V O L U M E 22, NO. 1, J A N U A R Y 1 9 5 0 (108) Preston, J. S., Rev. optique, 27, 513 (1948). (109) Reinhold, J. G., Science, 109, 376 (1949). (110) Rider, B. F., and Mellon, M. G., A n a l . Chim. Acta, 2, 370 (1948). (111) Rusconi, Y., et al., Helv. Chim. Acta, 31, 1549 (1948). (112) Sacconi, L., Gazz. chim. ital.,78, 192, 303 (1948). (113) Segal, J., Compt. rend., 228, 204 (1949). (114) Shepherd, R. G., ANAL.CHEM.,20, 1150 (1948). (115) Sherman, M., Iron A g e , 162, No. 26, 62 (1948). (116) Shome, S. C., ANAL.CHEM.,20, 1205 (1948). (117) Shurcliff,W.A , , and Steams, E. I . , J . Optical Soc. Am., 39, 72 (1949). (118) Silverman, L., ANAL.CEEM.,20, 906 (1948). (119) Souchay, P., and Peschanski, D., Bull. SOC. chim. France, 1948, 439.
7 (120) Stross, W., Metallurgia, 39, 159 (1949). (121) Swank, H. TV., and AMellon,M. G., IND. ENQ.CHEM.,ANAL. ED.. 9. 406 (1937). (122) I b i d , 10: 7 (1938). (123) Tunnicliff, D. D., et al., ANAL.CHEM.,21, 895 (1949). (124) Vaisberg, Z. M., and D a h , B. Ya., Zh,ur. Obshchei K h i m . , 18, 1037 (1948). (125) Van den .-lkker, J. A., Am. J . P h w . . 16, 1 (1948). (126) Villalobos-Dominguez, C., and- Villalobos, J.. “Atlas de 10s Colores,” Buenos Aires, Libreria el Iteneo, 1947. (1271 West. P. T V . . and Comoere. M.. ANLL.CHEDI..21. 628 (1949). (128) Wiberley, S. E., and Bissett, L. G., Ibid., 21, 609 (1949). (129) Willard, H. H., et al., Ibid., 21, 598 (1949). RECEIVED September 30, 1919.
INFRARED SPECTROSCOPY ROBERT C . GORE, American Cyanamid C o m p a n y , Stamford, Conn.
I
N T H E first annual review of analytical chemistry (18) it was
reported that some 1000 papers dealing with infrared spectroscopy had appeared since 1943. During 1948 more than 300 papers with bearing on the field were published. It appears likely that this upward trend in popularity will remain with infrared spectroscopy as more and more chemists discover its utility. If it is possible t o observe developmental tendencies in the field over the passage of one year the following could be considered as important: T h e increasing recognition by many chemists of the infrared spectrum of a compound as an important physical property is shown by the fact that in one issue of the Journal of the American Chemical Society 33 spectra were reproduced. Papers on instrument design are decreasing, while those dealing with accessories and techniques involving novel application of the field are increasing. Empirical qualitative studies are being published from many new workers in the field on many different classes of compounds. Quantitative analvtical papers, representing only about 7% of the total published, are not stressing general principles as often as reporting specific analvses. Fundamental vibrational analyses lvith attendant calculation of thermodynamic functions are on the increase, even though moqt of the simpler molecules have been treated. A more detailed review of the published work during the year follows but no attempt is made t o cite exhaustively all publications. Lecomte (155) and Sutherland (240) have also published reviews. BOOKS
Early in the year “Practical Spectroscopv” by Harrison, Lord, and Loofbourow (106) appeared with a useful treatment of infrared spectroscopy, especially from the experimental standpoint. Bhagavantam and Venkataravudu (2-9)published a book on the “Theory of Groups and Its .4pplication t o Phvsical Problems ” T h e monograph on “The Chemistry of Penicillin” (43) included an extensive chapter on the infrared work clone on that problem both here and in England. In France Lecomte published two volumes (152, 166), the first on biological applications, and the second on infrared spectrometry and its phvsicochemical applications. “Infrared Determination of Organic Structures” bv Randall, Fowler, Fuson, and Dangl (208) treats the subject from the standpoint of a practicing spectroscopist and offers many suggestions for beginners. This work reproduces 355 spectra mainly obtained while the authors x-ere engaged with the penicillin prob-
lem.
Model 21 appears to be an exceptionally versatile instrument with such features as variable scanning time, automatic suppression, and relatively simple electronics. The Beckman instrument employs the unique system in which a recorded trace of the spect8rumof the source is played back while the sample spectrum is being taken. A nexv 13-cycle alternating current amplifier, developed by Perkin-Elmer for use with modulated beam spectrometers, has advantages in stability, linearity, and freedom from beat and pickup over the breaker-type amplifier. A similar amplifier is described by Brown (33). Radiation sources have shown little change, but there is renewed interest, in the Nernst glower (186). There has been further study of the Globar (229). Finkelnburg (72) has carefully discussed the conditions for black-body radiation in gases. I t has been customary to blame many of t,he difficulties of infrared spectroscopy on the relative inefficiency of the radiation sources and the insensitivity of the usual broad-band detectors. Golay (87) has described a method of multislit spectrometrv which increases the over-all efficiency of a spectrometer over that obtained from the usual two-slit monochromator. The correction of slit width erroys has been discussed by Hardy and Young (104). Radiation detectors have come in for their share of study with important articles by .Imdur ( 6 ) ) Daly and Sutherland (54), Golay (88),and Jones (123-126). Jones has exhaustively discussed the ultimate sensitivity, factors of merit, and a proposed system of classifying radiation detectors. Recording systems of the conventional type are treated by several authors (34, 64,120), Fhile oscillographic recording is described by others (%, 128, 188). Lecomte (163) ha3 revived the evaporographic technique of J. F. W. Herschel and X I . Caerny to record infrared effects. The advent of research in the low temperature field has led several investigators to describe low temperature cells (166, 914) of hoth transmission and reflection types. For use especially in biological work a microcell has been devised (268)a? well as a soldered cell ( I % ) , a cell constructed of fluoropolpmer (137), and a holder for filamentous materials ( 1 1 7 ) . Perhaps silicon and germanium map find some uses as cell windows, for they have been shown to transmit fairly well bevond 2 microns (20, 21, 32). Reflecting microscopical studies (17, 28, 37, 66, 9 1 , 94, H5, I @ ) , although not extensive in the infrared region, show promise in reducing the size of sample necessary t o obtain a spectrum, as well as in biological studies and crystal structure invest>igations.
INSTRUM ENTATION
During the year there were few major advances in instrumentation. The manufacturers of all commercial spectrometers began the production of percentage transmission recording instruments following the lead of Hilger and Baird. T h e new Perkin-Elmer
POLARIZATIOY AND CRYSTAL STUDIES
I n the future, polarization data will be taken as a matter of course for the information they yield in solid phase studies, just as spectroscopists now often run a sample in several states and
8
ANALYTICAL CHEMISTRY
solvents and with several prism materials. The present novelty of polarization studies, perhaps, offers justification for the assembly of this special section a t this time. Transmission polarizers continue to be the devices of choice, with Perkin-Elmer now offering one as an accessory to its spectrometers. For those desiring to construct their own polarizers according to the method of Elliott, Ambrose, and Temple which utilizes selenium films, it has been reported that the evaporation substrate may be Formvar ( 7 ) rather than the intractable solutions of nitrocellulose. There are experimenters who still prefer the chemical reactivity and scattering losses found in silver chloride films to the fragility of selenium. Because methods of orienting crystalline samples for polarization studies are often troublesome, it is worth while to attempt orientation by polishing and adsorption on suitable surfaces (10). Proteins (4),polymers (5, 7 0 ) ,and silkworm gut (90) have all been subjected to polarization studies with varying results. A field of great utility is in the vibrational analysis of molecules, where polarization measurements in the solid state aid materially in the assignment of frequencies (100). The theories of the spectra of crystals have received further attention this year with general papers by several authors (58, 119, 154, 214). Walsh and Willis (268) have reported no change in band width on cooling several samples to low temperatures, an observation that appears t o be in disagreement with those of others. Individual crystal studies include ammonium and thallous nitrate (IS%'), ammonium halides (257), silicates (172), naphthalene (5806),n-butyl alcohol ( I S ) , and 0-quartz (5817). QUALITATIVE ANALYSIS
Spectroscopists engaged in qualitative analysis or molecular structure studies, who must search for published spectra, are confronted with a multiplicity of journals now publishing these spectra. This outgrowth of the widespread realization of the value of infrared d a t a by chemists in many different fields will plague spectroscopists until compound indexes or extensive collections of standard spectra are available. Space limitations make it impossible to list here all spectra published during the year, even though these are of prime importance in infrared analysis. Spectra reported in other sections of this review are not listed here again, but must be sought under the different headings. Qualitative studies were reported on the following molecules or classes of compounds: alcohols and aldehydes (11), amino-substituted a,P-unsaturated ketones (62),anthraquinone (73), benzene hexachloride (gamma) (53),benzoyl cyanide dimer (171),the carbonyl linkage ( l o r ) , carboxylic acids (ZOQ),cyclopropane and cyclobutane (61, ZOO), ketones ( Z l O ) , methyl isolinoleate (157), minerals (161),naphthalene (265),organic compounds from 22 to 39 microns (199), 11- and 12-oxygenated steroids (126), penicillic acid (187),Pennsylvania lubricating oils (77),phenyl and cyclohexyl eicosanes (191), quinoline thiols (IO$),silicones (213), sulfones and related compounds (219), thiazine derivatives (166), thiophosphoryl chloride (41 ), and uracil, 5-chlorouracil, and thymine (144). QUANTITATIVE ANALYSIS
Few general papers in this branch have appeared during the year. A discussion of the evaluation of accuracy in photometric analysis (1.4j belongs in this class, along with the description of a rapid method of computing spectra with a manually operated potentiometer and recorder (76,58758). Tyler (664) gives a method of computing the correct cell thickness to give optimum absorption. Starr and Lane (237) discuss the accuracy and precision of light hydrocarbon analyses. Studies on pressure broadening (9, 169, 173, 174) are of certain interest in gas analysis. Special instruments such as multipoint and gas analyzers have also been discussed (76,159,180,266). The following specific quantitative analyses were discussed: impurities in n-heptane concentrates ( 8 ) ,dimethyl ether in methyl
chloride (48),assay of the procaine salt of benzylpenicillin (48), estrone, equilin, and equilenin (do), ester carbonyl (IO,!?), benzene hexachloride (170, 2558, 5866), one method utilizing a mass isotope dilution method, gaseous hydrocarbons ( I N ) , vitamin Dz (197), and leucine isomers in protein hydrolyzates (56). Fry reports the use of infrared analysis in pilot plant control (79). HYDROGEN BONDING
The influence of hydrogen bonding on specific absorption bands has been recorded in many articles during the year, but specific studies on bonding have been few. These include alcohol-amine association (15), mononitronaphthylamines (108), bonding in some 4-substituted cyclohexanols (196), the nature of the bond in potassium hydrogen fluoride (864), and the presence of bonding in 4-triacetyl-D-xylosidaminopyrimidines(35). BIOLOGICAL
An interesting and thought-provoking study is t h a t reported by Miles and Beck (19, 179) on olfaction in bees. Essentially, their hypothesis is that the smell of substances, which do not react chemically with the olfactory organs, is dependent upon their infrared absorption betvieen 6 and 12 microns. Most of the other papers of biological flavor might well be relegated to the other sections of thisreport. For the benefit of rapid scanners, however, these articles include studies on synthetic polypeptides ( l a ) , nucleic acids, nucleotides, and nucleosides (SO), cancerous tissue (31), proteins (55),deuterium-labeled steroids (629, aqueous solutions of organic acids and salts (92), antibiotics derived from Bacillus polymyxa (QS),native spruce lignin (1586), the amide linkage in a native globular protein (141), and natural proteins (albumin) and related substances (142). POLYMERS
Hampton (101) has described an infrared analysis for cis-trans forms in low temperature polymers; similar studies were reported by Hart (106)and Treumann (253). Studies on polymers a t 4 " K. are reported by King (136), and Kellner (133) has analyzed the vibrations of long-chain methylene groups in polythene. Saunders and Smith (218) discuss the spectra and structure of Hevee and gutta elastomers in an interesting article. REACTIONS AND CO.MBUSTION
Although the techniques of reaction studies in the infrared region are not as simple as those in the ultraviolet, some studies are now beginning to appear. Rates of deuterium exchange and isomerization (66, 9B), a comparison of carbonyl frequencies with reaction rates (74),the autoxidation of linseed oil (118),the chlorination of bicycloheptane @IS), and the hydrolysis of starch grains by polarized radiation (221) were reported during the year. Infrared researches on combustion were made by several investigators (3, 112, 230, $31). ASTROPHYSICAL
As is usual, there was interest shown in analyses of the atmosphere and related astrophysical subjects (1, 2, $9, 81, 167, 177, 178). THEORETICAL AND MOLECULAR
The number of papers in this category is customarily the largest. Moreover, as methods of study develop and increased interest is manifested, this work must expand. Much of the work is on the chemistry-physics borderline but must be considered as the ultimate goal in many cases of analysis. Certainly, the thermodynamic studies are of major importance to the practicing chemist and chemical engineer. These papers have been divided roughly into two classes. The first, the theoretical class, contains the more general papers while
V O L U M E 2 2 , NO. 1, J A N U A R Y 1 9 5 0 t h e second, the molecular class, contains papers dealing primarily with specific molecules. This, of course, does not mean t h a t there is no overlapping of the two groups. T h e theoretical papers include studies on cis-trans isomerism (as), identical atomic groups (46), homonuclear molecular absorption induced b y intermolecular forces (51,19.6,263),forces a n d force constants (130, 159, 160, 235, 247, 248, 250), integrals useful in molecular orbital calculations (195),redundant coordinates (239), electronic states of conjugated systems (45, 249), interaction terms (67, 149, 159), acyclic molecules (59), degenerate fundamentals (60),the asymmetric rotor (89, 98), condensed systems (the solid state) (267), internal rotation (129, 135, 150, 182, 184, 185), the iteration method of solving secular equations (143),t h e planar X Y 3 molecule ( l o g ) , the tetrahedral anions (110), t h e octahedral X Y 6 molecule ( I l l ) , overlapping spectral lines (1901, t h e Christiansen filter effect in slurries of organic crystals (205),intensity measurements (Ha),developments in the theory of secular equations (2467, the classification of symmetry coordinates (Z43), symmetrical triatomic molecules (245), and the deformation vibrations of hydrogen atoms attached t o double bonds (227). T h e specific molecular studies include papers on the following: hydrocarbon molecules in general (44, 80, 82-85, 228, 234), benzene (16, 49,50), methane (38, 114, 161, 189, 238, 244, 256), halogenated and deuteromethane, the deutero ammonias (39), ethane, including halogenated and deuteroethane (24, 25, 27, 69, 185, 201, 224, 235), propane, including deuterated (78, 168), secbutyl alcohol (16),boron compounds (47,203,204,261), ethylene, including halogenated (68, 145, 146, 158, 261), acetylene and methyl acetylene (175,176, 192, 271, ZTS), allene (113),ketene (65), hydrogen halides (57,193, 260), dimethyl cadmium, mercury and zinc (96, 97), ethylene oxide (86, 259), carbon monoxide (115, 147), carbon dioxide (222),carbonyl fluoride (270),hydrogen cyanide (116), malonitrile (loo),ethyl alcohol (99), chlorine trifluoride (121), tritium deuteride ( l 2 7 ) ,urea ( I N ) , the octenes ( I @ ) , formaldehyde (158), thiophene (162), arsine and deuteroarsine (163, 164), acetaldehyde (198), oxygen fluoride (202), t h e CI t o Ca diolefins and styrene (134),cyclopentene a n d cyclohexene (71), diazomethane (ZOT), nitrous oxide (bll), t h e picolines (216), hydrazine (220), vinyl acetylene (236), the C1 hydrocarbons (223), ethyl mercaptan (Z24),thioacetic acid (226), methyl and dimethylbutanes (241), ethylbenzene (242), t h e Ca hydrocarbons (225), polythene (I%?), inorganic molecules and complex ions (262), octatetraene (269),and oxalyl chloride (274). LITERATURE CITED
Adel, A., Phys. Rev., 75, 322 (1949). Ibid., 76, 446 (1949). Agnew, J. T., J . FranklinInst., 248, 82 (1949). Ambrose, E. J., Elliott, D. A., and Temple, R. B., h’ature, 163, 859 (1949). Ambrose, E. J., Elliott, D. A., and Temple, R. B., Proc. Roy. Soc., A199, 183 (1949). Anidur, I., and Brown, N. L., Rev. Sci. Instruments, 20, 435 (1949). Ames, J., and Sampson, A. M. D., J . Sci. Instruments, 26, 132 (1949). Anderson, J. A., Jr., and Zerwekh, C. E., Jr., ANAL.CHEM.,21, 911 (1949). Anderson, P. W., Phys. Rev., 76, 647 (1949). Anderson, Scott, J. Optical SOC.Am., 39, 49 (1949). Ashdown. A.. and Kletz, T. A., J . Chem. Soc., 1948, 1454. Astbury, W.T., Dagliesh, C. E., Darman, S.E., and Sutherland, G. B. B. M., Nature, 162,596 (1948). Axford, D. W. E., and Rank, D. H., J . Chem. Phys., 17, 430 (1949). Ayers, G. H., ANAL.CHCM.,21, 652 (1949). Baker, J. W., Davies, M. M., and Gaunt, J., J . Chem. Soc.. 1949, 24. Barchewitz, P., J . p h y s . radium, 10, 1 (1949). Barer, R., Cole, A., and Thompson, H. W.,Kature, 163, 198 (1949). Barnes, R. B., and Gore, R. C., AKAL.CHEM.,21,7 (1949). Beck, L. H., and Miles, W. R., Science, 106, 511 (1947). Becker, M., and Fan, H. Y., Phys. Rev., 76, 1530 (1949).
9 Ibid., p. 1531. Benesh, W. iM., Ibid., 76, 863 (1949). Bernstein, H. J., J . Chem. Phys., 17, 256 (1949). Ibid., p. 258. fbid., p. 262. Bernstein, H . J., and Pedersen, E. E., Ibid., 17, 885 (1949). Bernstein, H. J., and Ramsay, D. A,, Ibid., 17, 556 (1949). Berti, L., Nuovo cimento, 6 , 131 (1949). Bhagavantam and Venkatarayudu, “Theory of Groups and Its Application t o Physical Problems,” Bangalore, Mysore, India, Bangalore Press, 1949. Blout, E. R., and Fields, M., J . Bid. Chem., 178, 335 (1949). Blout, E. R., and Mellors, R. C., Science, 110, 137 (1949). Brattain, W. H., and Briggs, H. B., Phys. Rew., 75, 1705 (1949). Brown, D. A. H., J . Sci. Instruments, 26, 194 (1949). Brownlie, I., and Cuming, W., Nature, 164, 105 (1949). Brownlie, I., Sutherland, G. B. B. M.,and Todd, A. Ii., J. Chem. Sac., 1948, 2265. Bullock, B. W., and Silverman, S., J . Optical SOC.Am., 39, 200 (1949). Burch, C. R., Proc. Phys. Soc., 59, 41 (1947). Burges3, J. S.,Phys. Rev., 76, 302 (1949). Ibid.,p. 1287. Carol, J., Molitor, J. C., and Haenni, E. 0 , J . Am. Pharm. Assoc., 37, 173 (1948). Cilento. G., Ramsay, D. A., aud Jones, R. N.: J . Am. Chem. Soc., 71, 2753 (1949). Clnirhnrne, E. B , and Fuqua, AM.C., ANLL.CHEM.,21, 1165 (1949). Clarke, €1. T., Johnson, J. R., and Robinson, Sir Robert, “The Chsmistry of Penicillin,” Princeton, N. J., Princeton University Press, 1949. Cottrell. T. L . J . ChPm. Soc.. 1948. 1448. Coulson, C. A., and Longuet-Higgins, H. C., Proc. Roy. Soc., A195, 188 (1948). Couture, L., and Mathieu, J. P., J . phys. radium, 10, 145 (1949). Cowan, R. D., J . Chem. Phys., 17, 218 (1949). Coy, N. H., Sabo, C . W., and Keeler, B. T., ANAL.CHEM.,21, 659 (1949). Crawford, B. L., Jr., and Miller, F. A , , J. Chem. Phys., 17, 249 (1943). Crawford, B. L., Jr., and Parr, R.G., Ibid., 17, 726 (1949). Crawford, M. F., Welsh, H. L., and Locke, J. L., Phya. Rev., 75, 1607 (1949). Cromwell, N.H., Miller, F. d.,Johnson, A. R., Frank, R. L., and Wallace, D. J., J . Am. Chem. SOC.,71,3337 (1949). Cupples, H. L., ASAL. CHEM.,21, 630 (1949). Daly, E. F., and Sutherland, G. B. B. M., Proc. Phys. SOC., A62, 205 (1949). Darmon, S.E., and Sutherland, G. B. B. M., Nature, 164, 440 (1949). Darmon, S. E., Sutherland, G. B. B. M., and Tristram, G. R., Biochem. J . , 42, 508 (1948). Davies, M., J . Chem. Phys., 17, 374 (1949). Davydov, A. S., J . Esptl. and Theoret. Phys. (U.S.S.R.). 18, 210 (1948). Decius, J. C., J . Chem. Phys., 16, 1025 (1948). Ibid., 17, 504 (1949). Derfer. J. M.. Pickett, E. E., and Boord, C. E., J. Am. Chem. Soc., 71, 2482 (1949). Dibeler, V. H., and Taylor, T. I.. J . Chem. Phys., 16, 1008 (1948). Dobriner, K., Kritchevsky, T. H., Fukushima, D. K., Lieberman, S.,Gallagher, T. F., Hardy, J. D., Jones, R. N., and Cilento, G., Science, 109, 260 (1949). Domb, C., Proc. Cambridge Phil. Soc., 44 (Pt. 3), 335 (1948). Drayton, L. G., and Thompson, H. W., J . Chem. Soc., 1948, 1416. Drew, R., Nature, 164, 360 (1949). Duchesne, J., and Monfils, A., J . Chem. Phys., 17, 586 (1949). Edgell, W.F., and Byrd, W. E., Ibid., 17,740 (1949). Edgell, W. F., and Roberts, A., Ibid., 16, 1002 (1948). Elliott, A., Ambrose, E. J., and Temple, R. B., Nature, 163, 567 (1949). Epstein, M. B., Pitaer, K. S.,and Rossini. F. D., J . Research Natl. Bur. Standards, 42, 379 (1949). Finkelnburg, W., J . Optical SOC.Am., 39, 185 (1949). Flett, M. St. C., J . Chem. Sac., 1948, 1441. Flett, M. St. C., Trans. Faraday Sac., 44, 767 (1948). Foreman, R. W., and Jackson, w., Jr., Instruments, 22, 497 (1949). Fowler, R. C., Rev. Sci. Instruments, 20, 175 (1949). Fred, M., and Putscher, R., ANAL.CHEN.,21, 900 (1949). Friedman, L., and Turkevich, J., J . Chem. Phys., 17,11012 (1949).
10
A N A L Y T I C A L CHEMISTRY
(79) Fry, D . L., J . Optical SOC.Am., 39, 402 (1949). (80) Gates, D. M.. J . Chem. Phys., 17, 393 (1949). (81) Gebbie, H. A., Harding, W. R., Hilsum, C., and Roberts, V., Phys. Rev., 76, 1534 (1949). (82) Gero, L., J . Chem. Phys., 16, 1011 (1948). (83) Glockler, G., Ibid., 17, 747 (1949). (84) Ibid., p. 748. (85) Ibid., p. 749. (86) Godnev, I., and Mororov, V., Zhur. Fiz. Khim., 22, 801 (1948). (87) Golay, M. J. E., J . Optical SOC.Am., 39, 437 (1949). (88) Golay, M. J . E., Rev. Sci. Instruments, 20, 816 (1949). (89) Golden, S.,and Bragg, J. K., J.Chem. Phys., 17,439 (1949). (90) Goldstein, M., and Halford, R. S.,J. Am. Chem. SOC.,71, 3854
(1949). (91) Gore. R. C.. Science. in Dress. (92) Gore, R. C., Barnes, R:B., and Petersen, E. M., ANAL.CHEM., 21, 382 (1949). (93) Gore, R. C., and Petersen, E. M., Ann. N . Y . Acud. Sci., 51, 924 (1949). (94) Grey, D. S., J . Optical SOC.Am., 39, 723 (1949). (95) Grey, D. S.,and Lee, P. H., Ibid., 39,719 (1949). 71, 3194 (1949). (96) Gutowsky, H. S., J.Am. Chem. SOC., (97) Gutowsky, H . S., J . Chem. Phys., 17, 128 (1949). (98) Hainer, R. M.. Cross, P. C., and King, G. W., Ibid., 17, 826 (1949). 1 Halford, 3.O.,Ibid., 17, 111 (1949) Halverson, F., and Francel, R. J., Ibid., 17, 694 (1949). Hampton, R. R., ANAL.CHEM.,21,923 (1949). Hampton, R. R., and Newell, J. E., Ibid., 21,914 (1949). Hannan, R. B., Jr., Lieblich, J. H., and Renfrew, A. G., J. Am. Chem. SOC.,71,3733 (1949). Hardy, A. C., and Young, F. M., J. Optical SOC.Am., 39, 265 (1949). Harrison, Lord, and Loofbourow, “Practical Spectroscopy,” New York, Prentice-Hall, 1949. Hart, E. J., and Meyer, A. W., J. Am. Chem. SOC.,71, 1980 (1949). Hartwell, E. J., Richards, R. E., and Thompson, H. W., J . Chem. SOC.,1948, 1436. Hathway, D. E., and Flett, M. St. C., Trans. Faraday Soc., 45, 818 (1949). Heath, D. F., and Linnett, J. W., Ibid., 44,873 (1948). Ibid.. D . 884. ibid.,’ i5,-264 (1949). Herman, R. C., Hopfield, H. S., Hornbeck, G. A., and Silverman, s.,J . Chem. Phys., 17,220 (1949). Herman, Robert C.. and Shaffer. W. H.. Ibid.. 17,30 (1949). Herrberg, G., and Heraberg, L., Can. J . Research, B27, 332
(1949). Herzberg, G., and Rao, K. N., J . Chem. Phys., 17, 1099 (1949). Hoffman,R. E., and Hornig, D. F., Ibid., 17, 1163 (1949). Holliday, P., Nature, 163, 602 (1949). Honn, F. J., Berman, I. I., and Daubert, B. F., J . Am. Chem. SOC.,71, 812 (1949). Hornig, D. F., J . Chem. Phys., 16, 1063 (1948). Hovorka, J., and Dunlap, E. A., Jr., Rep. Sci. Instruments, 19, 915 (1948). --, Jones, E. A., Parkinson, T. F., and Murray, R. B., J . Chem. Phys., 17, 501 (1949). Jones, E. J., T A P P I , 32, 167 (1949). Jones, R. C., J . Optical SOC.Am., 39,327 (1949). Ibid., p. 343. Ibid.. a. 344. Jones,-R. N., Humphries, P., and Dobriner, K., J. Am. Chem. SOC.,71, 241 (1949). Jones, W. M., J . Chem. Phys., 17, 1062 (1949). Jupe, J. H., Electronics, 1949, 189 (November). Karplus, R. J., J . Chem. Phus., 16, 1170 (1948). Kavanau, J. L., Ibid., 17, 738 (1949). Keller, W. E., Ibid., 16, 1003 (1948). Keller, W. E., and Halford, R. S., Ibid.,17, 26 (1949). Kellner, L., Nature, 163, 877 (1949). Kilpatrick, J., Beckett, C. W., Prosen, E. J., Pitzer, K. S.,and Rossini, F. D., J. Research Natl. B u r . Standards, 42, 225 (1949). Kilpatrick, J. E., and Pitzer, K. S., J . Chem. Phys., 17, 1064 (1949). King, G. W., Hainer, R. M., and McMahon, H. O., J . Applied Phys., 20, 559 (1949). Kirby-Smith, J. S., and Jones, E. A., J . Optical SOC.Am., 39, 780 (1949). Kivenson, G., Roth, A., and Rider, M., Ibid., 39,484 (1949). Kivenson, G., Steinback, R. T., and Rider, M., Ibid., 38, 1086 (1948). Kletr, T. A., and Sumner, A., J . Chem. SOC.,1948, 1456. Klotz, I. M., and Griswold, P., Science, 109, 309 (1949). \ - -
(142) Klotz, I. M., Griswold, P., and Gruen, D. M., J. Am. Chem SOC.,71, 1615 (1949). (143) Kohn, W., J . Chem. Phys., 17, 670 (1949). (144) Lacher. J. R., Campion, D. E., and Park, J. D., Science, 110. 300 (1949). (145) Lacher, J. R., McKinley, J. J., Snow, C. XI., Michel, L., Nelson. G.. and Park. J. D.. J . Am. Chem. Soc.. 71. 1330 (1949). (146) Lacher, J. R., McKinley, J. J., Walden, C., L&K., and Park. J. D.,Ibid., 71, 1334 (1949), (147) Lagemann, R. T., Nielsen, A. H., and Dickey, F. P., Phya Rev., 76, 159 (1949). (148) Land, E. H., Blout, E. R., Grey, D. S., Flower. M. S.,Husek H., Jones, R. C., Matr, C. H., and Merrill, ‘D. P.,.Science. 109, 371 (1949). (149) Langer, R., Phys. Rev., 75, 792 (1949). (150) Lassettre, E. N., and Dean, L. B., Jr., J . Chem. Phys., 17, 31i (1949). (151) Lecomte, J., Anal. Chem. Acta, 2, 726 (1948). (152) Lecomte, J., “Applications, Biologiques,” Paris, University of Paris Press, 1949. (153) Lecomte, J., J . phys. radium, 10, 27 (1949). (154) Lecornte, J., Proc. Indian Acud. Sei., A28,339 (1948). (155) Lecomte, J., Rev. optique, 28, 353 (1949). (156) Lecomte, J., “Spectrornetrie Infrarouge et ses Application# Physicochimiques,” Paris, University of Paris Press, 1949. (157) Lemon, H., and Cross, C., Can. J . Research, 27, 610 (1949). (158) Linnett, J. W., Heath, D. F., and Wheatley, P. J., Trans. Faroday SOC.,45, 832 (1949). (159) Linnett, J. W., and Hoare, M.F., Ibid., 45, 844 (1949). (160) Linnett, J. W., and Wheatley, P. J., Ibid., 45, 33 (1949). (161) Ibid., p. 39. (162) Longuet-Higgins, H. C., Ibid., 45, 173 (1949). (163) McConaghie, V. M., and Nielsen, H. H., Phys. Rev., 75, 633 (1949). (164) McConaghie, V. M., and Nielsen, H. H., Proc. JVatZ. Acad Sci. ( U . 8.1,34, 455 (1948). (165) Mackie, h.,J . Chem. Soc., 1949, 1315. (166) McMahon, H . O., Hainer, R. M., and King, G. W., J . Optical SOC.Am., 39, 786 (1949). (167) McMath, R. R., Mohler, 0. C., Pierce, A. K., and Goldberg, L., Phys. Rev., 76, 1533 (1949). (168) McMurray, H. L., Thornton, V.,and Condon, F. E., J . Chem Phys., 17, 918 (1949). (169) Margenau, H., Phys. Rev., 76, 121 (1949). (170) *Marrison,L. R., J . SOC. Chem. Ind., 68, 192 (1949). (171) Marvel, C. S., Brace, N. O., Miller, F. A . , and Johnson, A. Et. J . Am. Chem. SOC.,71, 34 (1949). (172) hfatossi, F., J . Chem. Phys., 17, 679 (1949). (173) Matossi, F., Mayer, R., and Rauscher, E., Phys. Rev., 76, 760 (1949). (174) JIatossi, F., and Rauscher, E., 2. Physik., 125, 418 (1949). (175) Meister, A. G., Ibid., 16, 950 (1948). (176) Meister, A. G., and Cleveland, F. F., Ibid., 17, 212 (1949). (177) Migeotte, M .V., Phys. Rev., 75, 1108 (1949). (178) Migeotte, M. V., and Chapman, R. M., Ibid., 75, 1611 (1949). (179) Miles, W. R., and Beck, L. H., Proc. .VatZ. Acad. Sci., 35, 292 (1949). (180) Miller, R. D., and Russell, Jf. B., AXAL. CHEM.,21, 773 (1949). (181) Milsom, D.. Jacoby, W. R., and Rescorla, A. R., Ibid., 21, 547 (1949). (182) Mizushima, S., Morino, Y . , and Simanouti, T., J . Chem. Phys., 17, 663 (1949). (183) Mirushima, S.,Morino, Y., Simanouti, T., and Kuratani, K.. Ibid., 17, 838 (1949). (184) Mizushima, S.,Morino, I-.,Watanabe, I., Simanouti, T., and Yamaguchi, S., Ibid., 17, 591 (1949). (185) Ibid., p. 663. (186) Munday, C. W., J . Sei. Instruments, 25, 418 (1948). (187) Munday, C. W., Nuture, 163, 443 (1949). (188) Nelson, R. C., J . Optical SOC.Am., 39, 68 (1949). (189) Nelson, R. C., Plyler, E. K., and Benedict, W. S.,J . Research Nail. Bur. Standards, 41, 615 (1948). (190) Nielsen, J. R., and Berryman, L. H., J . Chem. Phys., 17, 659 (1949). (191) Xielsen, J. R., Bruner, L., and Swanson, K., ANAL.CHEM.,369 (1949). (192) Nordin, N. M., and Haslam, R. S . , Can. J . Research, A26, 279 (1948). (193) O’Brien, S. J., and King, C. V., J . Am. Chem. SOC.,71, 3632 (1949). (194) Oxholm, 3.2.L., and Williams, D., Phys. Rev., 76, 151 (1949). (195) Parr, R. G., and Crawford, B. L., Jr., J . Chem. Phys., 16, 1049 (1948). (196) Pickett, E. E., and Ungnade, H. E., J . Am. Chem. SOC.,71, 1311 (1949).
11
V O L U M E 2 2 , NO. 1, J A N U A R Y 1 9 5 0 (197) Pirlot, G., A n a l . Chem. Acta, 2, 744 (1948). (198) Pitser, K. S., and Weltner, W., Jr., J . Am. Chem. SOC., 71, 2842 (1949). (199) Plyler, E. K., J . Chem. Phys., 17, 218 (1949). (200) Plyler, E. K., and Acquista, N.,J . Research Natl. BUT.Standards, 43, 37 (1949). (201) Posey, L. R., Jr., and Barker, E. F., J . Chem. Phys., 17, 182 (1949). (202) Potter, R. L., Ibid., 17, 957 (1949). (203) Price, W.C., Ibid., 17, 1044 (1949). (204) .Price, W.C., Longuet-Higgins, H . C., Rice, B., and Young, T . F.. Ibid.. 17. 217 (1949). Price, W.C., and Tetlow, K. S., Ibid., 16, 1157 (1948). Prikhotko, A. F., J . Exptl. Theoret. Phys. (U.S.S.R.), 19, 383 (1949). Ramsay, D. A4., J . Chem. Phys., 17, 666 (1949). Randall, Fowler, Fuson, and Dangl, “Infrared Determination of Organic Structures,” New York, D. Van K’ostrand Co., 1949. Rasmussen, R. S., and Brattain, R. R., J . Am. Chern. SOC., 71, 1073 (1949). Rasmussen, R. S . , Tunnicliff, D. D., and Brattain, R. R., Ibid., 71, 1068 (1949). Rhodes, K. B., and Bell, E. E., P h y s . Rez., 76, 1273 (1949). Richard*, R. E., and Burton, W, R., Trans. Faraday SOC., 45, 874 (1949). Richards, R. E., and Thompson, H. W., J . Chem. SOC.,1949, 124. Richaids, R. E., and Thompson, H . IT., Proc. Roy. SOC., A195, 1 (1948). Roberts, J. D., Urbanek, L., and Armstrong, R., J . Am. Chem. Soc., 71, 3049 (1949). Roberts. J. S.. and Sswarc, M., J . Chem. Phys., 16, 981 (1948). Saksena, B., and Narain, H., Sature, 164, 583 (1949). Saunders, R. A,, and Smith, D. C., J . Applied Phys., 20, 953 (1949). --, \ - -
Schreiber, K. C., ASAL.CHEDI.,21, 1168 (1949). Scott, D. W.,Oliver, G. D., Gross, M. E., Hubbard, W.N., J . Am. Chem. SOC.,71, 2293 (1949). and Huffman, H . M., Semniens, E., Y a t u r e , 163, 371 (1949). Sheline, R. IC, and Weigl, J. W.,J . Chem. Phys., 17, 747 (1949). Sheppard, N., Ibid., 17, 74 (1949). Ibid., p. 79. Ibid., p. 455.
Sheppard, X., Trans. Faraday SOC.,45, 693 (1949). Sheooard. N.. and Sutherland, G. B. B. M., Proc. Rou. SOC., Ai96, 195 (1949). Sheppard, K,, and Seass, G. J., J . Chem. P h y s . , 17,86 (1949) Silverman, S.,J . Optical SOC.Am., 38, 989 (1948). Ibid.,39, 275 (1949). Silverman, S., and Herman, R. C., Ibid., 39 216 (1949). Simanouti, T., J. Chem. Phys., 17, 734 (1949). Ibid.,p. 845. Simpson, D. M., and Sutherland, G. B. B. M., Proc. Roy. SOC., A199, 169 (1949). Smith. L. G., J . Chem. Phys., 17, 139 (1949). I
(236) Stamm, R. F., Halverson, F., and Whalen, J. J., Zbid., 17, 104 (1949). (237) Starr, C. E., Jr., and Lane, T., ANAL.CHEM.,21, 572 (1949). (238) Stewart, H. B., and Nielsen, H. H., Phys. Rev., 75, 640 (1949). Sun. C. E.. Parr. R. G.. and Crawford, B. L.. Jr.. J . Chem. Phys., 17, 840 (1949). Sutherland, G. B. B. M., and Lee, E., Repts. on Progresa i n Physics 11, 144 (1948). Szasz, G. J., and Sheppard, N., J . Chem. Phys., 17 93 (1949). Sewarc, M., Ibid., 17, 431 (1949). Taylor, W. J., Ibid., 16, 1169 (1948). Thompson, H. W., and Temple, R. B., J . Chem. SOC., 1948, 1422. Torkington, P., J . C h a . Phya., 17, 357 (1949). 1
Ibid., p. 1026.
Torkington, P., Nature, 162, 370 (1948). Ibid., 163, 96 (1949). Ibid.,p. 446. Ibid.,164, 113 (1949). Torkington, P., Trans. Faraday SOC.,45,445 (1949). Trenner, N. R., Walker, R. W., Arison, B., and Buhs, R. P., ANAL.CHEM.,21, 285 (1949). Treumann, W. B., and Wall, F. T., Ibid., 21, 1161 (1949). Tyler, J. E., J . Optical SOC.Am., 39, 264 (1949). Vago, E. E., Tanner, E. M., and Bryant, K. C., J . Inst .Petroleum, 35, 293 (1949). Voge, H. H., J . Chem. Phys., 16, 984 (1948). Wagner, E. L., and Hornig, D. F., Ibid., 17, 105 (1949). Walsh, A., and Willis, J. B., Ibid., 17, 838 (1949). Walsh, A. D., Trans. Faraday SOC.,45, 179 (1949). Warhurst, E., Ibid.,45, 461 (1949). Webb, A. N., Neu, J. T., and Pitser, K. S., J . Chem. Phya., 17, 1007 (1949). Wells, A. F., J . Chem. SOC.,1949, 55. Welsh, H. L., Crawford, M. F., and Locke, J. L., Phys. Reo., 76, 580 (1949). Westrum, E. F., Jr., and Pitzer, K. S., J . Am. Chem. SOC., 71, 1940 (1949). Whiffen, D. H., and Thompson, H. W., J . Chem. SOC.,1948,1420. White, J. U., Liston, M. D., and Simard, R. G., ANAL.CHEM., 21, 1157 (1949). Winston, H., and Halford, R. S.,J . Chem. Phys., 17, 607 (1949). Wollman, S. H., Rea. Sci. Instruments, 20, 220 (1949). Woods, G. F., and Schwartzmann, L. H., J . Am. Chem. Soc., 71, 1396 (1949). Woltz, P. J. H., and Jones, E. A , , J . Chem. Phys., 17, 602 (1949). Wotiz, J. H., and Miller, F. A., J . Am. Chem. Soc., 71, 3441 (1949). Zerwekh, C. E., Jr., Rea. Sci. Instruments, 20, 371 (1949). Ziomek, J. S., and Cleveland, F. F., J . Chem. Phys., 17, 678 (1949). Ziomek, J. S., Cleveland, F. F., and Meister, A. G., Zbid., 17, 669 (1949). RECEIVEDDecember 21, 1949
RAMAN SPECTRA W. G. BRAUN
AND
M. R. FENSKE, T h e Pennsylvania State College, State College, P a .
T
APPARATUS
able for operation by laboratory technicians and makes available t o industry Raman equipment designed primarily for analytical work. T h e use of electron multiplier tubes in Raman spectroscopy has been reviexed (46)and a brief description of a photoelectric spectrograph used industrially has appeared (39). Kirby-Smith and Jones ( 4 6 ) have described a method of p r e paring optically clear fluorothene scattering tubes of superior chemical resistance for handling fluorine compounds.
.1principal instrumental development of the year has been the introduction of a Raman spectrograph b y t h e Lane-Wells Company. This integrated equipment (Figure 1) consists of a stabilized source and a pen recording spectrometer t h a t can also be used as a photographic spectrograph. T h e packaged unit, furnished complete with all essential accessories, is said to be suit-
I n general, analytical Raman spectroscopy discussed in the lib erature during the past year has been done using the established procedures outlined briefly in last year’s review (7). Heigl et al. (39) have developed a n interesting method for the
HE literature of the past year on analytical Raman spectroscopy has been principally devoted t o the extension of t h e method in relatively narrow fields. Few changes in technique or improvements in instrumentation have been reported. Brief reviews of the subject have been given b y Robert (83)and Bareel6 ( 8 ) . A chapter in t h e book b y Harrison et al. (38) offers a good discussion of the methods used.
ANALYTICAL PROCEDURES