Subscriber access provided by UNIVERSITY OF ADELAIDE LIBRARIES
Article
Ingestion of microplastics by freshwater Tubifex worms Rachel R Hurley, Jamie C Woodward, and James J. Rothwell Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.7b03567 • Publication Date (Web): 11 Oct 2017 Downloaded from http://pubs.acs.org on October 13, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 38
Environmental Science & Technology
1
Ingestion of microplastics by freshwater Tubifex
2
worms
3
Rachel R. Hurley*, Jamie C. Woodward, James J. Rothwell
4
Department of Geography, The University of Manchester, Manchester, M13 9PL, United
5
Kingdom
6
ABSTRACT: Microplastic contamination of the aquatic environment is a global issue.
7
Microplastics can be ingested by organisms leading to negative physiological impacts. The
8
ingestion of microplastics by freshwater invertebrates has not been reported outside the
9
laboratory. Here we demonstrate the ingestion of microplastic particles from bottom sediments
10
by Tubifex tubifex in a major urban waterbody fed by the River Irwell, Manchester, UK. The host
11
sediments had microplastic concentrations ranging from 56 to 2544 particles kg-1. 87% of the
12
Tubifex-ingested microplastic particles were microfibres (55 - 4100 µm in length), whilst the
13
remaining 13% were microplastic fragments (50 - 4500 µm in length). FT-IR analysis revealed
14
ingestion of a range of polymers, including polyethylene terephthalate (polyester) and acrylic
15
fibres. Whilst microbeads were present in the host sediment matrix, they were not detected in
16
Tubifex worm tissue. The mean concentration of ingested microplastics was 129 ± 65.4 particles
17
g-1 tissue. We also show that Tubifex worms retain microplastics longer than other components
18
of the ingested sediment matrix. Microplastic ingestion by Tubifex worms poses a significant risk
19
for trophic transfer and biomagnification of microplastics up the aquatic food chain.
ACS Paragon Plus Environment
1
Environmental Science & Technology
20
TEXT:
21
Introduction
22
Page 2 of 38
Microplastics represent a global environmental problem1. Defined as small ( 0.34). This was the case within and across sites. There was no significant
249
correlation between the size (length or mass) of worms and the number or size of microplastics
250
ingested (Pearson’s: p > 0.20). This indicates that there is limited selectivity in the ingestion of
251
microplastic particles within fragments or fibres.
ACS Paragon Plus Environment
12
Page 13 of 38
252
Environmental Science & Technology
No microbeads were identified in the Tubifex worm tissue (302 worms in total). This strongly
253
suggests that microbeads are not ingested by Tubifex worms in the Salford Quays. Selective
254
feeding by T. tubifex has been reported by Rodriguez et al.33. A size selectivity of sediments 100 µm) are translocated to organs of the tropical fiddler crab
416
Uca rapax. Mar. Pollut. Bull. 2015, 96 (1–2), 491–495.
417 418 419 420 421 422
(11) Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. (12) Van Cauwenberghe, L.; Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. (13) Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195.
423
(14) Galloway, T. S. Micro- and Nano-plastics and Human Health. In Marine Anthropogenic
424
Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing,
425
2015; pp 343–366.
426
(15) Sanchez, W.; Bender, C.; Porcher, J.-M. Wild gudgeons (Gobio gobio) from French rivers
427
are contaminated by microplastics: Preliminary study and first evidence. Environ. Res.
428
2014, 128, 98–100.
ACS Paragon Plus Environment
25
Environmental Science & Technology
Page 26 of 38
429
(16) Peters, C. A.; Bratton, S. P. Urbanization is a major influence on microplastic ingestion by
430
sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut. 2016, 210, 380–
431
387.
432 433
(17) Phillips, M. B.; Bonner, T. H. Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Mar. Pollut. Bull. 2015, 100 (1), 264–269.
434
(18) Jabeen, K.; Su, L.; Li, J.; Yang, D.; Tong, C.; Mu, J.; Shi, H. Microplastics and
435
mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 2017, 221,
436
141–149.
437
(19) Biginagwa, F. J.; Mayoma, B. S.; Shashoua, Y.; Syberg, K.; Khan, F. R. First evidence of
438
microplastics in the African Great Lakes: Recovery from Lake Victoria Nile perch and
439
Nile tilapia. J. Gt. Lakes Res. 2016, 42 (1), 146–149.
440
(20) Van Cauwenberghe, L.; Claessens, M.; Vandegehuchte, M. B.; Janssen, C. R.
441
Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina)
442
living in natural habitats. Environ. Pollut. 2015, 199, 10–17.
443
(21) Besseling, E.; Wegner, A.; Foekema, E. M.; van den Heuvel-Greve, M. J.; Koelmans, A.
444
A. Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm
445
Arenicola marina (L.). Environ. Sci. Technol. 2013, 47 (1), 593–600.
446 447
(22) Wright, S. L.; Rowe, D.; Thompson, R. C.; Galloway, T. S. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 2013, 23 (23), R1031–R1033.
448
(23) Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.;
449
Besseling, E.; Koelmans, A. A.; Geissen, V. Microplastics in the Terrestrial Ecosystem:
450
Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol.
451
2016, 50 (5), 2685–2691.
ACS Paragon Plus Environment
26
Page 27 of 38
Environmental Science & Technology
452
(24) Rodriguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T. A. P.; da Costa, J.; Duarte, A. C.;
453
Vala, H.; Pereira, R. Histopathological and molecular effects of microplastics in Eisenia
454
andrei Bouché. Environ. Pollut. 2017, 220, Part A, 495–503.
455
(25) Hodson, M. E.; Duffus-Hodson, C. A.; Clark, A.; Prendergast-Miller, M. T.; Thorpe, K. L.
456
Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial
457
Invertebrates. Environ. Sci. Technol. 2017, 51 (8), 4714–4721.
458
(26) Lagauzère; Terrail, R.; Bonzom, J.-M. Ecotoxicity of uranium to Tubifex tubifex worms
459
(Annelida, Clitellata, Tubificidae) exposed to contaminated sediment. Ecotoxicol.
460
Environ. Saf. 2009, 72 (2), 527–537.
461
(27) Lagauzère; Boyer, P.; Stora, G.; Bonzom, J.-M. Effects of uranium-contaminated
462
sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and
463
Tubifex tubifex worms (Annelida, Tubificidae). Chemosphere 2009, 76 (3), 324–334.
464
(28) Bouché, M.-L.; Habets, F.; Biagianti-Risbourg, S.; Vernet, G. Toxic Effects and
465
Bioaccumulation of Cadmium in the Aquatic Oligochaete Tubifex tubifex. Ecotoxicol.
466
Environ. Saf. 2000, 46 (3), 246–251.
467 468
(29) Hare, L.; Tessier, A.; Warren, L. Cadmium accumulation by invertebrates living at the sediment–water interface. Environ. Toxicol. Chem. 2001, 20 (4), 880–889.
469
(30) Méndez-Fernández, L.; Martínez-Madrid, M.; Rodriguez, P. Toxicity and critical body
470
residues of Cd, Cu and Cr in the aquatic oligochaete Tubifextubifex (Müller) based on
471
lethal and sublethal effects. Ecotoxicology 2013, 22 (10), 1445–1460.
472 473
(31) Karickhoff, S. W.; Morris, K. R. Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ. Sci. Technol. 1985, 19 (1), 51–56.
ACS Paragon Plus Environment
27
Environmental Science & Technology
474 475
Page 28 of 38
(32) Coler, R. A.; Gunner, H. B.; Zuckerman, B. M. Selective feeding of tubificids on bacteria. Nature 1967, 216 (5120), 1143–1144.
476
(33) Rodriguez, P.; Martinez-Madrid, M.; Arrate, J. A.; Navarro, E. Selective feeding by the
477
aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 2001, 463 (1–
478
3), 133–140.
479
(34) Reynoldson, T. B.; Thompson, S. P.; Bamsey, J. L. A sediment bioassay using the
480
tubificid oligochaete worm Tubifex tubifex. Environ. Toxicol. Chem. 1991, 10 (8), 1061–
481
1072.
482 483 484 485
(35) Wiederholm, T.; Dave, G. Toxicity of metal polluted sediments to Daphnia magna and Tubifex tubifex. Hydrobiologia 1989, 176–177 (1), 411–417. (36) Milbrink, G. Biological characterization of sediments by standardized tubificid bioassays. Hydrobiologia 1987, 155 (1), 267–275.
486
(37) Kaonga, C. C.; Kumwenda, J.; Mapoma, H. T. Accumulation of lead, cadmium,
487
manganese, copper and zinc by sludge worms; Tubifex tubifex in sewage sludge. Int. J.
488
Environ. Sci. Technol. 2010, 7 (1), 119–126.
489
(38) Mosleh, Y. Y.; Paris-Palacios, S.; Biagianti-Risbourg, S. Metallothioneins induction and
490
antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae)
491
exposed to copper. Chemosphere 2006, 64 (1), 121–128.
492 493
(39) Chapman, P. M. Utility and relevance of aquatic oligochaetes in ecological risk assessment. In Aquatic Oligochaete Biology VIII; Springer, 2001; pp 149–169.
494
(40) Chapman, K. K.; Benton, M. J.; Brinkhurst, R. O.; Scheuerman, P. R. Use of the aquatic
495
oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of
ACS Paragon Plus Environment
28
Page 29 of 38
Environmental Science & Technology
496
copper and cadmium in a spiked-artificial-sediment toxicity test. Environ. Toxicol. 1999,
497
14 (2), 271–278.
498 499 500 501
(41) Brinkhurst, R. O. A guide for the identification of British aquatic Oligochaeta; Freshwater Biological Association Kendal, Wilson, 1971. (42) Brinkhurst, R. O. Guide to the freshwater aquatic microdrile oligochaetes of North America. Canada. Spec Publ Fish Aquat Sci 1986, 84.
502
(43) Brinkhurst, R. O.; Jamieson, B. G. M. Aquatic Oligochaeta of the world. 1971.
503
(44) Klemm, D. J. A guide to the freshwater Annelida (Polychaeta, Naidid and tubificid
504
Oligochaeta, and Hirudinea) of North America; Kendall Hunt Publishing Company, 1985.
505
(45) Williams, A. E.; Waterfall, R. J.; White, K. N.; Hendry, K.; others. Manchester Ship Canal
506
and Salford Quays: industrial legacy and ecological restoration. Ecol. Ind. Pollution–
507
Cambridge Univ. Press Camb. 2010, 276.
508
(46) Gillis, P. L.; Dixon, D. G.; Borgmann, U.; Reynoldson, T. B. Uptake and depuration of
509
cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding
510
changes in the concentration of a metallothionein-like protein. Environ. Toxicol. Chem.
511
2004, 23 (1), 76–85.
512
(47) Rochman, C. M.; Tahir, A.; Williams, S. L.; Baxa, D. V.; Lam, R.; Miller, J. T.; Teh, F.-
513
C.; Werorilangi, S.; Teh, S. J. Anthropogenic debris in seafood: Plastic debris and fibers
514
from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5.
515
(48) Dehaut, A.; Cassone, A.-L.; Frère, L.; Hermabessiere, L.; Himber, C.; Rinnert, E.; Rivière,
516
G.; Lambert, C.; Soudant, P.; Huvet, A.; et al. Microplastics in seafood: Benchmark
517
protocol for their extraction and characterization. Environ. Pollut. 2016, 215, 223–233.
ACS Paragon Plus Environment
29
Environmental Science & Technology
Page 30 of 38
518
(49) Karami, A.; Golieskardi, A.; Choo, C. K.; Romano, N.; Ho, Y. B.; Salamatinia, B. A high-
519
performance protocol for extraction of microplastics in fish. Sci. Total Environ. 2017, 578,
520
485–494.
521
(50) De Witte, B.; Devriese, L.; Bekaert, K.; Hoffman, S.; Vandermeersch, G.; Cooreman, K.;
522
Robbens, J. Quality assessment of the blue mussel (Mytilus edulis): Comparison between
523
commercial and wild types. Mar. Pollut. Bull. 2014, 85 (1), 146–155.
524
(51) Faure, F.; Demars, C.; Wieser, O.; Kunz, M.; Alencastro, L. F. de. Plastic pollution in
525
Swiss surface waters: nature and concentrations, interaction with pollutants. Environ.
526
Chem. 2015, 12 (5), 582–591.
527
(52) Fischer, E. K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes
528
and lake shoreline sediments – A case study on Lake Bolsena and Lake Chiusi (central
529
Italy). Environ. Pollut. 2016, 213, 648–657.
530
(53) Ballent, A.; Corcoran, P. L.; Madden, O.; Helm, P. A.; Longstaffe, F. J. Sources and sinks
531
of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar.
532
Pollut. Bull. 2016, 110 (1), 383–395.
533 534
(54) Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719.
535
(55) Zhang, K.; Su, J.; Xiong, X.; Wu, X.; Wu, C.; Liu, J. Microplastic pollution of lakeshore
536
sediments from remote lakes in Tibet plateau, China. Environ. Pollut. 2016, 219, 450–455.
537
(56) Lazim, M. N.; Learner, M. A. The life-cycle and productivity of Tibifex tubifex
538
(Oligochaeta; Tibificidae) in the Moat-Feeder Stream, Cardiff, South Wales. Ecography
539
1986, 9 (3), 185–192.
ACS Paragon Plus Environment
30
Page 31 of 38
540 541 542 543 544 545
Environmental Science & Technology
(57) Palmer, M. F. Aspects of the respiratory physiology of Tubifex tubifex in relation to its ecology. J. Zool. 1968, 154 (4), 463–473. (58) Anlauf, A. Some characteristics of genetic variants of Tubifex tubifex (Müller, 1774)(Oligochaeta: Tubificidae) in laboratory cultures. Hydrobiologia 1994, 278 (1), 1–6. (59) Hämer, J.; Gutow, L.; Köhler, A.; Saborowski, R. Fate of Microplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Technol. 2014, 48 (22), 13451–13458.
546
(60) Li, J.; Qu, X.; Su, L.; Zhang, W.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H.
547
Microplastics in mussels along the coastal waters of China. Environ. Pollut. 2016, 214,
548
177–184.
549 550 551 552
(61) Brinkhurst, R. O.; Chua, K. E.; Kaushik, N. K. Interspecific Interactions and Selective Feeding by Tubificid Oligochaetes1. Limnol. Oceanogr. 1972, 17 (1), 122–133. (62) Brinkhurst, R. O.; Austin, M. J. Assimilation by Aquatic Oligochaeta. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1979, 64 (2), 245–250.
553
(63) Matisoff, G.; Wang, X.; McCall, P. L. Biological Redistribution of Lake Sediments by
554
Tubificid Oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex
555
tubifex. J. Gt. Lakes Res. 1999, 25 (1), 205–219.
556
(64) McCormick, A.; Hoellein, T. J.; Mason, S. A.; Schluep, J.; Kelly, J. J. Microplastic is an
557
Abundant and Distinct Microbial Habitat in an Urban River. Environ. Sci. Technol. 2014,
558
48 (20), 11863–11871.
559
(65) Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic
560
interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density
561
appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339.
ACS Paragon Plus Environment
31
Environmental Science & Technology
562 563 564 565 566 567
Page 32 of 38
(66) Oberbeckmann, S.; Löder, M. G. J.; Labrenz, M. Marine microplastic-associated biofilms – a review. Environ. Chem. 2015, 12 (5), 551–562. (67) Carpenter, E. J.; Anderson, S. J.; Harvey, G. R.; Miklas, H. P.; Peck, B. B. Polystyrene spherules in coastal waters. Science 1972, 178 (4062), 749–750. (68) Wright, S. L.; Thompson, R. C.; Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492.
568
(69) Rochman, C. M. The Role of Plastic Debris as Another Source of Hazardous Chemicals in
569
Lower-Trophic Level Organisms; The Handbook of Environmental Chemistry; Springer
570
Berlin Heidelberg, 2016; pp 1–15.
571 572 573 574
(70) Reisser, J.; Proietti, M.; Shaw, J.; Pattiaratchi, C. Ingestion of plastics at sea: does debris size really matter? Front. Mar. Sci. 2014, 70, 1-2. (71) Young, J. O.; Ironmonger, J. W. A laboratory study of the food of three species of leeches occurring in British lakes. Hydrobiologia 1980, 68 (3), 209–215.
575
(72) Egeler, P.; Meller, M.; Roembke, J.; Spoerlein, P.; Streit, B.; Nagel, R. Tubifex tubifex as
576
a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish.
577
Hydrobiologia 2001, 463 (1–3), 171–184.
578
(73) Dunbrack, R. L. Feeding of Juvenile Coho Salmon (Oncorhynchus kisutch): Maximum
579
Appetite, Sustained Feeding Rate, Appetite Return, and Body Size. Can. J. Fish. Aquat.
580
Sci. 1988, 45 (7), 1191–1196.type
581 582
ACS Paragon Plus Environment
32
Page 33 of 38
Environmental Science & Technology
TOC Art 47x26mm (300 x 300 DPI)
ACS Paragon Plus Environment
Environmental Science & Technology
The location of the study site in relation to the UK (A) and River Irwell catchment (B) and the spatial distribution of sampling sites across Salford Quays (C).The basin receives waters from the River Irwell (right) and drains into the Manchester Ship Canal through a series of locks (top left). An aerial photograph of the area is also provided (D), showing the Salford Quays basin in relation to the cities of Manchester (top centre) and Salford (middle left). Aerial photograph by M J Richardson (2010) licensed under CC BY-SA 2.0. 170x152mm (300 x 300 DPI)
ACS Paragon Plus Environment
Page 34 of 38
Page 35 of 38
Environmental Science & Technology
Concentrations of microplastics in the bottom sediments of Salford Quays. These are provided as total concentrations in particles kg-1 (A), in addition to the relative proportions of each density extract (B), microplastic type (C) and polymer composition (D). 260x554mm (300 x 300 DPI)
ACS Paragon Plus Environment
Environmental Science & Technology
Density of Tubifex worm populations (A) and concentrations of ingested microplastics (B) in Salford Quays. Concentrations are also broken down by microplastic type (C) and polymer composition (D). *Polymer composition refers to the microplastic ingested by the 75 worms analysed individually 248x532mm (300 x 300 DPI)
ACS Paragon Plus Environment
Page 36 of 38
Page 37 of 38
Environmental Science & Technology
Greyscale version of Figure 2 260x554mm (300 x 300 DPI)
ACS Paragon Plus Environment
Environmental Science & Technology
Greyscale version of Figure 3 248x532mm (300 x 300 DPI)
ACS Paragon Plus Environment
Page 38 of 38