.29 83 97 59.21
____
1594
Found 43.270 50.94 82.18Q 4 4 . 2aa 46.13 38.01 3 4 . 7Za ,54. 90a 75.04 19.21
40.60 31 1 0 n
4i : i o n
tC59 5
a6.76 73.94" 46.79d 28 5 3 49.41a 28 77O 29.05 A8.73" 64,12 3 3 . laa 64 9 5 48.05U 39.95a 63.10
27.28
31.21 50.39 86.75.
64.66 72 73a 79.79 88.20" 83.77 59.60
~~
stances are presented with the purpose of using the data t o obtain a qualitative tool for the identification of certain atomic groupings present in this particular environment. An analysis of these spectra is presented in which the characteristic absorption bands for these groups are tabulated. Because all the compounds Fvere solids and many were insoluhlr in anything but polar solvents, the samples were prepared for analysis by slurrying them in M hite mineral oil. The ultraviolet absorption characteristich of these compounds xi11 be preientrd in R future communication COMPOUNDS USED IN STUDY
Table I 1ist.s the compounds that were uaed in t,he study and the analytical data for, t,hem. They were either prepared i n this laboratory by the directions given in the references cited or obtained from the U. S. Naval Ordnance Test Station, Inyokern, China Lake, Calif., as indicated. Nitrogen was determined using the Dumas procedure in this laboratory or the hficro Tech Laboratories, Skokie, 111.; the appropriate source is noted in Table I. 1 Present address, U. S. Naval Ordance Test Station, China Lake, Calf.
V O L U M E 2 3 , N O . 11, N O V E M B E R 1 9 5 1 Table 11.
1595 shown as dotted lines, while the bands considered t o be due t o t h e ComDound under studv have been marked with a small vertical line. The comparison of the sample curves and the white mineral oil is qualitative, because the conditions were not controlled and absolute comparisons are impossible. The infrared spectra of thirty-eight guanidine derivatives and related compounds are presented in Figures 2 to 40. Table I11 tabulates the absorption bands for each compound, I n making up Table 111, all the ahsorption bands that were believed t o be
Slit Width Settings Used in Determination of Infrared Spectra Wave Lengths, P
2.8 7.9 9.7 11.8 14.1 15.2
Slit Widths. Mm. 0.015 0.075 0.116 0.186 0.390 0 610
- -IYFRAREU SPECTROSCOPY
The infrared absorption spectra were obtained on a Perkin-Elmer spectrometer, Model 12-C. The samples consisted of 10 to 30 mg. of compound mulled in 10 drops of white mineral oil for 5 to 10 minutes wherever possible. In some cases it was not possible to obtain as finely divided samples as are desirable for best results, because of the sensitivity of the compounds to friction and impact, For this reason the light scattering in the sample phase, which is generally higher in solid suspension than in solution, is high in some cases. This fact was recognized by the authors and attempts were made to minimize this effect by varying the sample concentration and the cell size. In difficult cases, such as nitroguanidine and nitroaminoguanidine, the spectra presented were chosen from many curves as the best data available.
2 No N1
I
P J,,.,;;~ d O ,\ 2 3 4
5
6
7
8
9
IO
I1
WAVE LENGTH
13
12
14
I5
IN MICRONS
1
3
I The spectra were taken over the range of 2 to 15 microns, using the automatic slit drive and a scanning rate of 30 minutes. Table I1 shows the slit widths a t several \\ave lengths -411 the samples were run a t an amplification which gave the best possible resolution of the spectrum. This amplification varied from sample to sample. T h r infrared spectra are shown as graphs of sample transmittance as a function of wave length. -4s a point by point comparison of the sample and background has not been made, no absolute values can be given to the transmittance scale. These graphs were traced from the original records obtained with the Brown recorder. .I curve of the white mineral oil and background is given in Figure 1. The mineral oil has four main absorption bands a t 3.8, 6.75, 7.17, and 13.8 microns, two weaker ones a t 8.6 and 10.2 microns, and several other still weaker ones. The absorption bands due to water in the atmosphere are shown in the region of 5.5 to 6 5 microns and the carbon dioxide bands are a t 4.2 and 15 microns. In all the other spectra presented, the water bands and carbon dioxide bands were removed. AR the samples consist of a suspension of the compound to be studied in white mineral oil, its curve is alaays superimposed on the spectrum of the other compound The main oil bands have been
I
SODIUM AZIDE
A
I
GUANYL
I\
.\;
I I I
1
4
I
111
/
\;y I
l
l
I
I
5
6
7
6
AZIDE
n
I
II
I I
I
I
1
9 WAVE
NITRATE
I
II le IO LENGTH IN MICRONS
I
I
I
13
14
15
4
N3
I
NITROGUANY L
WAVE
LENGTH
A2 IDE
IN
MICRONS
POTASSIUM T E T R A Z O L Y L AZIDE
Figures 2 to 5. Infrared Absorption Spectra
WAVE
LENGTH
IN MICRONS
1596
ANALYTICAL CHEMISTRY
V O L U M E 23, N O . 1 1 , N O V E M B E R 1 9 5 1
I 1
. .
' . . . . . . . . . . . . . 0 . . . . . . . . . . . . . 2 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 8. . . . . . . . . . . . . . . ' 2 .' .
. .
1597
.
. .
.. ., ..
,
,
~
:' -f ?. .: : . : . : .: :. : . :
. .
:
:.
.
:
.
.
.
.
.
. :
. :
. :
. :
:
.
.
. .
.
.
.
-
.
? 5:
.
$!
.. .. .. .. .. :. .. .. .. . . . . . . . . . . . . . . .
I::: 1;:;:
.
. ,.
. az sz
'
:
.
?
,
:
; ];I
. :
.
,
:
,
h
;1
,
: : :
0
0
; oZ!
'
.
.
.
2 '
: '
% : . ; ., = ' : ' .
. .. . .
,
,
. .
,
. . . .. . . .
. .
. . . .
8
:I;
.
B
:
:
:
.. . . . . ,. ? ? : . . . . S 2 '
...
...
:
:
, L O
: : : ? : : I . . ' . S , .
..
n 0 . . . . : . ? ? : . . . . . . ' I : = " " ' '
i
.
.
.
'
.
. .. .. .. .. .. .. .. . . . . . . .
. .
; : : : : : , x . : q : : : : : : :
$
:
:
. :
,
.
:
: '
j
.
:
: ?
:
q
'
:
.. .
:
"
.:
'
?
...
m
2 2
.
.
, $ ! " ' . :
2
"
.
. . . . . . . . :. :. .: .: ... . :. .. . .. ... ,. .. .. .
:
'
"
'
'
'I:"'
: $ ! :
jl?1y!i?
%1 29 .: :. . :. :. :2?2'$1 ? ? : ? 13$: .
... ... .. .. .. . . . . . . . . . . . . . . . . . . . . . . . .. ..
.
.:
. - ..
.
..
.
..
..
.
.
..
.
.
..
.
..
-
. ' * .. .,, ..
:
: : . ...
:. . .
.
.
,
..
,
.. . ..
,
.
..
.. ... ...
... ... ... ... .. . .. . .. . .. . : . .
.
o
. ; . '
:
:
.. ' .. . .. . .. ,... ... ... . .. . .. . .
.
. . ..
, :.
: ? ? : :
, .
.I . .
L. o . . ' . . . $ : " ' .
:
.. ,
:
m
.
, $ 1
.
lo
.. .
.
+ *
1..
m
:. ? "
,
'I:
,
.
,: $ N 1
-
... ... ... ... ... .. .. .. ... ... ... ... .. . .. . . . . . . . .. . w" : . . v
,
:
:
,
..
.
. . . . ..
O
-
'
..
N
..
'
.. .. .. . . .. .. .. .. .. .. .. .. . . . . . , . . , , . , .
1 ; ; ; ; : s,g i : : : : : . .&
I
... ... ... ... ... ... ... ... .. . .. . .. . .
.. .
s
:
.
.. . .. . . ... ... .,. ... ..
.
...
..
.
:
,
I
_.. In
...
'
. ..
.
.. .
.
. C f Z " '
*
n
: ? ? ? ? ? S F : , 2 . 3 2 2 . 3 i 2 :
m
2
0
..
. : .
:
.
.
.
.
l
,
0
,
2"'."""
:
:
:
:
-
0
. ' o : :
N
.
. : :
.,
o
: g : :
: :
'$1
"
.: .
.
"
.
..
"
s
'
'
. : I.
:.
..
.
.
.
.
. . . . . . . .. ..
..
.
..
.
..
.
..
.
'
;1
. . . - - $ 1 2 : :l j /iIj :
. . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
,
.
.
. . . . .
S
: ... .., ... ... ... ... . ... '
. . . . . . . . . ... .. .. .. .. .. .. .. .. ..
.. . . . . . . .. .. .. .. .. p. .. : : .. .. .. .. .. .. . . , . . . , - . . . . . . . . . '
,.4
? _ :. :. :. : . : . : , : _ : . : . : . : . &- ". :.. H
.
.
E:
.. .. .. .. .. .. " .
.,
'
'
: ; ?
2 :
.
.
.. .
I
I
.
..
m
.: :. .. :.. .. . .. . .. . . . .. . . . '. . . . . , . ,
"
1 ; : :. : . : . $ ;
:.
.
..
:
.. . ... ...
-1
, , : : $
.
m
:;+
,
.
"
,
. . . . . . . .sn,l : : : : : : '
,
.
:
d
.. .
..
.. .. .. . . . . . . . . .. . . . . . . . . . .. .. . . . . . . . . . . . . .
... ,.. ,.. ... ... ,. :I ii
,
.
..
. . . . . . . . . . . :. , . : * L O sN : : : : : ' : . . . * , . 2 z . . . . . . . . . ' '
$ 1 : ; s!=/ z:I . . . . . . . . . . . . . . . :. y ; ; I :
. .
= j i I ,.
.
..
::
. . . . . . . . . . . . . . . . . . , . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .. . . . . .. . . . . .
,
.. 2
'
"
.
.
..
"
:
I:::::: .
h
9
..
.
In
-.
Z
.. ... ... ,., ... ... ,: ,: =s =z :. .
.. ..
.
. :
. :
F 4
,
:
.
,
:
,
:
:
,
:
I
1598
ANALYTICAL CHEMISTRY
IO
SODIUM TETRAZOLYL AZIOE
n
DIAZOGUANIDINE
3
4
I
I
I
I
5
6
7
8
I
9
WAVE
1
I
IO
II
LENGTH
I
CYANIDE
I
12
13
14
I5
IN MICRONS WAVE 7
IN MICRONS
LENGTH
II
1
,NH-NH-N-N-C