C-22 insulating brick, and resolved com-
ACKNOWLEDGMENT
plex mixtures with nonspecific liquid phases. The capillary column-ionization detector system has been used in thc resolution of the following mixtures:
The authors thank D. H. Desty, British Petroleum Co., Ltd., for invalua.ble advice on coating and loading
columns.
All 16 of the CSto CTparaffins
(1) Dijkstra, G., de Goey, J., Second Symposium on Gas Chromatography, Amsterdam, May 20, 1958. ~ J. l E,,~'(Gas ~Chromatog, (2) ~ raphy, ed. by V. J. Coates, p. 1, Academic Press, New York, 1958. (3) Golay, ill. J. E., Second Symposium on Gas Chromatography, Amsterdam, May 20, 1958.
C , olefins All 16 of the CI to Cgalcohols Aqueous solutions of Cp to C5 aldehydes
y.
Stationary liquid phases and operating parameters for capillary columns are now being investigated.
Determination of Trace Organic Impurities in Concentrated Hydrochloric Acid by Extraction with Carbon Disulfide
_
_
Range ppm
_
~
_
or Y
B.L.
Slit (mm) AA or
Pts.
Av
mm
_
13.2 0.180 2.0 13.0- 0.035 13.25 -~~ 0.180 2.0 CH2Clr 0-200 fl 13.5 13.3- 0.035 13.65 CHCl3
Chloroform
Methylene chloride
0-200
f l
1, I -Dichloroethane
9.5 9.259.6
0.300 0.064
2.0
1,Z-Dichloroethane
14.0 13.814.2
0.750 0.132
2.0
12.8 12.412.9
Carbon tetrachloride
0.450 0.081
0.89
0.77
Relative absorbances are given as the slope of the Beer's law concentration curves used expressed in terms o f absorbance per 100% of constituent.
Determination of Thianaphthene in Naphthalene R. E. SEEBER ond R. G. WHITE, Notional Aniline Div., Allied Chernicol Cotp., Buffalo, N. Y.
No. -
Component Name Formula Thianaphthene
C8HsS
cs-73
Slit
Concn.
(mm)
mgfml
Range
Accurocy
A orv B.1.
AX or
Length
%
%
Pis.
AV
mm
0-5
&0,2
14.5 14.314.9
2.8
200 0.5
Insfrumenf: Baird-Atomic, Model 8, NaCl prism Sample Phase: Solution in cyclohexane Base l i n e - L
Inverse matrixGraphicalL
PointCell Windows: NaCl Absorbance Measurement:
Successive approx.-
Relative Absorbances'-Analyticol Matrix: Component/X 13.2~ 13.5~
4 5
4 5
The analytical wove lengths are so ch9sen that interfering absorptions are practically negligible. The lower limit of detection is 1 p.p.m.
Calculotion:
1 2 3
3
0.84 0.38 0.59
2
1
Calculation:
RECEIVED lor review December 2, 1958. Accepted Jmuary 2, 1959.
Component
2.0
Instrument: Perkin-Elmer Model 12C, NaCl prism Sample Phase: Concentrated hydrochloric acid extracted with carbon disulfide Cell Windows: NaCi Absorbance Measuremenf:
J. E. LOVELOCK Departme~ltof Internal Medicine Yale U n i v d t y School of AIedicine New, Haven, Corm.
Extraction recovery constonts for the various components are as follow fraction recovered):
CS-72 Concn. see comments) length
X
Department of Chemistry Universitj of Houston Houston, 'rex
1
H. 1. SPELL and J. N. LOMONTE, The D o w Chernicol Co.,
freeport, Texos
Accuracy ppm
(19:s). (6) Scott, R. P. W., Second Symposium on Gas Chromatography, Amsterdam, hlay 21, 1058. -4LBERT ZLATKIS
LITERATURE CITED
p - and m-xylene
Componer Formula Name
(4)Lipsky, S. R., Lovelock, J. E., private cornmunication. (5) Lovelock, J. E., J. Chroljzatogr., 1 , 35
9.5p
Base line-&-
Inverse . i rm ta GraphicalX
Point--
Sucwssive approx.-
14.0~ 12.8~ Relative Absorbances-Analytical Matrix: Componentf A
1352 680
1
234 320 892
Materiol Purify: Reference compounds 99+% pure Comments: Two hundred fifty milliliters o f the acid sample i s extracted with 5 ml. o f CSz. This i s repeated, using on additional 5 ml. of CSz. The two CSz extracts are combined, mixed, and analyzed.
14.5 10.2
Maturity Purity: Naphthalene 9 9 +yo, tliianaphthene 95%, Matheson, Coleman and Bell No. 7507. Comments: Absorbance measured vs. NaCl compensating plate. Includes solvent absorbance which is negligible. Armstrong, Densham, ond Gough (J. Chem. SOC. 1950, 3359) descrihe use of molten naphthalene and o different (much weaker) thianaphthenc band for this analysis.
VOL. 31, N3. 4, APRIL 1 9 5 9
621
Determination of Phenethyl Acetate in Phenethyl Formate A. J. FENTON, The Procter and Gamble Co., Cincinnati, Ohio
I Range
onent
1
racy
B.L.
[mm)
Determination of 4-Nitrochlorobenzene in :2,4-Dinitrochlorobenzene
cs-74
length
% % Points AX mm _ _ - _ _ _ _ ~ Phenethyl /-CIOHI~O~ 0-20 3 ~ 0 . 2 9 . 7 0.400 100 acetate 9.23 0 . 0 4 1 ~ 0.025 -
-I 1
~
~
Insfrument: Perkin-Elmer Model 32 1, NaCl prism Sample Phase: liquid Cell Windows: NaCl Absorbance Measurement: Calculafion:
B. E. SEEBER and 8. B. WHITCOMB, National Aniline Div., Allied Chemical Corp., Buffalo, N. Y.
Companenf Name Farmula
1
No.1
1
I
4-Nifrochlorobenzene
1
%
%
C S H ~ N O ~ C 0-4 I
Cell Windows: NaCl Absorbance Measurement:
Graphical
Calculation:
9.7p 1.23
1
Range
zk0.2
X orv 5.1. Pfs.
Slit [mm) AX or Av
9.9
0.40 500
Qi;lo/
Concn. mg/mf length
mm
0.1
fnsfrument: Baird-Atomic, Model B, NaCl prism Sample Phase: Solution in chloroform
Base line
Relative Absorbance-Anofyfical Matrix: Componentlh
I1 11 1I I I1 Accuracy
cs-75
Base l i n e x
Inverse matrixGraphical&
Point-
Successive apprax.-
Relafive Absorbances-Analytical Matrix: Component/X
9.9 2.80
Materi;rl Purity: Reference compounds 99 +% pure Comments: The absorbance i s expressed as the slope of the Beer’s l a w curve in absorbance per 1 0 0 ~ o of constituent. The calibration curve passes through 0.23 absorbance at 0% acetate.
98 +%.
These d a t a repreaent s t a n d a r d publication a n d submission is open to anyone in accordance with regulations of ANALYTICAL CHEXISTRY. T h e Coblenta Society is acting only a s an aid t o t h e journal.
To standardize procedures, AX-~LYTICAL CIiEarrsmy requests tliat material be s e n t in quintuplicate t o t h e chairman of t h e review committee: Robert C . Wilkerson, Celanose Corp. of Binerica, Post Office Box 8, Clarkwood, Tex.
1 Material Purify:
2,4-Dinitrochlorobenzene 99 +%, 4-nitrochlorobenzene
~
No. 1 80. Uranyl DisaIicyIa,te Trihydrate, U0 2 (CsH40HC O0)2.3H20 V. AMIRTHALINGAM and V. M. PADMANABHAN Chemistry Division, Atomic Energy Establishment Trombay, Bombay, India
D
the preparation of yellow triclinic uranyl disalicylate dihydrate crystals ( 1 ) for detailed structure analysis (to be reported in another paper), tiny orange-brown hexagonal prismatic crystals are isolated from the same mother solution. Detailed thermogravixnetric studies of both the URING
orange-brown and yellow compounds which were dried over calcium chloride in a desiccator re m l e d that they are of the same compcsition except for the water molecule content. Calculation showed that thk orange-brown compound contains three water molecules per molecule.
Partial Powder X-Ray Diffraction Pattern of Uranyl Di:dicylate Trihydrate hk,
110 001 101 111 201
300 211 220 310 301
d, A. (Cdcd.) 8.553 7.161 6.446 5.492 5.149 4.938 4.411 4.275 4.109 3.980
d , A.a
(Obsd.) 8.52 7.14 6.43 5.51 5.15 4.91 4.42 4.28 4.11 4.02
d, 4,.
I
hkl
m vs vs vs
400 102 401 321 212 500 330 420 331
ni m w
m
m vw
(Cnl-d.) 3.736 3.479 3.271 3.071 3.018 2.C63 2.551 2.E01 2.t849
d, A: (Obsd.) 3.72 3.47 3.28 3.09 3.03 2.98 2.85 2.79 2.66
1
ANALYTICAL CHEMISTRY
CO
= 7.16A. No. of Molecules in Unit Cell. 2
=
12. Density. 2.192 grams per cc. (calculated), 2.120 grams per cc. (measured). Space Group. PG (no systematic absences). OPTICALPROPERTIES Uniaxial Negative. Refractive Indices (A 4358). no = 1.657. n , = 1.653. Geometric Mean. 1.655. Rfolecular Refraction. 99.6 cc. Color. Orange brown.
s
ACKNOWLEDGMENT
m in
The authors thank Jagdish Sliankar for his interest during the progress of the work.
ni m IT
w 111
w
a G.E.C. 143.2-niin. diameter powder camera Straumani,j mount,ing, (CuKi,) 1.5418 A.
622
X-RAP DIFFR.4CTION DATA Cell dimensions. a. = 17.10 A.
LITERATURE CITED
(1) Llanoilovic, 1,. RI., B u l l . Inst. Nuclear Sci., “Boris Kidrich,” Belgrade, 8 , 105 (1958). CRYSTALLOQRAPHIC data for publication in this section should be sent t o W. C. hIcCrone, Jr., McCrone Associates, 501 East 32nd St., Chicago 16, Ill.