Subscriber access provided by - Access paid by the | University Library, UC Santa Cruz
Article
Initial report on molecular and electronic structure of spherical multiferrocenyl / tin(IV) (hydr)oxide [(FcSn)12O14(OH)6]X2 clusters Pavlo V. Solntsev, Derrick Anderson, Hannah M. Rhoda, Rodion V. Belosludov, Mahtab Fathi-Rasekh, Eranda Maligaspe, Nikolay Gerasimchuk, and Victor N. Nemykin Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.5b01568 • Publication Date (Web): 31 Dec 2015 Downloaded from http://pubs.acs.org on January 3, 2016
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Crystal Growth & Design is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Initial report on molecular and electronic structure of spherical multiferrocenyl / tin(IV) (hydr)oxide [(FcSn)12O14(OH)6]X2 clusters
Pavlo V. Solntsev,† Derrick R. Anderson,† Hannah M. Rhoda,† Rodion V. Belosludov,‡* Mahtab FathiRasekh,† Eranda Maligaspe,† Nikolay N. Gerasimchuk,§ and Victor N. Nemykin†*
†
Department of Chemistry and Biochemistry, University of Minnesota Duluth,1039 University Drive,
Duluth, MN 55812, USA ‡
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
§
Department of Chemistry, Missouri State University (MSU), Temple Hall 456, Springfield, Missouri
56897, USA
___________________________ * To whom correspondence should be addressed. E-mail:
[email protected] (VNN) and
[email protected] (RVB)
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 42
ABSTRACT Two
spherical
organic-inorganic
ferrocene-tin
(hydr)oxide
clusters
of
general
formula
[(FcSn)12O14(OH)6]X2 (Fc = ferrocenyl, X = nitroso-dicyanmethanide, DCO- and benzoylcyanoxime, PCO- anions) were prepared by the direct hydrolysis of Fc2SnCl2 or FcSnCl3 precursors in the presence of light- and thermally stable Ag(DCO) or Ag(PCO) salts (DCO- = nitrosodicyanomethanide and PCO= benzoylcyanoxime anions). Molecular structures of FcSnCl3Py2 (1), Fc2SnCl2Py2 (2), [(FcSn)12O14(OH)6](DCO)2 (3), and [(FcSn)12O14(OH)6](PCO)2 (4) were investigated by X-ray crystallography. DFT and TDDFT calculations were conducted on FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]2+ compounds in order to elaborate electronic structures and assign transitions in UV-vis spectra of these systems. The DFT and TDDFT calculations suggest that the organometallic substituents in the [(FcSn)12O14(OH)6]2+ core are rather isolated from each other.
Keywords: ferrocene, organic-inorganic hybrids, multi-redox systems, X-ray crystallography, DFT, TDDFT
ACS Paragon Plus Environment
Page 3 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
INTRODUCTION Multiferrocenyl-containing complexes attracted significant interest in the last decade because of a variety of potential applications ranging from multi-bit information storage, redox-switchable fluorescence, optoelectronic materials, and sensors.1 Because of the strong recent effort in preparation of multiferrocenyl systems in which redox-active ferrocene ligands interconnected via a small (benzene or simple heterocycle)2-18 or large (porphyrinoid-type) -system,19-62 electron-transfer as well as metal coupling properties in these compounds are currently quite well understood.63-66 In contrast, electronic structure
and
electron-transfer
processes
in
ferrocene-functionalized
organic-inorganic
polyoxometallate or polychalcogenide nanoclusters are much less explored.67-75 Although ferrocenedecorated polyoxometallates with paramagnetic transition-metal cores76,77 can be excellent candidates for spintronic applications, fundamental understanding of the presence or absence of the ferroceneferrocene coupling requires preparation of the diamagnetic polyoxometallate core. One of the most useful cores for the later studies is tin-oxide or tin-chalcogenide clusters.67-75 Indeed, numerous nanoscale tin-oxide clusters decorated by variety of organometallic (alkyl-Sn or aryl-Sn) fragments have been known for a long time.78-98 There is a complex hierarchy of structures of organometallic bridged with OH or O groups polyoxometallates ranging from dimers and trimers to hexamers, molecular ‘dumbbels’ and ‘drums’.99-102 Usually, such systems can be prepared by a simple hydrolysis of organotin halides or condensation of appropriate organotin alkoxides with the most famous and very stable [(alkyl-Sn)12O14(OH)6)]2+ core being investigated for more than 20 years.78,80 Multiferrocene-containing
[{Fc(CO2)2}6Sn8O4]
or
[{BuSn(O)OC(O)Fc}6]
tin(IV)-oxide
nanoclusters can be prepared by the reaction between ferrocenecarboxylic acid or 1,1'ferrocenedicarboxylic acid and an appropriate organotin chloride, hydroxide, or oxide.103-108 A ferrocenyl-bridged mixed tin-oxide-sulfide compound was prepared recently by Jurkschat and coworkers using hydrolysis of ferrocene-containing stannylene in the presence of sulfur.109 Similarly, Dehnen and co-workers reported a large variety of ferrocene-functionalized small clusters with general ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 42
RFcSn fragments in which ferrocene groups are attached to the core cluster via different linking groups.67-75 The same group also showed that the reaction between FcSnCl3 and M2X (M = Na or K and X = S, Se, or Te) results in formation of [(FcSn)6X4] clusters.67 Finally, in 2014, Dehnen and coworkers have shown that the hydrolysis of FcSnCl3 in the presence of NaSePh results in the formation of a [(FcSn)9(OH)6O8Cl5] cluster, which represents the largest ferrocene-containing organotin complex reported so far.67 In all of the complexes mentioned above, the chloride ion was bonded to the tin(IV) center and full hydrolysis of the Sn-Cl bond was not achieved. To make the hydrolysis complete, all the chloride anions should be irreversibly removed from the solution. We chose AgDCO and AgPCO precursors as photo-stable silver salts which are mild oxidants in an acetonitrile solution but are able to remove the chloride anion via metathesis reaction since AgCl is not soluble in this solvent. Using this methodology we were able to isolate and characterize by X-ray crystallography two (hydr)oxo organotin nanosize clusters of general formula [[(FcSn)12O14(OH)6]X2 (Fc = ferrocenyl, X = nitrosodicyanomethanide, DCO- and benzoylcyanoxime, PCO- anions), which represents the largest ferrocene-containing tinoxide clusters reported to date (Scheme 1).
2 · 2Py
1 · 2Py
2
1 3
4
Scheme 1. Preparation of organometallic tin(IV) ferrocenyl-containing compounds reported in this paper.
ACS Paragon Plus Environment
Page 5 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
EXPERIMENTAL SECTION Reagents and materials. When necessary, reactions were performed under an argon atmosphere using standard Schlenk techniques. Solvents were purified using standard approaches: toluene was dried over sodium metal, THF was dried over sodium-potassium alloy, hexane and DCM were dried over calcium hydride. FcSnCl3 (1),110 Fc2SnCl2 (2),111 canary-yellow AgDCO, and redpurple AgPCO112,113 compounds were prepared as described earlier. Synthesis. Method A: 56 mg (1 x 10-4moles) of freshly prepared orange Fc2SnCl2 complex was dissolved in 3 mL of anhydrous acetonitrile. 0.1 mL of triethylamine (to prevent an oxidation of the ferrocene groups) and 2 x 10-4 moles of AgDCO112 or AgPCO113 salt in 2 mL of anhydrous acetonitrile was added to the solution of Fc2SnCl2111 complex at room temperature. A formed white AgCl precipitate was filtered off and the filtrate was left in an open test-tube for a slow hydrolysis. The orange solution was decanted every 24 h to remove a small amount of white SnO2 powder. Yellow crystals of the target [(FcSn)12O14(OH)6]X2 clusters were formed during a period of 5 days along with orange solution of ferrocene, orange ferrocene crystals, and white SnO2 powder. Yellow crystals of [[(FcSn)12O14(OH)6]X2 complexes were used in X-ray experiments. Because all bulk samples were contaminated with SnO2 (or its hydrated form, [H2SnO3]n), the elemental analyses included this contaminant and an accurate yields of the target clusters were not determined: Calculated (Found, %) for [(FcSn)12O14(OH)6](DCO)2 x 8H2SnO3 : C = 27.47 (27.34); H = 2.38 (2.22); N = 1.53 (1.77). Calculated (Found, %) for [(FcSn)12O14(OH)6](PCO)2 x 8H2SnO3 : C = 29.25 (29.65); H = 2.49 (3.01); N = 0.99 (0.39). Method B: 41 mg (1 x 10-4moles) of freshly prepared orange FcSnCl3110 complex was dissolved in 5 mL of anhydrous THF. 0.1 mL of triethylamine and 3 x 10-4 moles of AgDCO112 or AgPCO113 salt in 3 mL of anhydrous acetonitrile or THF was added to the solution of FcSnCl3 complex at room temperature upon stirring. A white AgCl precipitate that was formed was quickly filtered off and ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 42
resulted solution was left in an open test-tube for a slow hydrolysis. Orange solution was decanted every 24 h to remove a small amount white SnO2 powder. Yellow crystals of the target [(FcSn)12O14(OH)6]X2 clusters were formed during a period of 7 days along with orange solution of ferrocene and white SnO2 powder. Yellow crystals of [[(FcSn)12O14(OH)6]X2 clusters were used in Xray diffraction analysis.
DFT and TDDFT Calculations. All DFT calculations were conducted using the Gaussian09 software.114 All compounds were optimized in the gas phase at the DFT level using the PBE1PBE exchange-correlation functional.115-117 The full-electron DGDZVP basis set118,119 was used for all atoms in these calculations as it was shown to provide accurate geometries for 5th period coordination compounds.120-124 Since the relativistic effects might play some role on the calculated geometries and vertical excitation energies of the target compounds, we also conducted a set of DFT and TDDFT calculations on the simplest complex 1 using LANL2DZ basis set with and without DKH2 correction with results discussed in the computational section. Equilibrium geometries were confirmed by frequency calculations and specifically by the absence of imaginary frequencies. QMForge program (c2 method) was used for molecular orbital analysis.125 FcSnCl3Py2 complex was optimized in C1 point group and Fc2SnCl2Py2 complex was optimized in Ci point group. The highest possible symmetry for dication of clusters 3 and 4 is S6. Geometry optimization in S6 point group, however, results in structure, which corresponds to a saddle point (several negative frequencies). Atomic coordinates shift, which is associated with the lowest negative frequency, results in reduction of symmetry from S6 to Ci. Geometry optimization of the cluster in Ci point group leads to a stable geometry with all positive frequencies.
X-ray crystallography. Single crystals of complexes 1 and 2 suitable for X-ray crystallographic experiments were prepared by the slow evaporation of saturated pyridine solutions. Crystals of clusters ACS Paragon Plus Environment
Page 7 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
3 and 4 were grown from THF/CH3CN/NEt3 or CH3CN/NEt3 mixtures as discussed above. A Rigaku RAPID-II diffractometer with a graphite monochromator and Mo K (λ=0.71073 Å) radiation was used for data collection. All experiments were conducted at -150 oC temperature. Multi-scan absorption correction126 was applied to the data in all cases. The crystal structures were solved by the Patterson method (SHELX-86)127 or the direct method (SIR-92) approach128 and refined by full-matrix leastsquares method based on F2 using the Crystals for Windows,129 SHELXL-2013,127 and SHELXLE programs.130 The crystal data are summarized in Table 1, while selected bond lengths and angles are presented in Tables 2, 3 and 4. The structure of cluster 4 contains two outer-sphere cyanoxime anions. One of the cyanoxime counter-ions was found to be disordered between three crystallographic positions. They were refined using ADP’s and geometric restrains as available in SHELXL package (SIMU, DELU, DFIX, DANG). Furthermore, in the (4) structure extra anions were identified as well as triethylammonium cation, which was also disordered and refined using the same scheme. Additionally, in structure (4) one ferrocenyl moiety was found to be disordered by a rotation around Sn-C bond. In this case occupation of the two components were refined with a constrained sum, which is equal to 1. CCDC 1407490 (2), 1407491 (1), 1407492 (3), and 1407493 (4) contain the supplementary crystallographic data for all compounds. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033 or
[email protected]).
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Page 8 of 42
Table 1. Summary of crystallographic data for complexes 1 - 4 FcSnCl3Py2
Fc2SnCl2Py2
[(FcSn)12O14(OH)6]
[(FcSn)12O14(OH)6]
(1)
(2)
(DCO)2 (3)
(PCO)2 (4)
Empirical formula
C25H24Cl3FeN3Sn C30H28Cl2Fe2N2Sn C134H143Fe12N10O23.50Sn12 C151.75H142.51Fe12N7.98O25.42Sn12
Formula weight
647.38
717.85
4364.06
4579.16
Crystal system
Triclinic
Monoclinic
Triclinic
Triclinic
Space group, Z
P-1, 2
P21/c, 2
P-1, 2
P-1, 1
a (Å)
7.8704(2)
9.1142(4)
16.8192(5)
16.9951(3)
b (Å)
11.6057(3)
12.4696(5)
18.2195(7)
17.2207(3)
c (Å)
14.0843(9)
11.8991(8)
23.8208(17)
18.2522(13)
α (°)
104.437(7)
90
88.287(6)
64.428(4)
β (°)
95.585(7)
101.994(7)
87.308(6)
80.651(6)
γ (°)
91.654(7)
90
84.080(6)
64.973(5)
Volume (Å3)
1238.06(10)
1322.82(12)
7250.3(6)
4364.8(4)
ACS Paragon Plus Environment
Page 9 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Crystal Growth & Design
ρcalc(g/cm3)
1.736
1.802
1.999
1.742
μ(Kα)(mm-1)
1.938
2.245
3.249
2.704
θmax(°)
27.485
30.456
26.00
26.00
GoF(F2)
0.9831
0.9924
1.053
1.036
R1 (F2>2σ(F2))
0.0539
0.0166
0.0712
0.0412
wR2b (all data)
0.1304
0.0419
0.2223
0.1274
Δρmax/Δρmin (e/Å3)
1.18/ -1.09
0.47/ -0.32
3.879/-1.888
2.411/-1.141
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 42
Spectroscopy Measurements. A Jasco-720 spectrophotometer was used to collect UV-vis data. NMR spectra were recorded on a Varian INOVA instrument with a 500 MHz frequency for protons. ESI mass spectra were recorded using Bruker MicrOTOF-Q III system with THF or THF/Py as solvents. Elemental analyses were obtained from Atlantic Microlab, Atlanta, GA.
RESULTS AND DISCUSSION Synthesis. First, we found that a partial hydrolysis with formation of white precipitate of SnO2 as well as partial oxidation of the ferrocene group(s) occurs during the handling of both organotin precursors (FcSnCl3 and Fc2SnCl2) in the presence of oxygen and moisture. Both of these unwanted processes can be partially prevented by using pyridine as a solvent and an organic base, which leads to the formation of the corresponding bis-pyridine adducts FcSnCl3Py2 (1) and Fc2SnCl2Py2 (2) with Xray structures presented in the next section (Scheme 1). As it might be expected, UV-vis spectra of freshly prepared samples of FcSnCl3 and Fc2SnCl2 in THF and THF/Py mixture are almost indistinguishable in the low-energy (~450 - 510 nm) region from each other (Supporting Information Figure 1), which will be explained on the basis of TDDFT calculations presented below. In order to facilitate formation of the chloride-free organometallic tin(IV)-oxometallates, we explored the chloride substitution reaction in FcSnCl3 and Fc2SnCl2 with several silver salts of weakly coordinating anions. Reactions
of
FcSnCl3
and
Fc2SnCl2
with
silver
triflate,
silver
trifluoroacetate,
silver
hexafluorophosphate, and silver tetrafluoroborate resulted in a fast oxidation of the ferrocene groups to ferricinium cations. To the contrary, when light and thermally stable, well-soluble (unlike Ag2O),131 silver cyanoximates AgDCO and AgPCO were used as Ag+ sources, the formation of a white precipitate of the AgCl was observed and the reaction mixture retained an orange color characteristic for ferrocene, but not ferricinium group. Upon prolonged standing of resulting orange solutions, we were able to see formation of the yellow crystals of general formula [(FcSn)12O14(OH)6]X2 (X = DCO ACS Paragon Plus Environment
Page 11 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
or PCO) along with the white SnO2 powder and unbound ferrocene present in solution and in precipitate. All our attempts to find reaction conditions in which complete hydrolysis of reactants to SnO2 could be avoided have failed and thus bulk samples of [(FcSn)12O14(OH)6]X2 always have significant amount of intrinsic impurities. Indeed, besides of SnO2, we also proved by X-ray crystallography a presence of ferrocene crystals (Supporting Information Figure S2). We carried out many reactions to optimize yields of the target [(FcSn)12O14(OH)6]X2 clusters by varying polarity of solvent(s) (toluene, THF, acetonitrile and their mixtures were tested), degree of solvent dryness, and room humidity but found no reproducibility and failed to obtain a pure bulk sample of the nanosize polyoxometalates 3 and 4. Despite this drawback, which should be overcome in the future, reported in this paper [(FcSn)12O14(OH)6]X2 (X = DCO- or PCO-) nanosize clusters represent the largest ferrocenecontaining organometallic (hyrd)oxo tin(IV) cores. Moreover, unlike in the case of the earlier reported [(FcSn)9(OH)6O8Cl5] cluster,68 these new compounds have no halogen atoms in the core. The [(FcSn)12O14(OH)6]X2 systems are, indeed, the first ferrocene-containing direct analogues of the famous [(alkyl-Sn)12O14(OH)6](OH)2 polyoxometalate compounds known from the mid-90s.78-98 Since the [(alkyl-Sn)12O14(OH)6]2+ clusters were prepared by the direct hydrolysis of tin(IV) precursors using strong basic conditions,78,80 we also tried similar hydrolysis of FcSnCl3 and Fc2SnCl2. Unfortunately, we did not observe formation of the [(Fc-Sn)12O14(OH)6]2+ clusters under these reaction conditions. The solubility of clusters 3 and 4 in DCM, acetonitrile, and THF is very limited, while as it was shown before for the alkyl analogues,78,80 DMF and DMSO can disintegrate clusters into monomeric tin(IV) complexes.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 42
Figure 1. ESI MS spectrum of freshly prepared Fc2SnCl2 complex in THF/Py mixture.
In order to gain insight into the formation of such clusters in solution, we studied the hydrolysis reaction of the Fc2SnCl2 and Fc2SnCl2Py2 complexes in THF by ESI MS approach. Our choice of Fc2SnCl2 and Fc2SnCl2Py2 complexes was dictated by their much slower hydrolysis rates at ambient conditions compared to the FcSnCl3 and FcSnCl3Py2 systems, which are not very stable under the regular ESI mass spectrometry experimental conditions (at least in our hands). ESI MS spectrum of freshly prepared solution of Fc2SnCl2 in THF/Py solution is shown in Figure 1. A spectrum is dominated by the molecular ion isotope pattern, which accompanied by two less intense signals corresponding to [Fc2SnCl3]+ and [FcSn]+ isotope patterns. In addition, weak signals of [FcSnCl2]+, [FcSnCl3]+, [Fc2SnCl]+, [Fc2SnClPy+Na]+, and [Fc2SnCl2Py+Na]+ ions have also been observed in ESI
ACS Paragon Plus Environment
Page 13 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
MS spectrum. The observation of the intense [Fc2SnCl3]+, [Fc2SnClPy+Na]+, and [Fc2SnCl2Py+Na]+ ions reflect the Lewis acid nature of the parent Fc2SnCl2 complex. Nesmeyanov and co-workers proposed a ferrocenyl group migration to the tin(IV) center as the driving force for formation of the Fc2SnCl2 from Fc2Hg precursor.111 The presence of [FcSn]+ fragments in ESI spectrum of Fc2SnCl2 can be attributed to similar migration of the ferrocenyl group and explains formation of the [(FcSn)12O14(OH)6]2+ cation and SnO2 as the final products in hydrolysis reaction of Fc2SnCl2. Indeed, careful look into the heavy ions region for the same solution of Fc2SnCl2 in THF/Py/H2O mixture after an hour reveals a large number of low-intensity peaks between 850 and 1750 m/z range (Figure 2). Because of their relatively low intensity, observed isotope peaks are not easily assignable. Nevertheless, three most intense peaks at 933, 968, and 1003 m/z can be assigned to Fc3Sn2-containing ions, peaks between 1115 and 1251 to the Fc3Sn3-containing ions, peaks between 1305 and 1377 to the Fc4Sn3-containing [Fc3Sn2O4H5+THF]+, [Fc3Sn2O4H5Cl+THF]+, and [Fc3Sn2O6H8Cl+THF]+ ions, respectively. Several peaks between 1070 and 1210 can be assigned to the Fc3Sn3-containing species such as [Fc3Sn3O6H2+THF]+ and [Fc3Sn3O3Cl2+THF]+, while Fc4Sn3-containing species can be identified in 1240 - 1350 m/z region as [Fc4Sn3O7H9Cl]+ and [Fc4Sn3O6H7Cl+THF]+, and [Fc4Sn3O8H10Cl+THF]+ ions. Finally, very weak peaks between 150 and 1700 m/z can be modeled as the Fc5Sn4-containing ions although low intensities of these peaks prohibits clear assignment of the oxygen : hydrogen : chlorine ratio. Nevertheless, it gives a clear hint towards the ongoing aggregation of smaller complexes into polynuclear Fc/Sn/O units in solution.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 42
Figure 2. ESI MS spectrum of Fc2SnCl2 complex in THF/Py/H2O mixture after 1h.
X-Ray Crystal Structures. Molecular structures of complexes 1 - 4 were determined by X-ray crystallography. Refinement data for all compounds are listed in Table 1, while key bond lengths and bond angles for target complexes are shown in Tables 2 and 3. CAMERON figures of FcSnCl3Py2 (1) and Fc2SnCl2Py2 (2) complexes are shown in Figure 3. The FcSnCl3Py2 complex crystallizes in the triclinic P-1 space group and has a pyridine solvent molecule per FcSnCl3Py2 unit. Fc2SnCl2Py2 compound crystallizes in monoclinic primitive P21/c space group and has a tin(IV) ion located in special position. In both structures, tin(IV) centers adopt distorted octahedral geometries. In case of the complex 1, the first coordination sphere around tin(IV) center consists of one carbon, two nitrogens and
ACS Paragon Plus Environment
Page 15 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
three chlorine atoms. Three chlorine atoms in 1 have meridional arrangement. In case of the complex 2, the first coordination sphere around tin(IV) center consists of two carbon, two nitrogen, and two chlorine atoms in trans-trans-trans arrangement. The Sn-C bond lengths in both complexes are significantly longer (2.1325(12) - 2.144(6) Å) compared to the published earlier Fc2SnCl2 (2.08(2) Å)132 but close to those observed in the Ph2SnCl2 complex (2.11(2) - 2.12(3) Å).133 The Sn-N bond lengths are significantly longer (~0.1 Å) in the Fc2SnCl2Py2 complex compared to the average value of two non-equivalent Sn-N bond lengths in the FcSnCl3Py2 complex. The Sn-Cl bond lengths in complex 1 varies between 2.4315(17) and 2.4626(17) Å with the shortest bond distance observed in a transposition to the ferrocene group. Again, Sn-Cl bond lengths in complex 2 are significantly longer (~0.08 Å) compared to the mono-ferrocenyl FcSnCl3Py2 analogue (Table 2). The Fe-C bond lengths in both complexes are in the typical range for ferrocene derivatives and in both cases ferrocene was observed in close to the eclipsed conformation. The estimated Sn-Fe intermetallic distances in both complexes are close to each other (3.84 - 3.85 Å) but much longer than in the Fc2SnCl2 compound (3.54 Å).132 The Fe-Fe distance in the complex 2 (7.70 Å) is much longer than in Fc2SnCl2 analogue (7.08 Å), which is dictated by their distorted octahedral and tetrahedral geometries, respectively.132 As evident from C-SnN angles, a bulky ferrocene fragment pushes two pyridine ligands further toward the less sterically crowded SnCl3 group in complex 1 (Table 2). Such geometry distortion is impossible to achieve in the case of complex 2. In this case, steric restriction caused by two bulky ferrocene fragments results in elongation of the Sn-N bonds compared to the complex 1. The pyridine ligands in both complexes are almost coplanar with each other with observed torsion angles between 2.22 and 5.32o. The packing diagrams for complexes 1 and 2 are shown in Supporting Information Figure S3.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 42
Table 2. Selected bond lengths (Å) and angles (°) for FcSnCl3Py2 and Fc2SnCl2Py2 complexes. FcSnCl3Py2 (1) Sn(1)-Cl(1)
2.4315(17)
Cl(1)-Sn(1)-Cl(2)
87.33(6)
Sn(1)-Cl(2)
2.4543(17)
Cl(1)-Sn(1)-Cl(3)
87.78(6)
Sn(1)-Cl(3)
2.4626(17)
Cl(2)-Sn(1)-Cl(3)
175.07(6)
Sn(1)-C (1)
2.144(6)
C(1)-Sn(1)-N(1)
85.86(15)
Sn(1)-N(1)
2.277(5)
C(1)-Sn(1)-N(2)
85.10(15)
Sn(1)-N(2)
2.251(5)
C(1)-Sn(1)-Cl(1)
175.41(18)
Fe(1)-C(av)a
2.049(7)
C(1)-C(2)-C(6)-C(7)
1.40(17)
Fe(1)-C(av)b
2.045(7) Fc2SnCl2Py2 (2)
Sn(1)-Cl(1)
2.5341(3)
Fe(1)-C(av)b
2.0524(12)
Sn(1)-C(1)
2.1325(12)
Cl(1)-Sn(1)-C(1)
90.35(3)
Sn(1)-N(1)
2.3607(11)
Cl(1)-Sn(1)-N(1)
90.95(3)
Fe(1)-C(av)a
2.0510(13)
C(1)-C(2)-C(6)-C(7)
5.62(4)
a
Average for Fe-C in unsubstiuted Cp; b average for Fe-C in substituted Cp
The molecular structures of the two new nanosize polyoxometallates of general formula [(FcSn)12O14(OH)6]X2 are shown in Figures 4 and 5. Their packing diagrams are shown in Supporting Information Figures S4 and S5. Selected bond lengths and angles are listed in Tables 3 and S1. The fractional atom counts in clusters 3 and 4 are associated with the disordered solvent molecules. The key component in each structure is centrosymmetric [(FcSn)12O14(OH)6]2+ dication. The general motif of ACS Paragon Plus Environment
Page 17 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
the [Sn12O14(OH)6]14+ core represents distorted icosahedron and is very similar to the reported earlier [(alkyl-Sn)12O14(OH)6]2+ and [(aryl-Sn)12O14(OH)6]2+ cations.78-98 Specifically, six penta-coordinated tin(IV) centers with square pyramidal geometries and six hexa-coordinated tin(IV) centers with distorted octahedral geometries were observed in the clusters' core (Figure 4). Six hydroxyl groups connect distorted octahedral tin(IV) centers in 2-manner, while 3-O bridges define a spherical core of the nanocluster. The 3-O-Sn bond lengths are significantly shorter than 2-O-Sn bond lengths. Each of the tin(IV) centers connected to the ferrocene substituent and cyclopentadiene rings were found to be closer to the eclipsed conformation geometry. The Sn-C(Fc) bond lengths in [(FcSn)12O14(OH)6]2+ cations (2.039-2.097 Å) are quite shorter compared to those in the starting complexes 1 and 2 (2.1332.144 Å). Despite of the presence of six hydroxyl groups in each [(FcSn)12O14(OH)6]2+ cation, these external hyrdoxyl groups do not participate in the intermolecular hydrogen bonding (Supporting Information Figures S4 and S5). Solvent molecules and counterions were found in the voids formed by the nearly spherical nanocluster cations. In both cases, the compounds crystallized in the P-1 spacegroup with one (4) or two (3) independent molecules in the unit cell. The structure of cluster 3 revealed two centrosymmetric chemically identical but crystallographically different species, midpoints of which reside on the crystallographic center of inversion. The first molecule occupies the position 0.5, 0.5, 0, while the second molecule occupies the position 0, 0, 0.5 and results in the presence of two independent cluster molecules in the unit cell. In contrast, in cluster 4 only one position of an inversion center is occupied by the centrosymmetric cluster. This difference in packing may be explained by the size of the counter-anion and additional molecules that are present in the structure. Also, there are two outer-sphere PCO- anions in the structure of 4 with one being disordered by three positions. The ordered anion is in the oxime form as judged by slightly longer N-O bond (1.312 Å) compared to C-N bond (1.311 Å). This anion is non-planar with the value of the dihedral angle between cyanoxime fragment and phenyl group equal to 45.27o. The disordered PCO- anion adopts a practically planar
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 42
structure and is in the nitroso form as evident from significantly shorter N-O bond (1.246 Å) compared to C-N bond of 1.336 Å in one of the disordered ions. This is a complicated disorder since the two components are symmetry related (via inversion center), while the third component represents change in the orientation of the PCO- anion with the N and O atoms of the nitroso group sharing practically the same space in the unit cell. Since both DCO- and PCO- anions are not coordinated to any of the metal centers in structures of 3 and 4 description of their structures will not be detailed. It appears, however, that the cyanoximes act as a convenient “vehicles” for delivering of Ag+ cations to the reaction mixture and facilitate elimination of the chloride anions without oxidation of ferocene centers. Without silver(I) cyanoximates these large polymetallic compounds were not obtainable. Thus, it further broadens the usefulness of these light- and thermally stable complexes134-136 for it extends their applicability in chemical syntheses as well.
Table 3. Selected bond lengths (Å) and angles (°) for complexes 3 and 4. [(FcSn)12O14(OH)6](DCO)2 (3) Sn-O(H)
Sn-C(Fc)
Sn-O(H)range
2.077(8)-2.135(8)
Sn-Crange
2.077(12)-2.124(13)
Sn-O(H)aver
2.101(8)
Sn-Caver
2.097(12)
Sn-O Sn-Orange
1.951(6)-2.151(7)
Sn-Oaver
2.076(9)
[(FcSn)12O14(OH)6](PCO)2 (4) Sn-O(H)
Sn-C(Fc)
Sn-O(H)range
2.098(3)-2.127(3)
Sn-Crange
2.080(5)-2.24(3)
Sn-O(H)aver
2.110(3)
Sn-Caver
2.039(9)
Sn-O
ACS Paragon Plus Environment
Page 19 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Sn-Orange
Crystal Growth & Design
2.017(3)-2.125(3)
Sn-Oaver
2.077(3)
Figure 3. CAMERON diagrams for X-ray structures of FcSnCl3Py2 (1, top) and Fc2SnCl2Py2 (2, bottom). Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at their 50% probability level. ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
A
B
C
D
Page 20 of 42
Figure 4. ORTEP diagrams for X-ray structure of [(FcSn)12O14(OH)6](PCO)2. Hydrogen atoms are omitted for clarity. The thermal ellipsoid probability level is 50%. (A) Cation representation; (B) ferrocene
fragments
position
around
[Sn12O14(OH)6]14+
core;
representation; (D) cluster polyhedra.
ACS Paragon Plus Environment
(C)
[Sn12O14(OH)6]14+
core
Page 21 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Figure 5. ORTEP diagrams for X-ray structure of [(FcSn)12O14(OH)6](DCO)2. Both independent molecules are shown. Hydrogen atoms are omitted for clarity. The thermal ellipsoid probability level is 50%.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 42
Figure 6. MO energy diagram for FcSnCl3Py2 (1), Fc2SnCl2Py2 (2), and [(FcSn)12O14(OH)6]2+ (3a) complexes predicted at DFT level.
ACS Paragon Plus Environment
Page 23 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Table 4. Molecular orbital compositions of FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]2+ complexes predicted at DFT level.a MO % Composition FcSnCl3Py2 (1) MO
Energy, eV
Symmetry
Ferrocene
Tin
Pyridine
Chlorine
132
-7.729
a
27.54
1.05
1.98
69.43
133
-7.584
a
89.05
0.11
0.19
10.65
134
-7.393
a
69.08
8.51
1.56
20.86
135
-7.324
a
14.63
0.57
0.49
84.31
136
-7.053
a
91.41
0.73
1.10
6.76
137
-6.998
a
81.97
1.56
1.74
14.73
138
-6.555
a
92.57
2.94
0.81
3.67
139
-5.798
a
98.8
0.08
0.63
0.50
140
-5.776
a
98.63
0.56
0.58
0.24
141
-1.928
a
2.05
0.97
96.32
0.66
142
-1.791
a
1.95
1.00
96.26
0.79
143
-1.213
a
1.18
0.44
97.81
0.57
144
-1.056
a
1.15
1.43
96.34
1.08
145
-0.636
a
9.60
60.34
11.12
18.95
146
0.122
a
85.06
7.23
5.97
1.74
147
0.217
a
95.92
1.30
2.55
0.23
Fc2SnCl2Py2 (2) MO
Energy, eV
Symmetry
Ferrocene
Tin
Pyridine
Chlorine
169
-7.064
ag
60.52
15.89
3.19
20.41
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 42
170
-6.874
ag
97.11
0.74
1.24
0.91
171
-6.862
au
92.62
0.83
2.05
4.50
172
-6.792
au
88.01
0.58
1.94
9.48
173
-6.763
ag
73.27
12.11
1.71
12.91
174
-6.377
au
94.60
2.95
0.26
2.19
175
-6.349
ag
86.10
5.96
1.81
6.13
176
-5.61
ag
98.44
0.22
0.99
0.35
177
-5.603
au
98.86
0.08
0.36
0.71
178
-5.586
ag
96.29
2.74
0.64
0.33
179
-5.578
au
98.75
0.29
0.72
0.23
180
-1.716
ag
5.38
0.52
94.09
0.01
181
-1.7
au
5.48
1.28
92.86
0.37
182
-1.078
ag
3.09
1.67
94.89
0.35
183
-1.032
au
2.24
0.12
97.27
0.37
184
0.186
ag
62.10
24.74
7.29
5.86
185
0.231
au
82.16
8.75
7.00
2.09
186
0.398
au
93.1
3.29
3.34
0.27
187
0.407
ag
96.92
0.59
2.41
0.08
188
0.665
ag
58.21
26.89
9.34
5.56
[(FcSn)12O14(OH)6]2+ (3a) MO
Energy, eV
Symmetry
Ferrocene
Tin
Oxygen
941
-9.261
au
95.20
4.72
0.08
942
-9.261
ag
97.09
2.81
0.10
943
-9.247
ag
94.59
5.22
0.19
ACS Paragon Plus Environment
Page 25 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
a
Crystal Growth & Design
944
-9.247
au
96.36
3.44
0.20
945
-9.243
au
96.36
3.53
0.11
946
-9.242
ag
96.68
3.210
0.11
947
-9.235
au
94.81
5.10
0.08
948
-9.234
ag
96.76
3.13
0.11
949
-9.228
ag
94.10
5.71
0.19
950
-9.228
au
97.48
2.31
0.22
951
-9.219
ag
94.12
5.68
0.20
952
-9.219
au
97.06
2.72
0.22
953
-5.405
ag
31.55
41.06
27.39
954
-4.471
au
30.62
47.22
22.15
955
-4.439
au
28.85
49.67
21.48
956
-4.417
au
35.66
39.97
24.37
957
-3.782
ag
59.29
22.36
18.35
958
-3.769
au
49.75
39.83
10.42
959
-3.713
ag
57.45
29.87
12.68
960
-3.703
ag
56.43
30.92
12.65
HOMO and LUMO are in bold.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Figure 7. Frontier orbitals of FcSnCl3Py2 complex 1 predicted at DFT level.
ACS Paragon Plus Environment
Page 26 of 42
Page 27 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Figure 8. Frontier orbitals of Fc2SnCl2Py2 complex 2 predicted at DFT level.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 42
HOMO-12/940
HOMO-2/950
HOMO-1/951
HOMO/952
LUMO/953
LUMO+1/954
LUMO+4/957
LUMO+8/961
Figure 9. Frontier orbitals of [(FcSn)12O14(OH)6]2+ cation 3a predicted at DFT level.
DFT calculations. The new [(FcSn)12O14(OH)6]2+ cation can be seen as a potential electron reservoir, which can provide up to 12 electrons toward a specific chemical or electrochemical process. In order to probe potential interactions between the organometallic substituents in this new iron-tin(hydr)oxo cluster, we conducted DFT and TDDFT calculations on all target systems presented in this paper. DFT predicted energy diagram is shown in Figure 6, molecular orbital compositions are listed in Table 4, and frontier orbitals are plotted in Figures 7 - 9. DFT predicted electronic structure of complex 1 is fairly typical for simple ferrocene-containing complexes. In particular, HOMO to HOMO-2 are predominantly iron-centered MOs with HOMO and HOMO-1 being almost degenerate. These orbitals follow by two Cp-rings -orbitals. DFT predicts that LUMO to LUMO+3 are localized on pyridine ligands followed by a predominantly tin-centered LUMO+4 and several higher energy ferrocenecentered orbitals (Figure 7, Table 4). Similar electronic structure was observed in the case of precursor 2. Indeed, presence of two ferrocene groups results in six predominantly iron-centered MOs (HOMO to ACS Paragon Plus Environment
Page 29 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
HOMO-5) followed by four Cp-centered -orbitals. Again, LUMO to LUMO+3 are pyridine-centered *-orbitals, which are followed by higher energy ferrocene-centered MOs (Figure 8, Table 4). In the case of the [(FcSn)12O14(OH)6]2+ cation, S6 and Ci point groups were considered in DFT calculations. Frequency calculations indicated that the S6 point group represents a saddle point (several negative frequencies were observed). In contrast, DFT predicts no negative frequencies for Ci geometry, which represents a true minumum on the potential energy surface. In the absence of pyridine ligand's systems and polarizable chlorine atoms, an electronic structure of occupied MOs of the [(FcSn)12O14(OH)6]2+ cation is dictated by the ferrocene groups. Indeed, 36 MOs in HOMO region (including HOMO) are predominantly iron-centered followed by the lower-energy 48 Cp-centered orbitals (Figure 9). The DFT-based prediction of electron density localization on the peripheral ferrocene groups in the HOMO region strongly suggests a lack of communication between ferrocene fragments and indicative of "insulating" effect of the tin-oxygen core in cluster. The LUMO to LUMO+3 MOs in the [(FcSn)12O14(OH)6]2+ cation are delocalized between tin (~40 - 50%), oxygen (~21 - 27%), and ferrocene (~29 - 36%) centers. These MOs are followed by higher energy predominantly ferrocene-centered MOs. Because of the possible influence of the relativistic effects in tin-containing complex, we also conducted geometry optimization and a single-point DFT calculations on the simplest complex 1 using LANL2DZ basis set with and without DKH2 correction. As it can be clearly seen from the Supporting Information Tables S2 - S4, geometry of this complex reproduced better with DGDZVP basis set, while only negligible differences in the molecular orbital compositions were observed in all test DFT calculations. Insight into similarities and differences of the UV-vis spectra of FcSnCl3/FcSnCl3Py2 and Fc2SnCl2/Fc2SnCl2Py2 pairs in the low-energy (~450 - 510 nm) region, we have conducted TDDFT calculations on all systems of interest. Based on TDDFT calculations, the low-energy (450 - 510 nm) low-intensity part of UV-vis spectrum of FcSnCl3Py2 complex 1 is dictated by the first four excited
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 30 of 42
states, which are predominantly ferrocene-centered d-d transitions originating from HOMO - HOMO-2 to LUMO+5 - LUMO+6 single electron excitations (Figure 10, Supporting Information Table S5). These excitations are very similar to the parent ferrocene and explain why transformation of FcSnCl3 complex into FcSnCl3Py2 compounds does not affect this region of the UV-vis spectrum. Similarly, TDDFT predicts that the low-intensity absorption in 450 - 510 nm region of Fc2SnCl2Py2 should originate from the first eight excited states, which are, again, predominantly ferrocene-centered d-d character and are similar to parent ferrocene (Figure 10, Supporting information Table S5). Because of the molecular Ci symmetry in this case, however, only 1Au excited states should have non-zero intensities.
The
same
symmetry
restrictions
apply
to
TDDFT
predicted
intensities
of
[(FcSn)12O14(OH)6]2+ cluster 3a. Again, all 35 calculated excited low-energy transitions can be described as predominantly ferrocene-centered d-d excitations (Figure 10, Supporting Information Table S5). Thus, the low-energy region of the UV-vis spectra of mono-, di-, and dodeca-ferrocene compounds discussed in this paper have quite similar character and, in general, have similar character to the parent ferrocene. Because of the possible influence of the relativistic effects in tin-containing complex, we also conducted TDDFT calculations on the simplest complex 1 using LANL2DZ basis set with and without DKH2 correction. As it can be clearly seen from the Supporting Information Figure S6, use of DGDZVP basis set results in much better agreement between experimental and TDDFTpredicted UV-vis spectrum of complex 1. Overall, electronic structure and TDDFT calculations suggest that the optical and redox properties of the ferrocene-decorated [(FcSn)12O14(OH)6]2+ cluster should be dictated by the sum of individual ferrocene substituents, while the communication between organometallic centers is negligible. As a result, the [(FcSn)12O14(OH)6]2+ cluster could be viewed as an effective electron reservoir capable of simultaneous transfer of 12 electrons toward chemical or electrochemical reactions.
ACS Paragon Plus Environment
Page 31 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Figure 10. Experimental and TDDFT predicted UV-vis spectra of FcSnCl3Py2 (1), Fc2SnCl2Py2 (2), and [(FcSn)12O14(OH)6]2+ (3a) complexes.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 42
CONCLUSIONS Two new hybrid organic-inorganic ferrocene-decorated tin(IV) (hydr)oxide clusters of general formula [(FcSn)12O14(OH)6]X2 (X = DCO and PCO anions) were prepared by the slow hydrolysis of Fc2SnCl2 or FcSnCl3 precursors in the presence of light and thermally stable Ag(DCO) or Ag(PCO) salts. Molecular structures of complexes 1-4 were investigated by X-ray crystallography. It was found that the [(FcSn)12O14(OH)6]2+ core is similar to the previously described [(alkyl-Sn)12O14(OH)6]2+ systems and consists of both penta- and hexacoordinated tin(IV) centers. The DFT and TDDFT calculations were conducted on FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]2+ compounds in order to elaborate electronic structures and assign transitions in UV-vis spectra of these systems. It was found that the ferrocene-centered orbitals dominate the HOMO region. TDDFT calculations showed that the low-energy region in the UV-vis spectra of all complexes can be described on a basis of ferrocenecentered d-d transitions. Overall, DFT and TDDFT calculations suggest that the organometallic substituents in the [(FcSn)12O14(OH)6]2+ core are rather isolated from each other and thus such a cluster can be potentially used as an electron reservoir, which can provide up to 12 electrons toward chemical processes.
ACKNOWLEDGEMENTS Generous support from the NSF CHE-1464711, CHE-1401375 and NSF MRI-1420373 and MRI0922366 as well as Minnesota Supercomputing Institute to VN is greatly appreciated. RVB is grateful for the support of the HITACHI SR16000-M1 supercomputing facility by the Computer Science Group and E-IMR center at the Institute for Materials Research, Tohoku University, Sendai. This work was partially supported by ICC-IMR of Tohoku University.
Supporting Information Available: Crystallographic data for FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]X2 complexes in CIF format. Coordinates for DFT-PCM optimized structures of ACS Paragon Plus Environment
Page 33 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]X2 complexes. Predicted by TDDFT-PCM expansion coefficients for FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]2+ complexes. This material is available free of charge via the Internet at http://pubs.acs.org.
REFERENCES (1) P. Štěpnička in: Ferrocenes: Ligands, Materials and Biomolecules, Wiley, Chichester, 2008. (2) Pfaff, U.; Filipczyk, G.; Hildebrandt, A.; Korb, M.; Lang, H. Dalton Trans. 2014, 43, 16310-16321. (3) Misra, R.; Maragani, R.; Patel, K. R.; Sharma, G. D. RSC Advances 2014, 4, 34904-34911. (4) Maragani, R.; Misra, R. Tetrahedron 2014, 70, 3390-3399. (5) Misra, R.; Sharma, R.; Mobin, S. M. Dalton Trans. 2014, 43, 6891-6896. (6) Misra, R.; Maragani, R.; Jadhav, T.; Mobin, S. M. New J. Chem. 2014, 38, 1446-1457. (7) Maragani, R.; Misra, R. Tetrahedron Lett. 2013, 54, 5399-5402. (8) Maragani, R.; Jadhav, T.; Mobin, S. M.; Misra, R. RSC Adv. 2013, 3, 2889-2892. (9) Kowalski, K.; Karpowicz, R.; Mloston, G.; Miesel, D.; Hildebrandt, A.; Lang, H.; Czerwieniec, R.; Therrien, B. Dalton Trans. 2015, 44, 6268-6276. (10) Poppitz, E. A.; Hildebrandt, A.; Korb, M.; Schaarschmidt, D.; Lang, H. Z. Anorg. Allg. Chem. 2014, 640, 2809-2816. (11) Lehrich, S. W.; Hildebrandt, A.; Rueffer, T.; Korb, M.; Low, P. J.; Lang, H. Organometallics 2014, 33, 4836-4845. (12) Speck, J. M.; Korb, M.; Rueffer, T.; Hildebrandt, A.; Lang, H. Organometallics 2014, 33, 48134823. (13) Korb, M.; Pfaff, U.; Hildebrandt, A.; Rueffer, T.; Lang, H. Eur. J. Inorg. Chem. 2014, 1051-1061. (14) Pfaff, U.; Hildebrandt, A.; Schaarschmidt, D.; Rueffer, T.; Low, P. J.; Lang, H. Organometallics 2013, 32, 6106-6117. ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 42
(15) Misra, R.; Gautam, P.; Maragani, R. Tetrahedron Lett. 2015, 56, 1664-1666. (16) Misra, R.; Gautam, P.; Jadhav, T.; Mobin, S. M. J. Org. Chem. 2013, 78, 4940-4948. (17) Solntsev, P. V.; Dudkin, S. V.; Sabin, J. R.; Nemykin, V. N. Organometallics, 2011, 30, 3037-3046. (18) Goetsch, W. R.; Solntsev, P. V.; Van Stappen, C.; Purchel, A. A.; Dudkin, S. V.; Nemykin, V. N. Organometallics 2014, 33, 145-157. (19) Rohde, G. T.; Sabin, J. R.; Barrett, C. D.; Nemykin, V. N. New J. Chem., 2011, 35, 1440-1448. (20) Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Sabin, J. R.; Reina, G.; Galloni, P.; Floris, B. Inorg. Chem. 2010, 49, 7497-7509. (21) Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Bizzarri, C.; Galloni, P.; Floris, B.; Nowik, I.; Herber, R. H.; Marrani, A. G.; Zanoni, R.; Loim, N. M. J. Am. Chem. Soc. 2009, 131, 14969-14978. (22) Nemykin, V. N.; Galloni, P.; Floris, B.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Marrani, A. G.; Zanoni, R.; Loim, N. M. Dalton Trans. 2008, 4233-4246. (23) Nemykin, V. N.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Maximov, A. Y.; Polshin, E. V.; Koposov, A. Y. Dalton Trans. 2007, 3378-3389. (24) Vecchi, A.; Gatto, E.; Floris, B.; Conte, V.; Venanzi, M.; Nemykin, V. N.; Galloni, P. Chem. Commun. 2012, 48, 5145-5147. (25) Dammer, S. J.; Solntsev, P. V.; Sabin, J. R.; Nemykin, V. N. Inorg. Chem. 2013, 52, 9496-9510. (26) Sun, B.; Ou, Z.; Meng, D.; Fang, Y.; Song, Y.; Zhu, W.; Solntsev, P. V.; Nemykin, V. N.; Kadish, K. M. Inorg. Chem. 2014, 53, 8600-8609. (27) Vecchi, A.; Erickson, N. R.; Sabin, J. R.; Floris, B.; Conte, V.; Venanzi, M.; Galloni, P.; Nemykin, V. N. Chem. Eur. J. 2015, 21, 269-279. (28) Sirbu, D.; Turta, C.; Benniston, A. C.; Abou-Chahine, F.; Lemmetyinen, H.; Tkachenko, N. V.; Wood, C.; Gibson, E. RSC Adv. 2014, 4, 22733-22742. (29) Lvova, L.; Galloni, P.; Floris, B.; Lundstroem, I.; Paolesse, R.; Di Natale, C. Sensors 2013, 13, ACS Paragon Plus Environment
Page 35 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
5841-5856. (30) Devillers, C. H.; Milet, A.; Moutet, J.-C.; Pecaut, J.; Royal, G.; Saint-Aman, E.; Bucher, C. Dalton Trans. 2013, 42, 1196-1209. (31) Harney, J. P.; Dransfield, T.; Rochford, J. Tetrahedron Lett. 2012, 53, 4700-4703. (32) Misra, R.; Gautam, P. J. Organomet. Chem. 2015, 776, 83-88. (33) Tagliatesta, P.; Pizzoferrato, R. J. Organomet. Chem. 2015, 787, 27-32. (34) Morisue, M.; Kalita, D.; Haruta, N.; Kobuke, Y. Chem. Commun. 2007, 2348-2350. (35) Nakagawa, H.; Ogawa, K.; Satake, A.; Kobuke, Y. Chem. Commun. 2006, 1560-1562. (36) Hodgson, M. C.; Burrell, A. K.; Boyd, P. D. W.; Brothers, P. J.; Rickard, C. E. F. J. Porphyrins Phthalocyanines 2002, 6, 737-747. (37) Poddutoori, P. K.; Sandanayaka, A. S. D.; Hasobe, T.; Ito, O.; van der Est, A. J. Phys. Chem. B 2010, 114, 14348-14357. (38) Zhao, H.; Zhu, Y.; Chen, C.; He, L.; Zheng, J. Carbon 2012, 50, 4894-4902. (39) Ikeda, T.; Shinkai, S.; Sada, K.; Takeuchi, M. Tetrahedron Lett. 2009, 50, 2006-2009. (40) Galangau, O.; Fabre-Francke, I.; Munteanu, S.; Dumas-Verdes, C.; Clavier, G.; Meallet-Renault, R.; Pansu, R. B.; Hartl, F.; Miomandre, F. Electrochim. Acta 2013, 87, 809. (41) Khan, T. K.; Pissurlenkar, R. R.S.; Shaikh, M. S.; Ravikanth, M. J. Organomet. Chem. 2012, 697, 65-73. (42) Misra, R.; Dhokale, B.; Jadhav, T.; Mobin, S. M. Dalton Trans. 2013, 42, 13658-13666. (43) Pena-Cabrera, E.; Aguilar-Aguilar, A.; Gonzalez-Domingues, M.; Lager, E.; Zamudio-Vazquez, R.; Godoy-Vargas, J.; Villanueva-Garcia, F. Org. Lett. 2007, 9, 3985-3988. (44) Yin, X.; Li, Y.; Li, Y.; Zhu, Y.; Tang, X.; Zheng, H.; Zhu, D. Tetrahedron 2009, 65, 8373-8377. (45) Gautam, P.; Dhokale, B.; Mobin, S. M.; Misra, R. RSC Adv. 2012, 2, 12105-12107. (46) Misra, R.; Dhokale, B.; Jadhav, T.; Mobin, S. M. Organometallics, 2014, 33, 1867-1877. (47) Yin, X.; Li, Y.; Zhu, Y.; Jing, X.; Li, Y.; Zhu, D. Dalton Trans. 2010, 39, 9929-9935. ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 36 of 42
(48) Ziessel, R.; Retailleau, P.; Elliott, K. J.; Harriman, A. Chem. Eur. J. 2009, 15, 10369-10374. (49) Liu, J.-Y.; El-Khouly, M. E.; Fukuzumi, S.; Ng, D. K. P. ChemPhysChem 2012, 13, 2030-2036. (50) Ziegler, C. J.; Chanawanno, K.; Hasheminsasab, A.; Zatsikha, Y. V.; Maligaspe, E.; Nemykin, V. N. Inorg. Chem. 2014, 53, 4751. (51) Amin, A. N.; El-Khouly, M. E.; Subbaiyan, N. K.; Zandler, M. E.; Supur, M.; Fukuzumi, S.; D’Souza, F. J. Phys. Chem. A 2011, 115, 9810–9819. (52) Bandi, V.; El-Khouly, M. E.; Ohkubo, K.; Nesterov, V. N.; Zandler, M. E.; Fukuzumi, S.; D’Souza, F. Chem. Eur. J. 2013, 19, 7221–7230. (53) Bandi, V.; El-Khouly, M. E.; Ohkubo, K.; Nesterov, V. N.; Zandler, M. E.; Fukuzumi, S.; D’Souza, F. J. Phys. Chem. C 2014, 118, 2321–2332. (54) Maligaspe, E.; Pundsack, T. J.; Albert, L. M.; Zatsikha, Y. V.; Solntsev, P. V.; Blank, D. A.; Nemykin, V. N. Inorg. Chem. 2015, 54, 4167–4174. (55) Zatsikha, Y. V.; Maligaspe, E.; Purchel, A. A.; Didukh, N. O.; Wang, Y.; Kovtun, Y. P.; Blank, D. A.; Nemykin, V. N. Inorg. Chem. 2015, 54, 7915-7928. (56) Nemykin, V. N.; Makarova, E. A.; Erickson, N. R.; Solntsev, P. V. Turk. J. Chem. 2014, 38, 10271045. (57) Nemykin, V. N.; Makarova, E. A.; Grosland, J. O.; Dudkin, S. V.; Dennison, R.; Purchel, A. A. J. Porphyrins Phthalocyanines 2014, 18, 792-803. (58) Nemykin, V. N.; Kobayashi, N. Chem. Commun. 2001, 165-166. (59) Sun, L.; Wang, S.; Tian, H. Chem. Lett. 2007, 36, 250-251. (60) Pomarico, G.; Vecchi, A.; Mandoj, F.; Bortolini, O.; Cicero, D. O.; Galloni, P.; Paolesse, R. Chem. Commun. 2014, 50, 4076-4078. (61) Sugimoto, H.; Tanaka, T.; Osuka, A. Chem. Lett. 2011, 40, 629-631. (62) Cuesta, L.; Tomat, E.; Lynch, V. M.; Sessler, J. L. Chem. Commun. 2008, 3744-3746. (63) Hildebrandt, A.; Lang, H. Organometallics 2013, 32, 5640-5653. ACS Paragon Plus Environment
Page 37 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
(64) Hildebrandt, A.; Pfaff, U.; Lang, H. Rev. Inorg. Chem. 2011, 31, 111-141. (65) Vecchi, A.; Galloni, P.; Floris, B.; Nemykin, V. N. J. Porphyrins Phthalocyanines 2013, 17, 165196. (66) Vecchi, A.; Galloni, P.; Floris, B.; Dudkin, S. V.; Nemykin, V. N. Coord. Chem. Rev. 2015, 291, 95-171. (67) You, Z.; Bergunde, J.; Gerke, B.; Poettgen, R.; Dehnen, S. Inorg. Chem. 2014, 53, 12512-12518. (68) You, Z.; Moeckel, R.; Bergunde, J.; Dehnen, S. Chem. Eur. J. 2014, 20, 13491-13496. (69) Hassanzadeh Fard, Z.; Müller, C.; Harmening, T.; Pöttgen, R.; Dehnen, S. Angew. Chem. 2009, 121, 4507–4511 [Angew. Chem. Int. Ed. 2009, 48, 4441–4444]. (70) Halvagar, M. R.; Hassanzadeh Fard, Z.; Dehnen, S. Chem. Eur. J. 2011, 17, 4371– 4374. (71) Hassanzadeh Fard, Z.; Xiong, L.; Müller, C.; Hołyňska, M.; Dehnen, S. Chem. Eur. J. 2009, 15, 6595–6604. (72) Fard, Z. H.; Halvagar, M. R.; Dehnen, S. J. Am. Chem. Soc. 2010, 132, 2848 – 2849. (73) You, Z.; Dehnen, S. Inorg. Chem. 2013, 52, 12332 –12334. (74) Dehnen, S.; Pöhlker, C.; Schellenberg, I.; Pöttgen, R. Chem. Commun. 2010, 46, 2605 –2607. (75) You, Z.; Fenske, D.; Dehnen, S. Dalton Trans. 2013, 42, 8179 –8182. (76) Yan, Y.; Li, B.; He, Q.; He, Z.; Ai, H.; Wang, H.; Yin, Z.; Wu, L. Soft Matter 2012, 8, 1593-1600. (77) Masello, A.; Sanakis, Y.; Boudalis, A. K.; Abboud, K. A.; Christou, G. Inorg. Chem. 2011, 50, 5646-5654. (78) Banse, F. ; Ribot, F.; Toledano, P.; Maquet, J.; Sanchez, C. Inorg. Chem. 1995, 34, 6371 –6379. (79) Jaumier, P.; Jousseaume, B.; Lahcini, M.; Ribot, F.; Sanchez, C. Chem. Commun. 1998, 3, 369– 370. (80) Puff, H.; Reuter, H. J. Organomet. Chem. 1989, 373, 173 –184. (81) Hill, M.; Mahon, M. F.; Molloy, K. C. Main Group Chem. 1996, 1, 309 –315. (82) Vollano, J. F.; Day, R. O.; Holmes, R. R. Organometallics 1984, 3, 745 –750. ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 38 of 42
(83) Matsuda, H.; Matsuda, S.; Kasai, N.; Kashiwa, A.; Jitsumor, K.; Mori, F. J. Organomet. Chem. 1972, 34, 341– 345. (84) Beckmann, J.; Dakternieks, D.; Duthie, A.; Kuan, F. S.; Jurkschat, K.; Schrmann, M.; Tiekink, E. R. T. New J. Chem. 2004, 28, 1268 –1276. (85) Dakternieks, D.; Duthie, A.; Zobel, B. Organometallics 2002, 21, 647–652. (86) Schulte, M.; Schurmann, M.; Dakternieks, D.; Jurkschat, K. Chem. Commun. 1999, 14, 1291– 1292. (87) Mehring, M.; Schurmann, M.; Paulus, I.; Horn, D.; Jurkschat, K.; Orita, A.; Otera, J.; Dakternieks, D.; Duthie, A. J. Organomet. Chem. 1999, 574, 176 –192. (88) Zobel, B.; Schurmann, M.; Jurkschat, K.; Dakternieks, D.; Duthie, A. Organometallics 1998, 17, 4096 –4104. (89) Dakternieks, D.; Zobel, B. Organometallics 2003, 22, 1343 –1345. (90) Beckmann, J.; Henn, M.; Jurkschat, K.; Schürmann, M. Organometallics 2002, 21, 192 –202. (91) Janssen, J.; Magull, J.; Roesky, H. W. Angew. Chem. 2002, 114, 1425 –1427 [Angew. Chem. Int. Ed. 2002, 41, 1365– 1367]. (92) Beckmann, J.; Jurkschat, K.; Rabe, S.; Schürmann, M. Z. Anorg. Allg. Chem. 2001, 627, 2413– 2419. (93) Edelman, M. A.; Hitchcock, P. B.; Lappert, M. F.; J. Chem. Soc. Chem. Commun. 1990, 16, 1116 – 1118. (94) Puff, H.; Reuter, H. J. Organomet. Chem. 1989, 364, 57–65. (95) Puff, H.; Schuh, W.; Sievers, R.; Wald, W.; Zimmer, R. J. Organomet. Chem. 1984, 260, 271– 280. (96) Masamune, S.; Sita, L. R.; Williams, D. J. J. Am. Chem. Soc. 1983, 105, 630– 631. (97) Belsky, V. K.; Zemlyansky, N. N.; Borisova, I. V.; Kolosova, N. D.; Beletskaya, I. P. J. Organomet. Chem. 1983, 254, 189–192. (98) Puff, H.; Schuh, W.; Sievers, R.; Zimmer, R. Angew. Chem. 1981, 93, 622–623 [Angew. Chem. Int. ACS Paragon Plus Environment
Page 39 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
Ed. Engl. 1981, 20, 591 –591]. (99) Gerasimchuk, N.N.; Maher, T.; Durham, P.; Domasevitch, K.V.; Wilking, J.; Mokhir, A. Inorg. Chem., 2007, 46, 7268-7284. (100) Casas, J.S.; Castinerias, A.; Condori, F.; Sordo, J.; Vasquez-Lopez, E. Eur. J. Inorg. Chem., 2015, 14, 2387–2401. (101) Dong, Y.-B.; Shi, H.-Y.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Cryst. Growth and Des., 2015, 15, 1546– 1551. (102) Hong, M.; Yin, H-D.; Zhang, Y.-W.; Jiang, J.; Li, C. J. Mol. Struct., 2013, 1036, 244-251. (103) Chandrasekhar, V. ; Nagendran, S.; Bansal, S.; Kozee, M. A.; Powell, D. R. Angew. Chem. 2000, 112, 1903 – 1905 [Angew. Chem. Int. Ed. 2000, 39, 1833 –1835]. (104) Zheng, G. L.; Ma, J. F.; Su, Z. M.; Yan, L. K.; Yang, J.; Li, Y. Y.; Liu, J. F. Angew. Chem. 2004, 116, 2463 –2465 [Angew. Chem. Int. Ed. 2004, 43, 2409 – 2411]. (105) Chandrasekhar, V.; Nagendran, S.; Bansal, S.; Cordes, A. W.; Vij, A. Organometallics 2002, 21, 3297 –3300. (106) Zheng, G. L.; Ma, J. F.; Yang, J.; Li, Y. Y.; Hao, X. R. Chem. Eur. J. 2004, 10, 3761 – 3768. (107) Sun, M.; Ruan, B.; Zhang, Q.; Liu, Z.; Li, S.; Wu, J.; Jin, B.; Yang, J.; Zhang, S.; Tian, Y. J. Organomet. Chem. 2011, 696, 3180– 3185. (108) Chandrasekhar, V.; Thirumoorthi, R. Eur. J. Inorg. Chem. 2008, 29, 4578 –4585. (109) Henn, M.; Schurmann, M.; Mahieu, B.; Zanello, P.; Cinquantini, A.; Jurkschat, K. J. Organomet. Chem. 2006, 691, 1560 –1572. (110) Poehlker, C.; Schellenberg, I.; Poettgen, R.; Dehnen, S. Chem. Commun. 2010, 46, 2605-2607. (111) Nesmeyanov, A. N.; Tolstaya, T. P.; Korol'kov, V. V. Doklady Akademii Nauk SSSR 1973, 209, 1113-1116. (112) Glower, G.; Gerasimchuk, N.; Biagioni, R.; Domasevitch, K.V. Inorg. Chem., 2009, 48, 23712382. ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 42
(113) Gerasimchuk, N.; Gamian, A.; Glover, G.; Szponar, B. Inorg. Chem., 2010, 49, 9863-9874. (114) Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. (115) Adamo, C.; Barone, V. J. Chem. Phys., 1999, 110, 6158-6169. (116) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865-3868. (117) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1997, 78, 1396-1396. (118) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560-571. (119) Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. J. Phys. Chem. 1992, 96, 6630-6636. (120) Nemykin, V. N.; Olsen, J. G.; Perera, E.; Basu, P. Inorg. Chem. 2006, 45, 3557 - 3568. (121) Basu, P.; Nemykin, V. N.; Sengar, R. Inorg. Chem. 2003, 42, 7489-7501. (122) Nemykin, V. N.; Basu, P. Inorg. Chem. 2003, 42, 4046-4056 (123) Williams, S. D.; Edwards, E. E. Int. J. Mol. Sci. 2004, 5, 67-74. (124) Vidal, I.; Melchor, S.; Dobado, J. A. J. Phys. Chem. A 2008, 112, 3414-3423. (125) Tenderholt, A. L. QMForge, Version 2.1. Stanford University, Stanford, CA, USA. ACS Paragon Plus Environment
Page 41 of 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Crystal Growth & Design
(126) Otwinowski, Z.; Minor, W. Methods in Enzymology, New York: Academic Press; 1997. 276, Carter Jr, C. W.; Sweet, R. M. (Eds.), pp. 307—326. (127) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122. (128) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435. (129) Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. J. Appl. Cryst., 2003, 36, 1487. (130) Hübschle, C. B., Sheldrick, G. M., Dittrich, B. J. Appl. Cryst., 2011, 44, 1281-1284. (131) Wagner, C.; Merzweiler, K. Z. Anorg. Allg. Chem.2002, 628, 2241–2243. (132) Bokii, N. G.; Struchkov, Yu. T.; Korol'kov, V. V.; Tolstaya, T. P. Koordinatsionnaya Khimiya 1975, 1, 1144-1146. (133) Bryan, R. F.; Greene, P. T. J. Chem. Soc. A 1971, 2549-2554. (134) Gerasimchuk, N.; Gamian, A.; Glover, G.; Szponar, B. Inorg. Chem. 2010, 49, 9863-9874. (135) Gerasimchuk, N.; Esaulenko, A.N.; Dalley, K.N.; Moore, C. Dalton Transactions, 2010, 39, 749764. (136) Glower, G.; Gerasimchuk, N.; Biagioni, R.; Domasevitch, K.V. Inorg. Chem. 2009, 48, 23712382.
ACS Paragon Plus Environment
Crystal Growth & Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 42 of 42
For Table of Contents Use Only
Initial report on molecular and electronic structure of spherical multiferrocenyl / tin(IV) (hydr)oxide [(FcSn)12O14(OH)6]X2 clusters
Pavlo V. Solntsev,† Derrick R. Anderson,† Hannah M. Rhoda,† Rodion V. Belosludov,‡* Mahtab FathiRasekh,† Eranda Maligaspe,† Nikolay N. Gerasimchuk,§ and Victor N. Nemykin†*
Graphical Abstract
[(FcSn)12O14(OH)6]2+ electron sponge
X-ray
DFT
Synopsis Two hybrid organic-inorganic ferrocene oxo-tin clusters of general formula [(FcSn)12O14(OH)6]X2 (Fc = ferrocenyl, X = cyanoxime anions) were prepared and characterized by X-ray crystallography along with FcSnCl3Py2 and Fc2SnCl2Py2 precursors. DFT and TDDFT calculations on FcSnCl3Py2, Fc2SnCl2Py2, and [(FcSn)12O14(OH)6]2+ compounds suggestive that the organometallic substituents in [(FcSn)12O14(OH)6]2+ core are rather isolated from each other.
ACS Paragon Plus Environment