12 The Thermally Equilibrated Excited (Thexi)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
State Chemistry of Some Co(III) Ammines ARTHUR W. ADAMSON University of Southern California, Los Angeles, Calif. 90007
The photochemistry of coordination compounds is discussed in terms of thermally equilibrated excited (thexi) states as the chemically reacting species. Such states are in thermo dynamic equilibrium with their surroundings and are essen tially high energy isomers of the ground state. By contrast, the species obtained by light absorption of wavelength around a ligand field band maximum are Franck-Condon states that have a nonthermodynamic distribution of vibra tional excitations; such states are treated as pseudo pure electronic states in ligandfieldtheory. New theory is needed to treat thexi states. Data on the ligandfieldsubstitutional photochemistry of trans- and cis-[Co(en) (NH )Cl] are reported. Data are discussed mechanistically as part of the thexi state chemistry of Co(III) ammines. 2+
2
3
' H p h e e m p h a s i s i n this p a p e r is o n a n aspect of t h e p h o t o c h e m i s t r y
of
c o o r d i n a t i o n c o m p o u n d s that is often r a t h e r u n d e r s t a t e d i n t h e l i t e r a ture. O t h e r aspects are i m p o r t a n t , b u t I b e l i e v e t h a t the present e m p h a s i s is essential to a n u n d e r s t a n d i n g of t h e e x c i t e d states r e a c h e d b y essentially d-d
field.
W e w i l l be dealing w i t h
transitions f r o m the g r o u n d state.
T h e t y p i c a l t r a n s i t i o n is t h a t w h i c h occurs u p o n a b s o r p t i o n of l i g h t i n the w a v e l e n g t h of the first ( L i ) or s e c o n d ( L ) l i g a n d field b a n d of the 2
c o m p l e x , p a r t i c u l a r l y w h e n s u c h b a n d s are of u s u a l i n t e n s i t y a n d are a p p a r e n t l y n o t c o m p l i c a t e d b y a d m i x t u r e w i t h c h a r g e transfer
(CT)
character. A c o m m o n m e t h o d of d i s p l a y i n g q u a l i t a t i v e l i g a n d field state energies is b y the w e l l k n o w n T a n a b e - S u g a n o d i a g r a m s ( J , 2, 3, 4,
5).
A s was n o t e d ( β ) , t h e r e is a tension b e t w e e n l i g a n d field concepts a n d the i m p l i c a t i o n s of p h o t o c h e m i c a l a n d p h o t o p h y s i c a l studies.
These
i m p l i c a t i o n s c o n c e r n the n a t u r e of e m i t t i n g a n d g e n e r a l l y c h e m i c a l l y r e a c t i v e e x c i t e d states; t h e y present some m a j o r t h e o r e t i c a l p r o b l e m s . 128 In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
12.
Thexi State Chemistry
ADAMSON
of Co(IIl)
129
Ammines
L i g a n d field t h e o r y , l i k e its p a r e n t , c r y s t a l field t h e o r y , m a k e s t h e a p p r o x i m a t i o n i n t r e a t i n g g r o u n d a n d e x c i t e d states t h a t t h e s y m m e t r y a n d t h e i n t e n s i t y of t h e l i g a n d field are i n v a r i a n t . T h e s e states c o r r e s p o n d to v a r i o u s l y e n e r g e t i c a r r a n g e m e n t s of m e t a l d electrons ( r e l a t i v e to t h e free i o n ) i n t h e p a r t i a l l y degenerate ( u s u a l l y ) set of d o r b i t a l s , m o d i f i e d b y s u i t a b l e a c c o u n t a n c y for i n t e r e l e c t r o n i c r e p u l s i o n s . A s w a s m e n t i o n e d , the c o n c e p t u a l m o d e l is t h a t of a m e t a l i o n i m b e d d e d i n a c r y s t a l l a t t i c e so r i g i d t h a t the electrostatic e n v i r o n m e n t of t h e m e t a l i o n is
fixed.
The
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
c o r r e s p o n d i n g m o l e c u l a r o r b i t a l t r e a t m e n t a l l o w s for b o n d i n g c o n s i d e r a tions b u t s t i l l retains the a b o v e b a s i c a p p r o x i m a t i o n . A t this c o n v e n t i o n a l l e v e l of a p p r o x i m a t i o n , the e n e r g y
difference
b e t w e e n l i g a n d field states is g i v e n e x p e r i m e n t a l l y b y t h e w a v e l e n g t h of the a p p r o p r i a t e a b s o r p t i o n b a n d m a x i m u m . I t is this e n e r g y w h i c h is u s e d i n o b t a i n i n g t h e 10 Dq of l i g a n d field t h e o r y .
T h u s for a d
c o m p l e x , 10 Dq is just t h e e n e r g y c o r r e s p o n d i n g to the L mum;
octahedral
3
for a d c o m p l e x , t h e r e is a c o r r e c t i o n of 35 F , F 6
4
4
band maxi-
x
b e i n g one of t h e
C o n d o n - S h o r t e l y i n t e r e l e c t r o n i c r e p u l s i o n p a r a m e t e r s ( I , 2, 3, 4, 5 ) .
It
is thus the e n e r g y of b a n d m a x i m a w h i c h gives the w e l l k n o w n s p e c t r o c h e m i c a l series; the same is t r u e for t h e n e p h e l a u x e t i c series ( 3 ) .
The
10 Dq values o b t a i n e d f r o m b a n d m a x i m a a r e u s e d to c a l c u l a t e c r y s t a l field s t a b i l i z a t i o n s a n d to estimate a c t i v a t i o n energies for l i g a n d s u b s t i t u t i o n reactions
(7).
T h e r i g i d c r y s t a l l a t t i c e a p p r o x i m a t i o n is s i m i l a r l y u s e d f o r o c t a h e d r a l t y p e c o m p l e x e s t h a t h a v e m o r e t h a n one k i n d of l i g a n d . B a n d s p l i t t i n g s on going from O
h
fixed
to D h s y m m e t r y , for e x a m p l e , are t r e a t e d i n terms of 4
p s e u d o - o c t a h e d r a l axes of n o n - e q u a l l i g a n d field strengths ( I , 2, 3,
4, 5 ) a n d , a g a i n , positions of b a n d m a x i m a are u s e d to o b t a i n t h e e n e r g y separations of t h e s o - d e d u c e d excited-state t e r m system. T h e a p p r o x i m a t i o n is u s e d for other geometries, s u c h as s q u a r e p l a n a r a n d t e t r a h e d r a l . I n b r i e f , c o n v e n t i o n a l l i g a n d field t h e o r y assumes t h a t energies at b a n d m a x i m a represent specific p u r e e l e c t r o n i c e x c i t e d states i n a system of fixed
geometry. It m i g h t b e e x p e c t e d , i n terms of l i g a n d field t h e o r y , that dr-d t r a n s i -
tions w o u l d be v e r y s h a r p . T h e a c t u a l s i t u a t i o n is i l l u s t r a t e d i n F i g u r e 1. Such absorption bands m a y sharpen somewhat and develop indications of v i b r a t i o n a l s t r u c t u r e at v e r y l o w t e m p e r a t u r e , b u t the effect is t y p i c a l l y n o t v e r y d r a m a t i c [there are exceptions,
as w i t h C r ( C N )
( i
3
"
(8,
9)].
L i g a n d field t h e o r y does not s p e c i f i c a l l y treat t h e m a t t e r of b a n d w i d t h . I t has b e e n a s c r i b e d i n a g e n e r a l w a y to p e r t u r b a t i o n s of a n e l e c t r o n i c n a t u r e ( s u c h as J a h n - T e l l e r effects)
(2).
It is m y o p i n i o n t h a t the a b o v e g e n e r a l p i c t u r e w a s i r r e t r i e v a b l y compromised spin-allowed)
b y t h e observations emission from
(JO, J J )
Cr(III)
that
fluorescence
(that is,
c o m p l e x e s is d r a m a t i c a l l y r e d -
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
130
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
60
λ,ηημ Chemical Reviews
Figure 1.
Absorption spectrum for aqueous [Cr(NH ) y+(15) 3
6
s h i f t e d r e l a t i v e to the a b s o r p t i o n b a n d . T h e classic case of C r ( u r e a )
6
3 +
is p l o t t e d i n F i g u r e 2. T h e i n e s c a p a b l e c o n c l u s i o n is that a s o - c a l l e d l i g a n d field
e x c i t e d state (of
energy given b y b a n d m a x i m a )
is i n r e a l i t y a
v i b r a t i o n a l l y excited state of a species w h o s e c h e m i c a l ( that is, electronic o n l y ) e n e r g y is l o w e r b y 1 0 - 2 0 k c a l / m o l e t h a n that g i v e n b y the b a n d m a x i m u m . T h i s c h e m i c a l - o n l y energy c a n b e e s t i m a t e d f r o m the crossing r e g i o n of the a b s o r p t i o n a n d e m i s s i o n b a n d s a n d b y other w a y s i n the absence of e m i s s i o n
(6).
T o b e b l u n t , i t is
fictional
to treat b a n d m a x i m a energies as p u r e
electronic energies as does l i g a n d field theory. T h e broadness of t y p i c a l l i g a n d field b a n d s is n o w r e c o g n i z e d as reflecting p r i m a r i l y the F r a n c k C o n d o n o v e r l a p factor
( 8 , 9);
the most p r o b a b l e t r a n s i t i o n is to that
v i b r a t i o n a l l y e x c i t e d l e v e l of the e l e c t r o n i c a l l y e x c i t e d state for w h i c h t h e probable
n u c l e a r positions are close to those of the m o s t
populated
g r o u n d state v i b r a t i o n a l l e v e l ( a m o r e d e t a i l e d w a y of s t a t i n g this is
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
12.
Thexi State Chemistry
ADAMSON
suggested b e l o w ) .
of Co(III)
T h e ( 0 , 0 ) ( g r o u n d state υ =
131
Ammines
ο to e x c i t e d state ν =
ο)
t r a n s i t i o n is i m p r o b a b l e b e c a u s e of t h e s m a l l o v e r l a p of the n u c l e a r w a v e f u n c t i o n s , a n d transitions i n v o l v i n g energies m u c h greater t h a n t h a t of the b a n d m a x i m u m are likewise improbable.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
Emission
Zeitschrift fuer Physikalische Chemie
Figure 2.
Absorption
and (low temperature) emission for (10)
\_Cr(urea) '\ 6
3+
T h e f u r t h e r a n d c e n t r a l l y i m p o r t a n t i m p l i c a t i o n is t h a t the p r o b a b l e n u c l e a r positions for the p u r e e l e c t r o n i c e x c i t e d state a r e s i g n i f i c a n t l y different f r o m those i n the g r o u n d state. I n other w o r d s , t h e t w o states are d i s t o r t e d r e l a t i v e to e a c h other. T h e s i t u a t i o n is i l l u s t r a t e d s c h e m a t i c a l l y i n F i g u r e 3, w h i c h also d e p i c t s the o r i g i n of t h e r e d shift o n rescence.
fluo
( T h e c o m m o n l y seen p a r a b o l i c p o t e n t i a l e n e r g y d i a g r a m s are
m i s l e a d i n g i n t h a t t h e y do n o t a l l o w t h e s h o w i n g of m o r e vibrational ladder, corresponding
to a l t e r n a t i v e m o d e s of
than
one
distortion.)
A b s o r p t i o n of a l i g h t q u a n t u m p r o d u c e s a v i b r a t i o n a l l y e x c i t e d
species
w h i c h t h e r m a l l y e q u i l i b r a t e s to a m b i e n t t e m p e r a t u r e v i b r a t i o n a l - r o t a t i o n energy.
B e c a u s e of the c o n s e q u e n t shifts i n n u c l e a r p o s i t i o n s , the m o s t
probable
fluorescent
t r a n s i t i o n is t h e one that terminates at a v i b r a t i o n a l l y
e x c i t e d g r o u n d state. N o n e of t h e a b o v e inferences are n e w b y n o w ; t h e y are i n f a c t g e n erally accepted
(S, 9 ) .
Y e t c e r t a i n i m p o r t a n t consequences are r a r e l y
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
132
INORGANIC
COMPOUNDS WITH
?ν^Λΐ =£4~
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
CHEMICAL REACTION
UNUSUAL
S
PROPERTIES
CHEMICAL *~ REACTION
DISTORTION "Inorganic Reaction Mechanisms"
Figure 3. Energy level diagram for a Cr(HI) complex (6) The distortion coordinate is schematic; various ladders represent radiationless processes which may be either vibrational only or vibronic in nature. A , absorption; P, phosphorescent emission; F, fluorescent emission; Q, radiationless deactivation; and X, intersystem crossing.
stressed; t h e y are u n c o m f o r t a b l e
to c o n v e n t i o n a l l i g a n d
F i r s t , the e l e c t r o n i c - o n l y e x c i t e d state energies pounds
of
m a y b e a r l i t t l e r e l a t i o n s h i p to the u s u a l l i g a n d
schemes.
field
theory.
coordination field
com energy
T h i s is true w i t h respect to b o t h absolute energies a n d e n e r g y
r a t i o s ; e v e n t h e o r d e r i n g of states o b t a i n e d b y a p p l i c a t i o n of l i g a n d field t h e o r y c a n b e w r o n g . A clear i l l u s t r a t i o n is that p r o v i d e d b y the C r ( I I I ) f a m i l y of complexes.
T h e r e are s e v e r a l c o m p l e x e s for w h i c h the t h e r m a l l y
e q u i l i b r a t e d ( o r e l e c t r o n i c - o n l y ) e x c i t e d first q u a r t e t state is b e l o w t h e first d o u b l e t state i n e n e r g y (see R e f . 11).
L i g a n d field t h e o r y , o r d e r i n g
these states a c c o r d i n g to the a p p r o p r i a t e a b s o r p t i o n b a n d m a x i m a , p l a c e s t h e first q u a r t e t w e l l a b o v e the d o u b l e t state.
I n g e n e r a l , a n y p a i r of
states for w h i c h the m e t a l - t o - l i g a n d b o n d i n g characteristics are apt to b e different are also a p t to h a v e energies
t h a t a r e q u i t e different,
both
a b s o l u t e l y a n d r e l a t i v e l y , f r o m those o b t a i n e d f r o m l i g a n d field t h e o r y a n d b a n d m a x i m a positions. A f u r t h e r c o n s e q u e n c e is t h a t t h e concepts of t h e s p e c t r o c h e m i c a l a n d n e p h e l a u x e t i c series b e c o m e c o n f u s e d a n d a r e n o t g e n e r a l l y u s a b l e . S i n c e the t h e r m a l l y e q u i l i b r a t e d e x c i t e d state m a y b e of different g e o m e t r y f r o m the g r o u n d state a n d h a v e different b o n d lengths, t h e r i g i d l a t t i c e a p p r o x i m a t i o n is n o t correct, a n d n o u n i q u e l i g a n d field exists. T h e t e r m l i g a n d field has thus lost its u s u a l e x p e r i m e n t a l a n d t h e o r e t i c a l meaning.
M o r e o v e r , t h e t e r m designations of c o n v e n t i o n a l l i g a n d
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
field
12.
Thexi State Chemistry
ADAMSON
of Co(III)
133
Ammines
t h e o r y m a y n o t b e correct for t h e t h e r m a l l y e q u i l i b r a t e d e x c i t e d state since the p o i n t g r o u p s y m m e t r y m a y n o t b e t h e s a m e as for the g r o u n d state. Thus a hexacoordinated O , D , h
or C
4h
4v
g r o u n d state c o m p l e x m i g h t b e C
5 v
i n a t h e r m a l l y e q u i l i b r a t e d e x c i t e d state; a s q u a r e p l a n a r c o m p l e x m i g h t b e t e t r a h e d r a l . Y e t n o t o n l y does e m i s s i o n a p p e a r to c o m e f r o m t h e r m a l l y e q u i l i b r a t e d e x c i t e d states, b u t , as is d e v e l o p e d t h e s u b s t i t u t i o n a l p h o t o c h e m i s t r y of c o o r d i n a t i o n
f u r t h e r b e l o w , so does compounds.
B e c a u s e of the s e v e r a l q u a l i t a t i v e differences b e t w e e n t h e c o n c e p t s of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
ligand
field
a n d t h e r m a l l y e q u i l i b r a t e d e x c i t e d states, i t is u s e f u l
develop a distinguishing vocabulary.
to
C o n v e n t i o n a l l i g a n d field e x c i t e d
states w i l l be c a l l e d F r a n c k - C o n d o n states since the energies a r e those of b a n d m a x i m a a n d the transitions b e t w e e n t h e m a r e essentially those v e r t i c a l ones w i t h m a x i m u m F r a n c k - C o n d o n o v e r l a p . t h e x i state has b e e n p r o p o s e d state.
(12)
T h e abbreviation
for a thermally equilibrated excited
T h e gist of t h e f o r e g o i n g is that c o n v e n t i o n a l l i g a n d field t h e o r y
treats h y p o t h e t i c a l e l e c t r o n i c e x c i t e d states w h i c h are i n r e a l i t y F r a n c k C o n d o n states, w h e r e a s i t is t h e x i states t h a t are i m p o r t a n t i n p h o t o p h y s i c a l a n d p h o t o c h e m i c a l processes.
N e w t h e o r y o r n e w extensions of present
t h e o r y a r e c l e a r l y n e e d e d to treat t h e latter t y p e of state. F u l l a p p r e c i a t i o n of t h e differences b e t w e e n a F r a n c k - C o n d o n state and
a t h e x i state has l i k e l y b e e n h i n d e r e d b y the f a c t t h a t t h e w o r d
" s t a t e " has q u i t e different m e a n i n g s i n the t w o expressions. t i o n is that b e t w e e n a s p e c t r o s c o p i c
The distinc-
state a n d a t h e r m o d y n a m i c state.
T h e f o r m e r has to d o w i t h the d e t a i l e d q u a n t u m m e c h a n i c a l d e s c r i p t i o n of a n i n d i v i d u a l m o l e c u l e (as, for e x a m p l e , b y g i v i n g e l e c t r o n i c , v i b r a t i o n a l , a n d r o t a t i o n a l q u a n t u m n u m b e r s ) ; the latter has to do w i t h t h e p h e n o m e n o l o g i c a l specification of a n e n s e m b l e of m o l e c u l e s i n t h e r m a l a n d m e c h a n i c a l e q u i l i b r i u m w i t h t h e i r s u r r o u n d i n g s . A b s o r p t i o n of l i g h t of w a v e l e n g t h a r o u n d a b a n d m a x i m u m p r o d u c e s a c o l l e c t i o n of v i b r a tionally and electronically excited
species
each
with
a
spectroscopic
s p e c i f i c a t i o n ; the c o l l e c t i o n is not, h o w e v e r , a t h e r m o d y n a m i c
ensemble.
O n l y after t h e r m a l e q u i l i b r a t i o n does t h e c o l l e c t i o n of m o l e c u l e s c o n s t i tute a t h e r m o d y n a m i c state. I t w i l l n o w h a v e a c o n v e n t i o n a l m o l a r free energy, e n t h a l p y , a n d e n t r o p y ; i t w i l l h a v e a s t a n d a r d r e d o x p o t e n t i a l . N o n e of
these
q u a n t i t i e s h a v e m e a n i n g for
a F r a n c k - C o n d o n state.
A l t e r n a t i v e l y , a t h e x i state corresponds c o n c e p t u a l l y to a c h e m i c a l i s o m e r of the g r o u n d state.
I t possesses e q u i l i b r i u m s t r u c t u r e a n d d i s t i n c t i v e ,
a c t i v a t e d r e a c t i o n k i n e t i c s . T h e t h e x i state is a c h e m i c a l species. S o m e of t h e e v i d e n c e for the i m p o r t a n c e of t h e x i states i n t h e p h o t o c h e m i s t r y of c o o r d i n a t i o n c o m p o u n d s
is g i v e n i n the n e x t section, f o l -
l o w e d b y a d i s c u s s i o n of the r e a c t i o n c h e m i s t r y of the t h e x i state i m p o r t a n t for C o ( I I I )
ammines.
T h e c o n c l u d i n g s e c t i o n deals w i t h some f u r t h e r
aspects of F r a n c k - C o n d o n a n d t h e x i states.
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
134
INORGANIC
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
Some Evidences for the Realtiy and Importance of Thexi States It is possible to s u r m i s e some of the attributes of the t y p i c a l energetic species w h i c h undergoes l i g a n d s u b s t i t u t i o n r e a c t i o n f o l l o w i n g i r r a d i a t i o n i n the w a v e l e n g t h r e g i o n of a n
or L
2
b a n d . T h e species is n o t g e n e r a l l y
a v i b r a t i o n a l l y h o t g r o u n d state m o l e c u l e , p r e v a l e n c e of photoreactions
first
of a l l , because of
the
different f r o m t h e r m a l ones. W e c a l l s u c h
b e h a v i o r a n t i t h e r m a l . T h e energetic species is therefore almost c e r t a i n l y a n e l e c t r o n i c a l l y excited one.
W i t h the C r ( I I I )
f a m i l y of
complexes,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
there are some v e r y d i r e c t i n d i c a t i o n s that the p h o t o s u b s t i t u t i o n occurs f r o m a l o w l y i n g q u a r t e d e x c i t e d state ( 1 3 , 1 4 , 1 5 ) . N e x t , there are several i n d i c a t i o n s that the p h o t o r e a c t i v e
species is
n o t i n a F r a n c k - C o n d o n state, b u t r a t h e r i t is i n a t h e r m a l l y e q u i l i b r a t e d e x c i t e d state. O n e i n d i c a t i o n is that q u a n t u m y i e l d s as w e l l as t h e n a t u r e of the p h o t o r e a c t i o n
do not v a r y a p p r e c i a b l y as the i r r a d i a t i n g w a v e -
l e n g t h traverses the w i d t h of a l i g a n d field b a n d ( a l t h o u g h v a r i a t i o n s m a y o c c u r o n g o i n g f r o m one b a n d to a n o t h e r )
I t appears t h a t
(13, 14, 15).
a c o m m o n reactive state is r e a c h e d , regardless of the degree of v i b r a t i o n a l e x c i t a t i o n of the i n i t i a l l y p r o d u c e d
F r a n c k - C o n d o n state.
The
simplest
e x p l a n a t i o n is that this c o m m o n state is a t h e x i state. A s another l i n e of a p p r o a c h , there is at least i n d i r e c t e v i d e n c e that the photoreactive
species is m u c h longer l i v e d t h a n w o u l d b e e x p e c t e d
for a F r a n c k - C o n d o n state. T h e l i f e t i m e of this last, that is, the r e l a x a t i o n t i m e for t h e r m a l e q u i l i b r a t i o n to a m b i e n t t e m p e r a t u r e ,
should not
be
m u c h greater t h a n a f e w h u n d r e d v i b r a t i o n a l periods a n d i t is p r o b a b l y m u c h less.
T y p i c a l complexes are s t u d i e d i n p o l a r ,
hydrogen-bonding
solvents, a n d the ligands must be i n excellent v i b r a t i o n a l c o m m u n i c a t i o n w i t h the solvent m e d i u m .
F r o m the fact that q u a n t u m y i e l d s t y p i c a l l y
are w e l l b e l o w u n i t y , i t m a y also be i n f e r r e d that excess v i b r a t i o n a l e n e r g y is d i s s i p a t e d q u i c k l y to the s u r r o u n d i n g m e d i u m . T h i s means that m o s t of the a b s o r b e d e n e r g y is d i s s i p a t e d n o n r a d i a t i v e l y , a n d it almost c e r t a i n l y passes t h r o u g h h i g h l y v i b r a t i o n a l l y e x c i t e d g r o u n d states (see a n d Ref. 9 ) .
Figure 3
T h e e n e r g y b e i n g d i s s i p a t e d c a n easily be m u c h
greater
t h a n the a c t i v a t i o n e n e r g y for a k n o w n t h e r m a l s u b s t i t u t i o n r e a c t i o n of t h e c o m p l e x . T h e latter is t y p i c a l l y 2 0 - 3 0 k c a l / m o l e , a n d t y p i c a l energies of a b s o r b e d l i g h t q u a n t a a n d h e n c e energies b e i n g d i s s i p a t e d are 5 0 - 7 0 kcal/mole.
C l e a r l y , v i b r a t i o n a l l y e x c i t e d g r o u n d states m u s t lose excess
e n e r g y to the m e d i u m i n less t h a n the t i m e r e q u i r e d for that e n e r g y to find
its w a y i n t o those p a r t i c u l a r n u c l e a r motions that l e a d to t h e r m a l
chemical reaction.
T h e same s i t u a t i o n is l i k e l y to be true for F r a n c k -
C o n d o n e x c i t e d states.
( A caveat is d i s c u s s e d b e l o w . )
B y contrast, lifetimes of a n a n o s e c o n d or longer c a n b e i n f e r r e d f o r the a c t u a l p h o t o r e a c t i v e
state.
F i r s t , since q u a n t u m y i e l d s are r a r e l y
greater t h a n a f e w tenths, t h e d o m i n a n t d i s s i p a t i v e process is n o t
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
one
12.
Thexi State Chemistry
ADAMSON
of Co(III)
135
Ammines
of c h e m i c a l r e a c t i o n ; i t m u s t u s u a l l y b e t h a t of r a d i a t i o n l e s s d e a c t i v a t i o n (emission normally being
of
trivial
importance
under typical
photo
c h e m i c a l c o n d i t i o n s ). N e g l e c t i n g some p o s s i b l e c o m p l i c a t i o n s , the q u a n tum
y i e l d for
c h e m i c a l r e a c t i o n , φ, is t h e n g i v e n
approximately
by
^ c r A n r , the r a t i o of the rate constants f o r c h e m i c a l r e a c t i o n a n d for n o n r a d i a t i v e r e t u r n to the g r o u n d state, r e s p e c t i v e l y .
T h e temperature
de
p e n d e n c e of φ t h e n gives a n a p p a r e n t a c t i v a t i o n energy, Εφ, t h a t is e q u a l to (E
— E
cr
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
and
φ = θ
n r
) . R a d i a t i o n l e s s d e a c t i v a t i o n also c o m p l e t e s w i t h e m i s s i o n ,
1/τ & 0
where
ηΓ
emission lifetime.
τ
Thus
is the n a t u r a l
0
E
n r
may
be
(temperature-independent)
inferred from
the
temperature
d e p e n d e n c e of the e m i s s i o n y i e l d ; t y p i c a l v a l u e s are 3 - 5 k c a l / m o l e 14, 15)
a n d they m a y be larger. A p p r o x i m a t e l y , however, E
c r
=
(9,
Εφ +
3
in kcal/mole. T h e t e m p e r a t u r e d e p e n d e n c e of φ w a s r e p o r t e d f o r a n u m b e r
of
systems. W i t h C r ( I I I ) complexes, v a l u e s of Εφ r a n g e f r o m near z e r o u p to 10 or m o r e k c a l / m o l e (14, thus seem n o t u n c o m m o n . T h e rate constant f o r a (— E*/RT),
15).
E
cv
v a l u e s of 12 or m o r e
first-order
reaction should be about 10
neglecting activation entropy.
m o l e , the rate constant k
cr
E v e n for a n E
c r
kcal/mole
O n e m a y t h e n m a k e the f o l l o w i n g analysis. For E r = C
w o u l d b e a b o u t 1 0 sec" 4
of 4 k c a l / m o l e , k
cr
is a b o u t 1 0
1 0
1
exp-
1 3
E * —12
kcal/
at r o o m t e m p e r a t u r e .
sec"
1
w h i c h still corre
sponds to a n excited-state l i f e t i m e of t h o u s a n d s of v i b r a t i o n a l p e r i o d s . I n s u m m a r y , t h e p r e v a l e n c e of a c t i v a t e d p h o t o c h e m i s t r y s t r o n g l y suggests t h a t the p h o t o r e a c t i v e
state is m u c h l o n g e r l a s t i n g t h a n w o u l d b e
ex
p e c t e d w e r e i t a F r a n c k - C o n d o n state. T h e s i t u a t i o n is t h a t e x p e c t e d f o r a t h e x i state. A n o t h e r i n d i c a t i o n t h a t the t y p i c a l r e a c t i n g e x c i t i n g state is r e l a t i v e l y l o n g - l i v e d is i n the s e l e c t i v i t y , e s p e c i a l l y the stereoselectivity of c h e m i c a l s u b s t i t u t i o n reactions.
A s one
2
p h o t o a q u a t e s c h l o r i d e , b u t i t gives c t s - [ C r ( e n ) ( H 0 ) C l ] 2
t h e trans t h e r m a l r e a c t i o n p r o d u c t .
photo
example, £ r a n s - [ C r ( e n ) C l ] 2
2 +
2
+
rather than
F u r t h e r , i f the e t h y l e n e d i a m i n e s are
c o n n e c t e d b y the b e l t l i g a n d c y c l a m so t h a t trans-to-cis i s o m e r i z a t i o n b e c o m e s i m p o s s i b l e , the p h o t o a q u a t i o n y i e l d d r o p s a t h o u s a n d f o l d
(15).
S o m e i l l u s t r a t i o n s i n v o l v i n g C o ( I I I ) a m m i n e s are p r e s e n t e d b e l o w .
Such
specificity presents n o p r o b l e m for a t h e x i state. B y contrast, a F r a n c k C o n d o n e x c i t e d state s h o u l d b e too s h o r t - l i v e d to engage i n m o r e t h a n s i m p l e b o n d fission processes t h a t h a v e l i t t l e stereoselectivity. F i n a l e v i d e n c e t h a t p h o t o r e a c t i v e species are too l o n g - l i v e d to Franck-Condon
states
comes f r o m
the occasional
systems
e m i s s i o n has b e e n r e p o r t e d u n d e r p h o t o c h e m i c a l c o n d i t i o n s .
for
be
which
T h e r e are
s e v e r a l C r ( I I I ) c o m p l e x e s w h i c h s h o w s p i n - f o r b i d d e n e m i s s i o n at r o o m temperature (17).
(16),
a n d l i f e t i m e s of m i c r o s e c o n d s
have been
measured
( E m i s s i o n l i f e t i m e s of 1.3, 1.7, a n d 46 /xsec w e r e f o u n d (18)
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
for
136
INORGANIC
[Cr(en) ] 3
3 +
,
[Cr(NH ) ] 3
3 +
e
COMPOUNDS
, and
temperature, aqueous solution. )
WITH
[Cr(bipyr) ] 3
UNUSUAL
PROPERTIES
respectively i n
3 +
room
T o t h e extent t h a t the e m i t t i n g d o u b l e t
state is ( a ) itself c h e m i c a l l y r e a c t i v e or ( b )
i n thermal equilibrium with
a r e a c t i v e q u a r t e t e x c i t e d state, one is l e d t o c o n c l u d e t h a t the p h o t o c h e m i s t r y i n v o l v e s t h e x i states. I n case ( a ) the r e a c t i n g a n d e m i t t i n g state are t h e same a n d i t is therefore k n o w n t h a t the l i f e t i m e of the f o r m e r is too l o n g f o r i t to b e a F r a n c k - C o n d o n state. I n case ( b ) t h e v e r y p o s t u l a t i o n of o r d i n a r y k i n e t i c i n t e r c o n v e r s i o n b e t w e e n t w o e l e c t r o n i c states i m p l i e s
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
t h a t b o t h are t h e x i states. E m i s s i o n l i f e t i m e s for s p i n - a l l o w e d d-d
transitions of c o o r d i n a t i o n
c o m p o u n d s a p p a r e n t l y h a v e n o t yet b e e n m e a s u r e d u n d e r p h o t o c h e m i c a l conditions.
T h e r a d i a t i v e l i f e t i m e , T , c a n b e e s t i m a t e d ( w i t h serious c
p o t e n t i a l e r r o r ) f r o m the area u n d e r t h e a b s o r p t i o n b a n d ( 9 ) ; t h e v a l u e s are i n the o r d e r of
microseconds.
l i f e t i m e of C r ( u r e a ) that E
n r
6
T h e low-temperature
w a s r e p o r t e d as 50 psec ( 9 , 1 9 ) .
3 +
fluorescence
I f one
assumes
averages a b o u t 3 k c a l / m o l e , a n o r d e r of m a g n i t u d e c a l c u l a t i o n
suggests a r o o m t e m p e r a t u r e l i f e t i m e of a b o u t 0.02 nsec, w h i c h is s t i l l long compared w i t h vibrational periods.
T h i s m a y be delayed Table I.
fluores-
Photochemistry
Photochemistry* Compound
Product
[Co(NH ) ] [Co(NH ) (H 0)] [Co(NH ) F] 3
6
3
5
3
3 +
3 +
2
2 +
5
[Co(NH ) (H 0)] [Co(NH ) (H 0) ] [Co(NH )4(H 0)F] [Co(NH ) (H 0)] [Co(NH )4(H 0)Cl] [Co(NH ) (H 0)] trans- [ C o (en) ( H 0 ) C 1 ] m-[Co(en) (H 0)Cl] trans-[Co(cyclam) (H 0)C1] ira/w-[Co(en) (H 0)Cl] m-[Co(en) (H 0)Cl] trans- [ C o (en) ( H 0 ) C 1 ] cis-a- [ C o (trien) ( H 0 ) C 1 ] cis-a- [ C o (trien) ( H 0 ) ] cis-β-[Co(trien) (H 0)C1] trans-[Co(trien) (H 0)C1] cis-β-[Co(trien) (H 0) ] trans-[Co(trien) (H 0)C1] cis-[Co(trien) (H 0)C1] [Co(tren)(H 0)Cl] [Co(tren)(H 0) ] 3
5
2
3
4
2
[Co(NH ) Cl] 3
5
2 +
5
2
5
2
trans- [ C o (en) C 1 ] 2
+
2
trans- [ C o ( c y c l a m ) C l ] cis- [ C o (en) C 1 ] 2
2 +
2
2 +
2
2
+
2
2 +
2
2 +
2
2 +
2
2 +
2
2
3 +
2 +
2
2 +
2
cis-β- [ C o (trien) ( H 0 ) C 1 ] 2
2 +
2
2
3 +
2 +
2
trans- [ C o (trien) ( H 0 ) C 1 ] 2
[Co(tren)Cl ] 2
2
2 +
2 +
2
2 +
2
2 +
MCo(tren)(H 0)Cl]
2 +
2
2 +
2 +
2
2
+
2
2 +
2
2
cis-[Co(en) (H 0)Cl] [ C o (trien) C l ] cis-a-[Co(trien) (H 0)C1] CÎS-/?-[CO (trien) C l ]
2 +
2
2
2
+
2
2 +
2 +
2
2
2
2 +
3 +
2
3
3
3 +
2
2
3
3
3 +
2
3 +
•From Refs. 20, 21, and 22; irradiations around L i band and at either 0°C or
25°Q
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
12.
ADAMSON
cence, however.
137
Thexi State Chemistry
of Co(III)
Prompt
f r o m f r a n s - C r ( N H ) ( N C S ) 4 ~ is
fluorescence
Ammines
3
2
r e p o r t e d to b e < 3 psec ( M . W i n d s o r , G . P o r t e r a n d A . D . K i r k , p r i v a t e c o m m u n i c a t i o n ). Ligand Field Photochemistry of Some Co (III)
Ammines
U n t i l r e c e n t l y o n l y s c a t t e r e d d a t a w e r e r e p o r t e d for t h e i r r a d i a t i o n of C o ( I I I ) a m m i n e s i n t h e w a v e l e n g t h r e g i o n of t h e L i b a n d (14,
15).
W i t h a c i d o a m m i n e c o m p l e x e s , t h e a c i d o g r o u p m a y b e r e p o r t e d to p h o t o -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch012
a q u a t e , b u t no a m m o n i a a q u a t i o n w a s l o o k e d for a n d the p h o t o c h e m i s t r y a p p e a r e d to b e m e r e l y a catalysis of the t h e r m a l r e a c t i o n .
Reported
q u a n t u m y i e l d s w e r e l o w ( e x c e p t w h e r e C T c h a r a c t e r w a s present, i n w h i c h case r e d o x d e c o m p o s i t i o n w a s also o b s e r v e d ) , a n d the l i g a n d field p h o t o c h e m i s t r y of this class of complexes s e e m e d r a t h e r u n i n t e r e s t i n g . R e c e n t w o r k i n this l a b o r a t o r y has d e m o n s t r a t e d t h a t s u c h p h o t o c h e m i s t r y is i n f a c t v e r y r i c h a n d v a r i e d (20, 21, 22).
T h e ligand aquated
is n o t a l w a y s the same as t h a t i n the t h e r m a l r e a c t i o n , a n d , m o r e o v e r , t h e p h o t o r e a c t i o n is stereospecific,
often d i f f e r e n t l y f r o m t h e g r o u n d state
r e a c t i o n (see T a b l e I ) . T h e findings c a n b e a c c o u n t e d f o r i n d e t a i l i f o n e of C o ( I I I ) Photo
Ammines
chemistry
b
Φ (X
W) 4
2.1 1.3 19.6 5.5 50.7 17.1 7.9 3.1 4.0 17.5 6.5 42