24 Sunlight Engineering Efficiency of Thin-Layer
Downloaded via UNIV OF ARIZONA on July 22, 2018 at 12:47:19 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Iron-Thiazine Photogalvanic Cells Evidence T h a t Surface-Induced Back Reaction Is a K e y Limiting Factor NORMAN N. LICHTIN , PETER D . WILDES, a n d TERRY L. O S I F Department of Chemistry, Boston University, Boston, MA 02215 1
DALE E. HALL E x x o n Research & Engineering C o . , L i n d e n , N J 07036 2
Absorption spectra and redox potentials in acid solution limit sunlight engineering efficiency (S.E.E.) of unsensitized iron -thiazine photogalvanic cells to ~ 2%. The highest S.E.E. value obtained with totally illuminated single thin-layer (TI-TL) iron-thionine cells with SnO anodes and Pt cathodes, .036%, corresponds to V ~ 35% of theoretical limit. Potentials at the selective anode are dominated by the dye-leucodye couple. Potentials at the poorly selective cathode are dominated by the iron couple. I varies linearly with photostationary concentration of leucothionine and, with electrode spacing ≤ 50μm, is not limited by solution lifetime of charge carriers. Inefficient electron transfer at the electrodes is believed to reduce S.E.E. by a factor of ~ 5, possibly because of surface-promoted back reaction on SnO . 2
power
point
sc
2
p h o t o g a l v a n i c c e l l is a system o f m a n y components t h a t m u s t b e c a r e f u l l y m a t c h e d to e a c h other a n d , f o r u s e as a solar t r a n s d u c e r , m u s t b e m a t c h e d to t h e i n s o l a t i o n s p e c t r u m . N o p r a c t i c a l p h o t o g a l v a n i c c e l l has y e t b e e n a c h i e v e d . R a t i o n a l o p t i m i z a t i o n of p h o t o g a l v a n i c c o n A
Senior author. Present address: Paul D. Merica Research Laboratory, The International Nickel Co., Suffern, NY 10901 1
1
0-8412-0429-2/79/33-173-296$05.00/0 © 1979 American Chemical Society
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
24.
LICHTIN E T A L .
Sunlight Engineering
297
Efficiency
v e r s i o n requires u n d e r s t a n d i n g of a l l aspects of t h e system. T h e s e aspects i n c l u d e p h o t o c h e m i s t r y , e l e c t r o c h e m i s t r y , ground-state s o l u t i o n c h e m i s t r y , d e v i c e d e s i g n , a n d d e v i c e materials. I r o n - t h i a z i n e p h o t o g a l v a n i c cells use t h e p h o t o r e d o x reactions
of
F e ( I I ) w i t h t h i a z i n e dyes, r e p r e s e n t e d f o r t h i o n i n e b y R e a c t i o n s 1, 2, 3, 4, a n d 5, to c o n v e r t p h o t o n energy i n t o c h e m i c a l p o t e n t i a l . T h e s p o n taneous g r o u n d state reactions r e p r e s e n t e d b y R e a c t i o n s 6, 7, 8, a n d 9 also o c c u r i n h o m o g e n e o u s
solution during illumination.
Photogalvanic
a c t i o n results w h e n h o m o g e n e o u s R e a c t i o n s 7, 8, a n d 9 are r e p l a c e d b y a n o d i c o x i d a t i o n of T H Fe(III). TH
4
2 +
4
2 +
and T H 2
c o u p l e d w i t h c a t h o d i c r e d u c t i o n of
+
T h e f r e e energy c h a n g e
for the oxidation of leucothionine,
, to t h i o n i n e , T H , b y F e ( I I I ) i n aqueous s u l f u r i c a c i d at p H = 2 +
corresponds to E
o
r
= 0.28 V ( I ) .
Established Elementary Steps in the Iron-Thionine Reaction in Acid Solution
TW(So)
Photoredox
— -» T i m ) ~ 600 nm
(1)
TH*0Si)-»TH (So)
(2)
+
H
+
T H ( S i ) -> T H * ( T i ) - * T H +
W C T O
^TH (S ) +
2 +
2
2
2 T H •* + H * ? ± T H + T H 4
2
1
+
4
+
+ Fe(II)
2 +
* + Fe(III) T± "Complex"
"Complex" - » T H 2
+
+ 2 H + Fe(II) +
TH -* + Fe(n)->TH 2
+
+ H * + Fe(II)
Thionine A
m a x
(3) (4)
T H s ^ T i ) + F e ( I I ) -> T H -
TH
7
+ H*
0
2
(7 )
601 n m
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(5) (6) (7) (8) (9)
298
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
T h e p i o n e e r i n g w o r k of R a b i n o w i t c h ( 2 )
achieved
II
photogalvanic
t r a n s d u c t i o n b y means of a c e l l i n w h i c h a p l a t i n u m electrode i n contact w i t h i l l u m i n a t e d s o l u t i o n s e r v e d as the a n o d e w h i l e a s i m i l a r
electrode
i n c o n t a c t w i t h s o l u t i o n m a i n t a i n e d i n the d a r k s e r v e d as the
cathode.
W e have been concerned w i t h understanding and o p t i m i z i n g an area d e v i c e , the t o t a l l y i l l u m i n a t e d t h i n - l a y e r
(TI-TL)
first
I n this d e v i c e
described by Clark and Eckert
transduction
has
been
achieved
(3).
b y u s i n g one
photogalvanic
cell,
photogalvanic
transparent
electrode,
u s u a l l y n - t y p e S n 0 , w h i c h is m o r e r e v e r s i b l e to the d y e : r e d u c e d 2
dye
c o u p l e t h a n to the F e ( I I I ) : F e ( I I ) c o u p l e , together w i t h a s e c o n d r e l a t i v e l y nonselective electrode, u s u a l l y either p l a t i n u m o r i n d i u m t i n o x i d e (ITO).
I n s u c h a c e l l , the S n 0
electrode is the anode.
2
In principle, it
w o u l d b e d e s i r a b l e to r e p l a c e t h e nonselective electrode b y one w h i c h is m u c h m o r e r e v e r s i b l e to the F e ( I I I ) : F e ( I I )
c o u p l e t h a n t o the
dye
couple. P r a c t i c a l c o n v e r s i o n efficiency of a solar t r a n s d u c e r is m e a s u r e d t h e s u n l i g h t e n g i n e e r i n g efficiency
by
(S.E.E.):
100 X e l e c t r i c a l energy or power d e l i v e r e d to l o a d at the p o w e r p o i n t
g ^ g
i n c i d e n t s u n l i g h t energy or power T h e best S . E . E . values that w e h a v e o b t a i n e d w i t h the single l a y e r T I - T L iron-thionine cell w i t h S n 0
a n o d e a n d P t c a t h o d e h a v e b e e n i n the r a n g e
2
. 0 2 - . 0 3 6 % . T h e s e values h a v e b e e n o b t a i n e d u s i n g 50 v / v %
aqueous
C H C N as solvent a n d solutions c o n t a i n i n g ^ . 0 0 1 M d y e , . 0 1 M s u l f u r i c 3
acid, and F e ( I I ) , w i t h S 0
4
2
" a n d H S 0 " as the o n l y anions, 4
p r e s e n t i n i t i a l l y at its i m p u r i t y l e v e l
(~5XlO" M), 5
and
Fe(III)
electrodes
s p a c e d 80 /xm apart. T h e use of transparent nonselective electrodes, e.g., i n d i u m t i n o x i d e , makes p o s s i b l e m u l t i t h i n - l a y e r ( M T L ) cells i n w h i c h the layers are i n series o p t i c a l l y a n d i n p a r a l l e l e l e c t r i c a l l y . A s u n l i g h t efficiency of was obtained w i t h a M T L cell constructed
.063%
of f o u r 80 /mi layers
(4).
S u c h cells are c a p a b l e of a b s o r b i n g a l a r g e r p r o p o r t i o n of i n c i d e n t l i g h t w h i l e m a i n t a i n i n g the e l e c t r o c h e m i c a l properties of t h i n - l a y e r cells.
Processes in the
TI-TL
Iron—Thionine Photogalvanic
Cell
Photogalvanic transduction i n the T I - T L iron-thionine cell or similar cells u s i n g other thiazines processes
(5):
(1)
(4)
absorption
c a n b e a n a l y z e d i n terms of five b a s i c of
incident
light;
(2)
conversion
a b s o r b e d r a d i a n t energy i n t o c h e m i c a l p o t e n t i a l of c h a r g e carriers;
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
of (3)
24.
Sunlight
LICHTIN ET A L .
Engineering
d i f f u s i o n of c h a r g e carriers to electrode surfaces; ( 4 ) to
electrode
surfaces;
and
(5)
d e l i v e r y of
299
Efficiency
transfer of c h a r g e
electrical current
to
the
external c i r c u i t . T h e t h e o r e t i c a l m a x i m u m S . E . E . of a n i r o n - t h i o n i n e c e l l at p H = is ~ 2 % , b a s e d o n a b i l i t y to absorb u p to 1 5 %
of t h e i n s o l a t i o n
2
flux,
1 0 0 % q u a n t u m efficiency i n p h o t o r e d o x reactions, a n d c o n v e r s i o n of 2 V p h o t o n s to 0.28 V e l e c t r i c a l p o t e n t i a l . T h e best S . E . E . a c h i e v e d w i t h a s i n g l e element T I - T L c e l l at p H = 2 has b e e n less t h a n 1/50
of
the
t h e o r e t i c a l m a x i m u m . F u r t h e r m o r e , the t h e o r e t i c a l l i m i t is l o w c o m p a r e d w i t h S . E . E . values a l r e a d y a c h i e v e d w i t h m a n y o t h e r solar t r a n s d u c t i o n devices.
It is thus necessary to find means of b o t h i n c r e a s i n g t h e theo-
r e t i c a l l i m i t a n d c o m i n g close to a c t u a l l y r e a c h i n g this l i m i t i f p h o t o g a l v a n i c t r a n s d u c t i o n is to r e m a i n a significant o p t i o n f o r use of solar energy. W e h a v e p e r f o r m e d a v a r i e t y of studies of e a c h of the five basic steps of p h o t o g a l v a n i c t r a n s d u c t i o n so that reasons f o r losses of e n e r g y c o u l d b e u n d e r s t o o d a n d steps t a k e n to e l i m i n a t e or r e d u c e these losses. Absorption
of
Light
E f f i c i e n t a b s o r p t i o n of l i g h t i n a t h i n - l a y e r c e l l requires 1 0 " M thionine ( c 3
m a x
10"
to
2
~ 6 X 1 0 M " c m " ) or other t h i a z i n e d y e . A t s u c h 4
1
1
concentrations, association of these dyes to d i m e r s a n d h i g h e r o l i g o m e r s is v e r y extensive i n aqueous s o l u t i o n . S i n c e o n l y m o n o m e r i c d y e c o n tributes to t r a n s d u c t i o n of l i g h t to e l e c t r i c i t y a n d the a b s o r p t i o n s p e c t r u m of d i m e r i c d y e extensively overlaps t h a t of m o n o m e r , it is necessary to suppress association
(6).
T h i s c a n b e d o n e i n v a r i o u s w a y s , e.g.,
i n c o r p o r a t i o n of surfactants.
by
Greatest i m p r o v e m e n t i n c e l l p e r f o r m a n c e
has b e e n a c h i e v e d b y u s i n g o r g a n i c co-solvents to suppress association. T h e most satisfactory solvent y e t i d e n t i f i e d is 50 v / v % aqueous in
which
1 X 10" M 3
solutions
of
thionine
are
virtually
CH CN 3
completely
monomeric. O n e a p p r o a c h to i n c r e a s i n g l i m i t i n g t h e o r e t i c a l efficiency is to use m i x t u r e s of p h o t o r e d o x dyes w h i c h c a n a b s o r b a l a r g e r p o r t i o n of the i n s o l a t i o n flux t h a n c a n o n l y a single d y e . T h i o n i n e a n d m e t h y l e n e b l u e c a n together absorb about 2 5 % of t h e i n s o l a t i o n s p e c t r u m at A i r M a s s — 1. T h e t h e o r e t i c a l m a x i m u m S . E . E . f o r a n i r o n - t h i o n i n e - m e t h y l e n e b l u e c e l l at p H = 2 is ~ 4 % .
A d d i t i v i t y i n o u t p u t of T I - T L S n 0 / P t 2
cells
c o n t a i n i n g b o t h dyes at 1 0 ~ M c o n c e n t r a t i o n has b e e n a p p r o a c h e d b u t , 4
w i t h b o t h dyes 1 0 " M , c e l l o u t p u t w a s no m o r e t h a n that o b t a i n e d w i t h 3
m e t h y l e n e b l u e alone a n d o n l y a b o u t 8 0 %
of the o u t p u t w i t h 1 0 " M 3
t h i o n i n e . T h e reason f o r this unsatisfactory result s t i l l is n o t established. R o u g h l y a d d i t i v e o u t p u t has b e e n a c h i e v e d w i t h 1 m M t h i o n i n e a n d 4 m M m e t h y l e n e b l u e i n c o r p o r a t e d i n different elements of a t w o - l a y e r c e l l
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(4).
300
INORGANIC
COMPOUNDS
WITH
UNUSUAL
PROPERTIES
II
S e n s i t i z a t i o n o f p h o t o g a l v a n i c a c t i o n b y dyes w h i c h are themselves n o t c a p a b l e of p h o t o r e d o x a c t i o n has b e e n d e m o n s t r a t e d
(7).
Action
spectra of solutions c o n t a i n i n g r h o d a m i n e 6 G a n d t w o c o u m a r i n dyes i n addition
to t h i o n i n e a n d m e t h y l e n e
blue
closely p a r a l l e l a b s o r p t i o n
spectra, c o r r e s p o n d i n g to t h e p o s s i b l e use of a b o u t 5 0 % o f t h e i n s o l a t i o n s p e c t r u m a n d a t h e o r e t i c a l m a x i m u m s u n l i g h t e n g i n e e r i n g efficiency of ~7%.
It has b e e n
increase
t h e p o w e r o u t p u t o f i r o n - t h i o n i n e ( o r other t h i a z i n e )
demonstrated
that r h o d a m i n e 6 G does, i n fact, cells
u n d e r w h i t e - l i g h t i l l u m i n a t i o n ; a n a p p r o x i m a t e l y 4 0 % increase has b e e n o b s e r v e d u n d e r i l l u m i n a t i o n w i t h 35 m W c m "
2
Formation
in Solution
and Decay of Charge
Previous workers have
Carriers
s h o w n that,
(8).
for thionine, competition of
R e a c t i o n 2 w i t h R e a c t i o n 3 is essentially n e g l i g i b l e , i.e., t h e q u a n t u m y i e l d f o r intersystem c r o s s i n g f r o m S i to T i is close t o u n i t y ( 9 ) . W e h a v e s t u d i e d t h e d e p e n d e n c e of the rates o f i n t r i n s i c d e c a y o f t r i p l e t t h i o n i n e to t h e g r o u n d state, R e a c t i o n 4, a n d of R e a c t i o n 5, t h e r e d u c t i o n of t h e t r i p l e t b y F e ( I I ) , u p o n p H a n d t h e nature of solvent a n d a n i o n s u s i n g flash p h o t o l y t i c t e c h n i q u e s (10).
T h e s e measurements h a v e s h o w n
t h a t r e d u c t i o n b y F e ( I I ) is g r e a t l y f a v o r e d b y use of 5 0 v / v %
aqueous
C H C N r a t h e r t h a n p u r e w a t e r a n d b y use of sulfate r a t h e r t h a n F3CSO3". 3
U n d e r the favored conditions, . 0 1 M F e ( I I )
reduced 9 7 % of triplet
t h i o n i n e at p H = 2. I n a r e l a t e d s t u d y , i t w a s f o u n d that t h e l o g a r i t h m of t h e specific rate of d i s p r o p o r t i o n a t i o n of s e m i t h i o n i n e , t h e f o r w a r d d i r e c t i o n of R e a c t i o n 6, varies l i n e a r l y w i t h t h e v a l u e o f K o s o w e r s Z f o r t h e solvent i n w h i c h t h e r e a c t i o n occurs
(11).
This relationship w a s
o b s e r v e d over three orders of m a g n i t u d e i n rate constant a n d v a r i a t i o n of Z b y -
17.
T h e k i n e t i c s a n d m e c h a n i s m of t h e b u l k r e a c t i o n o f l e u c o t h i o n i n e , TH
4
2 +
(12).
, w i t h F e ( I I I ) , also has b e e n s t u d i e d b y flash p h o t o l y t i c t e c h n i q u e T h e s e experiments h a v e s h o w n that t h e r e a c t i o n proceeds v i a
r e v e r s i b l e f o r m a t i o n o f a 1:1 association c o m p l e x , R e a c t i o n 7, a n d h a v e explored dependence
of e q u i l i b r i u m a n d rate constants
on p H , ionic
strength, a n d n a t u r e of solvent a n d anions. T h e p r o d u c t o f t h e association constant a n d t h e e l e c t r o n transfer rate constant, K k , 7
8
corresponds to a
s e c o n d - o r d e r rate constant w h i c h is rather s m a l l , ^ 350 t o 1 8 0 0 M " sec" 1
u n d e r t h e range of c o n d i t i o n s u s e d .
1
T h e magnitudes of intracomplex
e l e c t r o n transfer rate constants, k , are of the o r d e r of 1 sec" . F o r m a t i o n 8
1
of r e l a t i v e l y l o n g - l i v e d complexes of l e u c o t h i o n i n e w i t h F e ( I I I ) i n b u l k s o l u t i o n is consistent w i t h a m e c h a n i s m f o r loss of c h a r g e carriers at t h e Sn0
2
electrode that is suggested b e l o w .
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
24.
LICHTIN E T A L . A
Sunlight
Engineering
301
Efficiency
great d e a l of u s e f u l i n f o r m a t i o n has
been
obtained by
direct
m e a s u r e m e n t of the c o m p o s i t i o n a n d k i n e t i c s of r e l a x a t i o n of the t h i o n i n e p h o t o s t a t i o n a r y state ( 1 3 ) .
iron-
T h e m e a s u r e d d e p e n d e n c e of p h o t o -
stationary state c o m p o s i t i o n o n the i n i t i a l solute c o n c e n t r a t i o n s the n a t u r e of solvent has b e e n f o u n d to agree to w i t h i n
and on
experimental
error w i t h values c a l c u l a t e d f r o m m e a s u r e d rate constants f o r the r e l e v a n t e l e m e n t a r y reactions i n the system. I n t e r e s t i n g l y , u n d e r i l l u m i n a t i o n w i t h 100 m W c m " of l i g h t f r o m a X e n o n l a m p (essentially "1 s u n " ) , a s o l u t i o n 2
i n 50 v / v aqueous C H C N i n i t i a l l y . 0 0 1 M i n t h i o n i n e , . 0 1 M i n a c i d a n d 3
F e ( I I ) , a n d . 0 0 0 0 6 M i n F e ( I I I ) , w i t h sulfate as a n i o n , is 4 8 %
bleached.
T h i s d e g r e e of b l e a c h i n g is n e a r l y o p t i m a l since it p r o v i d e s a h i g h c o n c e n t r a t i o n of b o t h a b s o r b i n g d y e a n d c h a r g e - c a r r y i n g r e d u c e d
species.
T h e absence of d e t e c t a b l e a b s o r p t i o n at 390 a n d 770 n m i n the p h o tostationary state shows that less t h a n 1 0 %
of the r e d u c e d d y e is pres-
ent as s e m i t h i o n i n e u n d e r c o n d i t i o n s of o b s e r v a t i o n i n v o l v i n g photobleaching
of
10" -10" M 5
thionine
3
Calculations
(14).
k i n e t i c d a t a s h o w that no m o r e t h a n ~ 0 . 3 %
35-95% based
on
of the p h o t o b l e a c h e d
dye
is present as s e m i t h i o n i n e i n a s o l u t i o n i n i t i a l l y 1 0 " M i n t h i o n i n e a n d w i t h 3
other aspects of i n i t i a l c o m p o s i t i o n a n d i l l u m i n a t i o n as g i v e n above. a c o m p a r i s o n of s u c h results w i t h m e a s u r e d
monochromatic
From
quantum
y i e l d s f o r c u r r e n t g e n e r a t i o n , e.g., ~ 7 % at 578, 589, a n d 620 n m i n 80 /xm cells u n d e r s i m i l a r c o n d i t i o n s (4),
i t c a n b e c o n c l u d e d that l e u c o t h i o n i n e
is the p r i n c i p a l c h a r g e c a r r i e r d e r i v e d f r o m the d y e u n d e r these c o n d i t i o n s . K i n e t i c analysis of the o b s e r v e d l i n e a r d e p e n d e n c e first-order rate of r e l a x a t i o n of the p h o t o s t a t i o n a r y concentrations
of
thionine
and
Fe(III)
of the
gives
(13,14)
pseudo
state u p o n a
initial
completely
i n d e p e n d e n t d e t e r m i n a t i o n of the a p p a r e n t s e c o n d - o r d e r rate constant f o r the r e a c t i o n of F e ( I I I ) w i t h l e u c o t h i o n i n e , K k . 7
T h e resulting values
8
are i n excellent a g r e e m e n t w i t h those d e t e r m i n e d b y flash p h o t o l y s i s
(12).
T h e same analysis leads to e v a l u a t i o n of the rate constant f o r s y n p r o p o r t i o n a t i o n of l e u c o t h i o n i n e to g i v e s e m i t h i o n i n e , k. .
K n o w l e d g e of
G
the
rate constants f o r b o t h the f o r w a r d a n d reverse d i r e c t i o n s of R e a c t i o n 6 makes p o s s i b l e e v a l u a t i o n o f the e q u i l i b r i u m constant f o r this r e a c t i o n , KG, u n d e r a v a r i e t y of c o n d i t i o n s (14). [Semi] /[Leuco][Thionine] 2
=
T h e r e s u l t i n g v a l u e s , e.g., K
Q
=
(.6 ± .2) X 10" i n 1 0 " M aqueous s u l f u r i c 6
2
a c i d , are less b y b e t w e e n f o u r a n d five orders of m a g n i t u d e t h a n a v a l u e estimated b y M i c h a e l i s (15),
w h i c h has l e d a n u m b e r of w o r k e r s to
c o n c l u d e that s e m i t h i o n i n e is the p r i n c i p a l r e d u c e d f o r m of the d y e i n i r o n - t h i o n i n e p h o t o g a l v a n i c cells. possible
e v a l u a t i o n of the
A k n o w l e d g e of K
potentials
e q u i l i b r i a of t h i o n i n e , e.g., E ° ' / s = T
for
.196 ±
the
two
6
also has
one-electron
.004 V a n d E
0 ,
s / L
=
made redox .570
±
.005 V vs. N H E i n 1 0 ~ M aqueous s u l f u r i c a c i d . I n 1 0 ~ M solutions of 2
2
s u l f u r i c a c i d i n 50 v / v % aqueous C H C N , E ° ' / s = 3
T
.176 ± .005 V a n d
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
302
INORGANIC COMPOUNDS W I T H UNUSUAL
PROPERTIES
E S / L = . 5 3 0 ± . 0 0 5 V v s . N H E . T h e s e a n d r e l a t e d values h a v e
been
O ,
u s e d i n c o n s t r u c t i n g a n energy d i a g r a m f o r t h e S n 0 " - e l e c t r o l y t e 2
II
interface
that is d e s c r i b e d b e l o w i n t h e section o n e l e c t r o n transfer at t h e elect r o d e - s o l u t i o n interface.
Diffusion
of Charge
Carriers
to the
Electrodes
S u b s t i t u t i o n of e x p e r i m e n t a l l y d e t e r m i n e d l i f e t i m e s f o r r e l a x a t i o n o f t h e p h o t o s t a t i o n a r y state ( 1 3 ) , 1 . 6 sec u n d e r t h e c o n d i t i o n s i n d i c a t e d above, i n t o t h e d i f f u s i o n e q u a t i o n gives 5 0 /mi as t h e average d i f f u s i o n l e n g t h f o r c h a r g e carriers i n s o l u t i o n u n d e r these c o n d i t i o n s . T h u s , loss of c h a r g e carriers b y r e c o m b i n a t i o n i n b u l k s o l u t i o n c a n n o t b e a m a j o r process w i t h the 2 5 a n d 8 0 /nn e l e c t r o d e separations u s e d i n most of o u r T I - T L cells.
Transfer
of Charge
to the
Electrodes
Short c i r c u i t c u r r e n t o f T I - T L cells varies l i n e a r l y w i t h c o n c e n t r a t i o n of p h o t o b l e a c h e d d y e , m o s t l y l e u c o t h i o n i n e (16).
C u r r e n t p e r u n i t area
of e l e c t r o d e p e r u n i t c o n c e n t r a t i o n of l e u c o t h i o n i n e w a s f o u n d to b e the same f o r T I - T L cells w i t h 2 5 a n d 8 0 /nn spacings of a g i v e n set o f electrodes aqueous
a n d increased CH CN 3
s l i g h t l y w i t h t h e p r o p o r t i o n of C H C N 3
solutions.
T h e best efficiencies
obtained w i t h
in
Sn0
2
anodes i n 5 0 v / v % aqueous C H C N w i t h sulfate as a n i o n c o r r e s p o n d e d 3
to a b o u t 1 3 0 / x A / m M - c m .
S u b s t i t u t i o n o f this v a l u e i n t h e N e r n s t d i f f u -
2
s i o n - l a y e r e q u a t i o n i n d i c a t e s a d i f f u s i o n - l a y e r thickness of 1 0 0 /mi. T h e f a c t that essentially i d e n t i c a l c u r r e n t densities w e r e o b t a i n e d w i t h 2 5 and
8 0 fim electrode separations i n d i c a t e s , h o w e v e r , that t h e d i f f u s i o n
l a y e r w a s n o greater
t h a n 2 5 /xm i n thickness a n d c o u l d h a v e
been
s i g n i f i c a n t l y less. T h i s suggests that at least 7 5 % of charge carriers that r e a c h e d those p a r t i c u l a r electrodes d i d n o t p r o d u c e c u r r e n t i n t h e e x t e r n a l c i r c u i t a n d w e r e w a s t e d . L i t t l e of this loss is i n c u r r e d w i t h i n t h e electrodes after electron transfer, as reverse b i a s i n g o f t h e c e l l increases t h e current b y only 2 5 - 5 0 % .
A p p a r e n t l y , most of this loss results f r o m
inefficiency of e l e c t r o n transfer b e t w e e n
solution charge
carriers a n d
electrode(s). S i n g l e electrode potentials h a v e b e e n m e a s u r e d at S n 0
2
anodes a n d
I T O cathodes f o r solutions i n 5 0 v / v % aqueous C H C N , . 0 1 M i n H S 0 , 3
i n w h i c h the p h o t o s t a t i o n a r y ratio of T H to T H +
4
2 +
2
4
v a r i e d b y a f a c t o r of
m o r e t h a n 1 0 a n d t h e F e ( I I I ) : F e ( I I ) ratio v a r i e d b y a factor of a p p r o x i m a t e l y six ( I ) . T h e p o t e n t i a l at the S n O a n o d e p a r a l l e l e d t h e p o t e n t i a l 2
calculated for the T H : T H +
4
2 +
couple f r o m k n o w n compositions w i t h the
a i d of t h e N e r n s t p o t e n t i a l e q u a t i o n .
M e a s u r e d values w e r e , h o w e v e r ,
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
24.
Sunlight
LICHTIN E T A L .
Engineering
303
Efficiency
m o r e p o s i t i v e ( f o r t h e p a r t i c u l a r samples of S n 0
2
used) than calculated
values b y ~ 100 m V . M e a s u r e d potentials at t h e I T O c a t h o d e p a r a l l e l e d those c a l c u l a t e d f o r t h e F e ( I I I ) : F e ( I I ) c o u p l e b u t w e r e a b o u t 70 m V m o r e n e g a t i v e ( f o r t h e p a r t i c u l a r samples of I T O u s e d ) .
C e l l voltages
w e r e thus a b o u t 170 m V smaller t h a n w o u l d b e e x p e c t e d f r o m a c e l l w i t h a n a n o d e f u l l y selective f o r t h e T H : T H +
4
couple a n d a cathode fully
2 +
selective f o r the F e ( I I I ) : F e ( I I ) c o u p l e . E l e c t r o n transfer processes at t h e S n 0
2
electrode h a v e b e e n s t u d i e d
extensively b y c y c l i c v o l t a m m e t r y a n d other e l e c t r o c h e m i c a l
techniques
T h e t i n o x i d e electrodes w e r e c h a r a c t e r i z e d b y d e t e r m i n i n g
(4,6,17).
c h a r g e c a r r i e r densities a n d flat-band potentials b y means of S c h o t t k y M o t t plots of 1 / C vs. E.
T h e highly conductive
2
defect-structure S n 0 10
20
and
2
(30-100
ohms/sq)
h a d a c h a r g e c a r r i e r d e n s i t y i n t h e range ( 4 - 7 )
X
c m " . T h e flat b a n d p o t e n t i a l w a s + .05 to + .25 r e l a t i v e to N H E 1
essentially i n d e p e n d e n t of the solvent i n contact w i t h the
Thus, E ° ' p
H =
=
2
Sn0 . 2
of the t h i o n i n e - s e m i t h i o n i n e c o u p l e falls w i t h i n t h e flat
b a n d p o t e n t i a l range w i t h either . 0 1 M aqueous s u l f u r i c a c i d o r . 0 1 M s u l f u r i c a c i d i n 50 v / v % aqueous C H C N
as solvent.
3
E ' 0
p H
= 2 of t h e
s e m i t h i o n i n e - l e u c o t h i o n i n e c o u p l e is at least .28 V p o s i t i v e w i t h respect to the flat-band p o t e n t i a l i n aqueous C H C N a n d m o r e p o s i t i v e b y a b o u t 3
.04 V i n the neat aqueous solvent w h i l e E ' of t h e F e ( I I I ) : F e ( I I ) c o u p l e 0
is at least .4 V p o s i t i v e to the flat b a n d p o t e n t i a l i n b o t h m e d i a . F i g u r e 1, t a k e n f r o m R e f . 17, s u m m a r i z e s i n t e r f a c i a l energies. (18)
that the S n 0
2
T h e s e d a t a suggest
electrode s h o u l d b e r e l a t i v e l y p o o r l y selective since
l e u c o t h i o n i n e is, as s h o w n above, t h e p r i n c i p a l r e d u c e d f o r m of t h e d y e at the p h o t o s t a t i o n a r y state. T h e results also suggest that selectivity o f the S n 0
2
a n o d e w i t h respect to t h e l e u c o t h i o n i n e - s e m i t h i o n i n e c o u p l e
s h o u l d b e better w i t h 50 v / v % aqueous C H C N as solvent t h a n w i t h 3
neat w a t e r . Results of c y c l i c v o l t a m m e t r i c measurements at the S n 0
2
electrode
are s u m m a r i z e d b e l o w .
(4,6,17)
( 1 ) T h e m e c h a n i s m of r e d u c t i o n of t h i o n i n e is E E , i.e., n o d i s c e r n i b l e c h e m i c a l process takes p l a c e b e t w e e n the t w o electron-transfer steps. ( 2 ) R e a c t i o n s of t h e t h i o n i n e - l e u c o t h i o n i n e c o u p l e are k i n e t i c a l l y c o n t r o l l e d . R e c t i f i c a t i o n s i g n i f i c a n t l y reduces efficiency o f o x i d a t i o n of l e u c o t h i o n i n e at the S n 0 electrode. ( 3 ) C o n t r a r y to w h a t m i g h t b e e x p e c t e d b y c o n s i d e r i n g o n l y t h e i n t e r f a c i a l energy d i a g r a m , r e v e r s i b i l i t y is greater f o r t h e d y e c o u p l e w i t h neat H 0 as solvent t h a n w i t h 50 v / v % aqueous C H C N . ( 4 ) L e u c o t h i o n i n e is s t r o n g l y a d s o r b e d o n SnOo w h i l e t h i o n i n e is w e a k l y a d s o r b e d . A d s o r p t i o n is greater f r o m solutions i n p u r e w a t e r t h a n f r o m 50 v / v % aqueous C H C N . ( 5 ) T h e F e ( I I I ) : F e ( I I ) c o u p l e is s o m e w h a t m o r e r e v e r s i b l e at S n 0 w i t h 50 v / v % aqueous C H C N as solvent t h a n w i t h p u r e w a t e r , b u t w i t h either solvent i t is m u c h less r e v e r s i b l e at S n 0 t h a n t h e d y e c o u p l e i s . 2
2
3
3
2
3
2
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
304
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
E,°'
--
0.2
t
2
-pss
0.4
t E
F e
2+
/ F e
3+
F 2 /Fe3+ e
+
0.6
E.V.VS.SCE Journal of the Electrochemical Society
Figure 1. Interfacial energy diagram for the Sn0 anode in contact with the components of the ironthionine photogalvanic cell at pH = 2. Solid lines: aqueous sulfuric acid. Dashed lines: sulfuric acid in 50 v/v % aqueous CH CN. Taken from Ref. 17. 2
3
Summary The
and fifty-fold
Speculation to o n e h u n d r e d - f o l d f a c t o r b y w h i c h t h e best o b s e r v e d
values of S . E . E . f o r the i r o n - t h i o n i n e T I - T L c e l l w i t h a S n 0
2
anode a n d
a P t o r I T O c a t h o d e f a l l short o f t h e t h e o r e t i c a l m a x i m u m c a n b e a s c r i b e d , i n p a r t , to t w o r e l a t i v e l y s i m p l e factors. O n e o f these is inefficient a b s o r p t i o n of l i g h t . A t t h e p h o t o s t a t i o n a r y state, t h e c o n c e n t r a t i o n of u n b l e a c h e d d y e i n o p t i m i z e d cells w a s ~ 5 X 1 0 " M , so t h a t o n l y ~ 2 5 % o f t h e i n c i 4
dent light i n the wavelength region of the thionine b a n d was absorbed i n the 80 /xm-thick c e l l . If a b s o r p t i o n b y S n 0
2
a n d I T O i n the four-element
M T L c e l l is i g n o r e d , a p p r o x i m a t e l y t w o - t h i r d s of i n c i d e n t l i g h t i n t h e t h i o n i n e b a n d is a b s o r b e d b y t h e d y e . T h e difference i s , i n fact, s i m i l a r to t h e difference
i n S . E . E . o f single-element
T I - T L a n d four-element
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
24.
LICHTIN ET A L .
M T L cells.
Sunlight
Engineering
305
Efficiency
T h e other s i m p l e f a c t o r is the r e l a t i v e l y l o w c e l l p o t e n t i a l .
C e l l potentials at the p o w e r p o i n t w e r e ^ 100 m V , i.e., a b o u t 3 5 %
of
E ° ' P H = 2 of the c e l l . M o s t of this d e f i c i e n c y c a n b e a s c r i b e d to s e l e c t i v i t y of electrodes b e i n g o n l y p a r t i a l . T h e t w o loss-factors together f o r r e d u c t i o n of S . E . E . b y a f a c t o r of ~
account
12.
T a k e n together, five lines of e v i d e n c e suggest that t h e r e m a i n i n g f o u r - f o l d to e i g h t - f o l d loss factor c a n be a s c r i b e d to inefficient transfer of c h a r g e b e t w e e n s o l u t i o n c h a r g e carriers a n d S n 0
2
anodes.
One perti-
nent p i e c e of e v i d e n c e is the r e l a t i v e l y l o n g d i f f u s i o n l e n g t h c a l c u l a t e d f o r c h a r g e carriers i n s o l u t i o n . T h i s l e n g t h is sufficient to a l l o w most c h a r g e carriers to r e a c h t h e electrodes.
S e c o n d is t h e contrast b e t w e e n
w h i c h suggest that the thickness of t h e N e r n s t d i f f u s i o n l a y e r is 100 a n d e v i d e n c e that i t c a n n o t be m o r e t h a n 25 /xm i n thickness.
data fim
T h i r d is
the c y c l i c - v o l t a m m e t r i c e v i d e n c e that e l e c t r o n transfer at t h e S n 0 - s o l u 2
t i o n interface is c o n t r o l l e d k i n e t i c a l l y . F o u r t h is the c y c l i c - v o l t a m m e t r i c e v i d e n c e that l e u c o t h i o n i n e is strongly a d s o r b e d o n S n 0 . 2
F i f t h is t h e
e v i d e n c e that t h e r e a c t i o n of l e u c o t h i o n i n e w i t h F e ( I I I ) i n b u l k s o l u t i o n p r o c e e d s v i a a r e l a t i v e l y l o n g - l i v e d ( T ^ 1 sec)
complex.
A t least three paths b y w h i c h l e u c o t h i o n i n e c a n b e w a s t e d at t h e a n o d e suggest themselves. ( 1 ) A d s o r b e d l e u c o t h i o n i n e is o x i d i z e d at the interface b y F e ( I I I ) .
T h e r e s u l t i n g s e m i t h i o n i n e w o u l d b e e x p e c t e d to
r a p i d l y transfer a n e l e c t r o n to S n 0 . 2
loss-factor
of o n l y t w o .
F e ( I I I ) at the interface.
(2)
T h u s , this p a t h c o u l d i n t r o d u c e a
A d s o r b e d l e u c o t h i o n i n e complexes
with
T h e r e s u l t i n g c o m p l e x t h e n reacts i n t h e a d -
s o r b e d state. T h i s p a t h also w o u l d b e e x p e c t e d to i n t r o d u c e a loss-factor of o n l y t w o . ( 3 ) A d s o r b e d l e u c o t h i o n i n e complexes w i t h F e ( I I I ) at the interface.
T h e r e s u l t i n g c o m p l e x desorbs a n d diffuses b a c k i n t o b u l k
s o l u t i o n before u n d e r g o i n g i n t r a c o m p l e x e l e c t r o n transfer. T h i s p a t h c a n l e a d to c o m p l e t e wastage of c h a r g e carriers. If the analysis p r e s e n t e d i n this c h a p t e r is correct, p a t h ( 3 ) p l a y s a n i m p o r t a n t r o l e i n r e d u c i n g t h e efficiency of charge transfer at t h e S n 0
2
electrode.
Acknowledgment T h i s w o r k , a joint project of the D e p a r t m e n t of C h e m i s t r y of B o s t o n U n i v e r s i t y a n d t h e Solar E n e r g y C o n v e r s i o n U n i t of E x x o n R e s e a r c h a n d E n g i n e e r i n g C o . , w a s s u p p o r t e d b y the N a t i o n a l S c i e n c e
Foundation
R e s e a r c h A p p l i e d to N a t i o n a l N e e d s P r o g r a m u n d e r G r a n t N o . S E / A E R / 72-03579.
S o m e of the research o n s o l u t i o n k i n e t i c s w a s s u p p o r t e d b y
E n e r g y Research and Development Administration Contract N o . E Y - 7 6 S-02-2889.
M a n y v a l u a b l e discussions of v a r i o u s aspects of this w o r k
have b e e n h e l d w i t h M o r t o n Z . H o f f m a n .
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
306
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
II
Literature Cited 1. Wildes, P. D., Brown, K. T., Lichtin, N. N., J. Am. Chem. Soc. (1978) 100, "Abstracts of Papers," National Meeting, ACS, Aug. 28-Sept. 2, 1971, PHYS 117. 2. Rabinowitch, E., J. Chem. Phys. (1940) 8, 560. 3. Clark, W. D. K., Eckert, J.A.,Sol. Energy (1975) 17, 147. 4. Hall, D. E., Eckert, J. A., Lichtin, N. N., Wildes, P. D.,J.Electrochem. Soc. (1976) 123, 1705. 5. Lichtin, N. N., "Photogalvanic Processes," in "Solar Power and Fuels," J. Bolton, Ed., pp. 119-142, Academic, New York, 1977. 6. Hall, D. E., Clark, W. D. K., Eckert, J. A., Lichtin, N. N., Wildes, P. D., Am. Ceram.Soc.,Bull. (1977) 56, 408. 7. Wildes, P. D., Hobart, D. R., Lichtin, N. N., Hall, D. E., Eckert, J. A., Sol. Energy (1977) 19, 567. 8. Lichtin, N. N., Wildes, P. D., U.S. Patent 4,052,536, "Electrolytes Which Are Useful in Solar Energy Conversion," 1977. 9. Havemann, R., Reimer, K.G.,Z. Phys. Chem. (Leipzig) (1961) 216, 334, and earlier papers. 10. Wildes, P. D., Lichtin, N. N., Hoffman, M. Z., Andrews, L., Linschitz, H., Photochem. Photobiol. (1977) 25, 21. 11. Wildes, P. D., Lichtin, N. N., Hoffman, M. Z., J. Am. Chem. Soc. (1975) 97, 2288. 12. Osif, T. L., Lichtin, N. N., Hoffman, M. Z., "Abstracts of Papers," National Meeting, 114th, ACS, Aug. 28-Sept. 2, 1977, PHYS 17. 13. Wildes, P. D., Lichtin, N. N., Hoffman, M. Z., "Application of Solution and Photo Dynamics to the Optimization of Output of Iron-Thiazine Photogalvanic Cells," in "Solar Energy," J. B. Berkowitz, I. A. Lesk, Eds., p. 128-138, The Electrochemical Society, 1976. 14. Wildes, P. D., Lichtin, N. N.,J.Phys. Chem. (1978) 82, 981. 15. Michaelis, L., Schubert, M. P., Granick, S., J. Am. Chem. Soc. (1940) 62, 204. 16. Wildes, P. D., Brown, K. T., Hoffman, M. Z., Lichtin, N. N., Hall, D. E., Sol. Energy (1977) 19, 579. 17. Hall, D. E., Wildes, P. D., Lichtin, N. N., J. Electrochem. Soc. (1978) 125, in press. 18. Gerischer, H., in "Semiconductor Electrochemistry in Physical Chemistry," L. Eyring, D. Henderson, W. Jost, Eds., pp. 463-542, Academic, New York, 1970. RECEIVED February 22, 1978.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.