8 Homogeneous Catalysis of the Water Gas
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
Shift Reaction by Metal Carbonyls
1
PETER C. FORD , CHARLES UNGERMANN, VINCENT LANDIS, and SERGIO A. MOYA—Department of Chemistry, University of California, Santa Barbara, CA 93106 ROBERT C. RINKER—Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 RICHARD M. LAINE—SRI International, Menlo Park, CA 94025 Summarized are our recent studies of the homogeneous catalysis of the water gas shift reaction. Characterization of the previously reported catalyst based on Ru (CO) in alkaline, aqueous ethoxyethanol solution indicates that the principal ruthenium components are tetraruthenium carbonyl hydride anions. A mechanism is proposed involving the attack of OH or H O on coordinated C O to give, after loss of C O2, a dihydride metal species MH . Reductive elimination of hydrogen and coordination of another C O regenerates the original metal carbonyl M C O . A number of other metal carbonyls proved to form active catalysts under analogous conditions. Active catalysts are also formed from H Ru (CO) in acidic aqueous diglyme solution and from H Ru (CO) or H Ru (CO) /Fe(CO) mixtures in organic amine solutions. 3
12
-
2
2
4
4
4
12
4
12
4
4
12
5
A n i m p o r t a n t route f o r t h e p r o d u c t i o n of h y d r o g e n f r o m w a t e r is t h e w a t e r gas shift r e a c t i o n ( R e a c t i o n 1 ) . Since w a t e r gas ( a m i x t u r e of C 0 , C O , H 0 , a n d H ) c a n b e o b t a i n e d f r o m t h e r e a c t i o n o f s t e a m 2
2
2
w i t h h o t coke, i t w i l l p l a y a n i m p o r t a n t r o l e i n m e t h o d s of i m p r o v i n g H 0 ( g ) + CO(g) ^ C0 (g) + H (g) 2
2
2
(1)
Address correspondence to this author at the Department of Chemistry, University of California, Santa Barbara, C A 93106. 1
0-8412-0429-2/79/33-173-081$05.00/0 © 1979 American Chemical Society In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
82
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
the usefulness of c o a l as a p r i m a r y f u e l source i n this c o u n t r y .
II
Schemes
f o r t h e gasification a n d l i q u i f i c a t i o n of c o a l (i.e., t h e p r o d u c t i o n of r e l a tively light hydrocarbons) require copious, readily available hydrogen i n a d d i t i o n to that a l r e a d y p r o d u c e d . T h e e n o r m o u s q u a n t i t i e s of i n d u s t r i a l h y d r o g e n n o w u s e d (1976 p r o d u c t i o n i n the U n i t e d States w a s ~ 10
11
s t a n d a r d c u b i c meters {1,2))
are d e r i v e d l a r g e l y b y t h e steam
r e f o r m i n g or p a r t i a l o x i d a t i o n of h y d r o c a r b o n s . T h u s , e v e n w i t h o u t n e w , Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
h y d r o g e n - d e p e n d e n t m e t h o d s f o r t h e synthesis of h y d r o c a r b o n s , a m a j o r s a v i n g of this v a l u a b l e resource w o u l d b e one benefit f r o m t h e better u s e of other m e t h o d s f o r the p r o d u c t i o n of h y d r o g e n , e.g., t h e w a t e r - g a s shift r e a c t i o n . C o m m e r c i a l methods heterogeneous
f o r c a r r y i n g out the shift reaction i n v o l v e
m e t a l o x i d e catalysts
at e l e v a t e d t e m p e r a t u r e s
A c c o r d i n g to t h e t h e r m o d y n a m i c s of R e a c t i o n 1, A G ° = ( - 4 . 7 6 ) , AH° =
(3,4).
—6.81 k c a l / m o l
- 9 . 8 3 kcal/mol (0.68), a n d AS° =
- 1 0 . 1 e u (18.3)
[figures i n parentheses are f o r H 0 ( 1 ) r a t h e r t h a n H 0 ( g ) ] , greater p r o 2
2
d u c t i o n efficiency s h o u l d b e r e a l i z e d b y c a r r y i n g o u t this
exothermic
r e v e r s i b l e process at l o w e r t e m p e r a t u r e s . C o n s i d e r a b l e p r e c e d e n t exists f o r t h e use of H 0 / C O m i x t u r e s as 2
the source of h y d r o g e n i n t h e h o m o g e n e o u s r e d u c t i o n s of v a r i o u s o r g a n i c c o m p o u n d s . T h e h y d r o - h y d r o x y m e t h y l a t i o n o f olefins (5,6)
is one s u c h
e x a m p l e ( R e a c t i o n 2 ) w h e r e t h e e q u i v a l e n t of one C O a n d t w o h y d r o gens are a d d e d to t h e olefin i n a process w h i c h consumes three moles o f CO/H 0 2
RCH = C H
2
>R C H C H C H 0 H + R C H — C H | CH OH 2
Fe(CO) /NR 5
3
2
2
3
(2)
2
C O a n d t w o of H
2
0 a n d p r o d u c e s t w o moles of C 0 . H o m o g e n e o u s 2
catalysis of this r e a c t i o n c a n b e a c c o m p l i s h e d w i t h a n i r o n c a r b o n y l i n c o n j u n c t i o n w i t h a B r o n s t e d a c i d o r base. T h u s i t appears that c o n d i t i o n s m i g h t b e f o u n d w h e r e t h e s h i f t r e a c t i o n itself c a n b e effected g e n e o u s l y u s i n g m e t a l c o m p l e x catalysts.
T o this e n d , w e h a v e
e x a m i n i n g t h e a c t i v i t y of v a r i o u s h o m o g e n e o u s
homobeen
catalysts f o r t h e s h i f t
r e a c t i o n , a n d o u r i n v e s t i g a t i o n s o f m e t a l c a r b o n y l cluster complexes a r e s u m m a r i z e d here. Catalysis
by Ruthenium
Carbonyl
in Alkaline
Solution
I n a p r e l i m i n a r y s t u d y (7) w e r e p o r t e d t h a t catalysis of t h e s h i f t r e a c t i o n is a c c o m p l i s h e d b y a h o m o g e n e o u s s o l u t i o n p r e p a r e d f r o m R u ( C O ) i . F o r t h e i n i t i a l e x p e r i m e n t s , t h e catalysis s o l u t i o n t y p i c a l l y c o n t a i n e d t h e f o l l o w i n g c o m p o n e n t s i n 15 m L of p u r i f i e d e t h o x y e t h a n o l solvent: R u ( C O ) (0.126 g, 2 X 10" m o l ) , K O H (0.5 g, 0.01 m o l ) , a n d 3
2
3
1 2
4
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
FORD E T A L .
H 0
Water Gas Shift
( l . O g , 0.06mol).
2
83
Reaction
A t 100°C under about 1 atm C O
(occasionally
r e c h a r g e d ) , this s o l u t i o n p r o d u c e d a b o u t 3 X 10" m o l of H 2
m a t e l y a n e q u i v a l e n t a m o u n t of C 0
and approxi-
over a p e r i o d of 30 days. N o t a b l y ,
2
this q u a n t i t y represents a r a t i o of 150 moles of H a d d e d or three moles of H
2
2
p e r m o l e of R u ( C O ) i 3
2
p e r m o l e of K O H a d d e d . T h u s the system is
2
c a t a l y t i c b o t h i n r u t h e n i u m a n d i n base. W h e n this r e a c t i o n w a s c a r r i e d out i n a s o l u t i o n p r e p a r e d f r o m t h e d e u t e r a t e d solvent C H C H O C H C H O D p l u s D 0 , D Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
3
2
2
2
2
( > 9 0 % ) was
2
t h e h y d r o g e n p r o d u c t as m e a s u r e d b y mass s p e c t r o m e t r y ( s m a l l a m o u n t s of H D a n d H
f o u n d c o u l d be a t t r i b u t e d to the i s o t o p i c i m p u r i t y of t h e
2
solvent m i x t u r e ) . T h u s , the source of the d i h y d r o g e n p r o d u c t is w a t e r or w a t e r - e x c h a n g e a b l e h y d r o g e n s i n the s o l u t i o n ( 7 ) .
The homogeneity
of the r e a c t i o n s o l u t i o n is i n d i c a t e d b y its c l a r i t y w h e n e x a m i n e d w i t h a s t r o n g l i g h t a n d b y the fact that a n a c t i v e catalyst s o l u t i o n d i s p l a y e d t h e same rate of h y d r o g e n p r o d u c t i o n at 1 1 0 ° C before a n d after f i l t r a t i o n t h r o u g h a F l u o r o p o r e filter ( F H L P , 0.5 /x p o r e size) u n d e r a n inert atmosphere.
A d d i t i o n a l qualitative support for homogeneity
of the
active
c o m p o n e n t s derives f r o m the f a c t that the catalyst solutions s h o w r e l a t i v e l y h i g h r e p r o d u c i b i l i t y of a c t i v i t y w h e n p r e p a r e d a n u m b e r of d i f ferent times b y different i n d i v i d u a l s i n o u r laboratories. E x a m i n a t i o n of the a c t i v e r u t h e n i u m c a r b o n y l catalyst s o l u t i o n b y I R a n d N M R spectroscopy a n d b y i o n exchange c h r o m a t o g r a p h y i n d i c a t e that the s o l u t i o n contains at least three i o n i c r u t h e n i u m c o m p o n e n t s , t w o of w h i c h are major. I n a d d i t i o n , traces of a species w i t h a n I R s p e c t r u m consistent w i t h t h a t of R u ( C O ) i is seen.
T h e m a j o r i o n i c species
are
the t r i h y d r i d o tetraruthenium dodecacarbonyl anion, H R u ( C O ) i ~
(>
3
2
3
50%)
4
2
a n d a c o m p o n e n t ( X " ) h a v i n g s p e c t r a l p r o p e r t i e s different f r o m
those of k n o w n r u t h e n i u m c a r b o n y l species. i n d i c a t e the E t N 4
+
I R a n d * H N M R spectra
salt of X to b e c a r b o n y l h y d r i d e ( i ?
co
=
2072w, 2012s,
1987s, 1950s, b r , 1732w i n T H F ; h y d r i d e resonance at 22.53 r i n ^ - a c e tone).
T h e c h e m i c a l b e h a v i o r of this m a t e r i a l suggests that X " m a y b e
HRu (CO)i ". 4
Although
3
purification problems
o b t a i n i n g a g o o d e l e m e n t a l analysis of the E t N
+
4
the m a j o r species f o r m e d b y the H S 0 2
(CO)i
3
4
have
prevented
our
salt of X " , the f a c t that
n e u t r a l i z a t i o n of X " is H R u 2
4
is consistent w i t h this assignment.
W h e n the a c t i v e catalyst s o l u t i o n is n e u t r a l i z e d w i t h H S 0 2
4
before
i s o l a t i n g the c o m p o n e n t s , three k n o w n r u t h e n i u m species are f o u n d i n the r e a c t i o n m i x t u r e : R u ( C O ) 3
H Ru (CO)i 4
4
2
(~60%).
1 2
( 2 0 - 3 0 % ), H R u ( C O ) i 2
4
( 1 0 % ), a n d
3
T h e f o r m a t i o n of these species
is c e r t a i n l y
n o t u n e x p e c t e d u n d e r the r e a c t i o n c o n d i t i o n s g i v e n t h e observations b y L e w i s et a l . ( 8 ) H Ru (CO)i 4
4
2
t h a t the reactions of R u ( C O ) i 3
and H R u ( C O ) 2
4
1 3
2
w i t h w a t e r leads t o
a n d b y Kaesz a n d co-workers (9)
that
the f o r m e r species c a n b e d e p r o t o n a t e d b y base to g i v e H R u ( C O ) ~ . 3
4
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
i2
84
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
I n this context, i t is p a r t i c u l a r l y i n t e r e s t i n g t o note that catalysis u n d e r t h e same c o n d i t i o n s , b u t u s i n g H R u ( C O ) 4
4
i 2
II
runs
as t h e i n i t i a l source,
h a v e a c t i v i t y i n d i s t i n g u i s h a b l e f r o m that of runs s t a r t i n g w i t h R u ( C O ) i . 3
2
I n a d d i t i o n , t h e s p e c t r a l p r o p e r t i e s of t h e a c t i v e solutions f r o m these t w o sources are i n d i s t i n g u i s h a b l e . L a s t l y i t is also n o t a b l e that activity (RuCl
3
is seen
with
solutions
prepared
with
comparable
ruthenium trichloride
• n H 0 ) as t h e i n i t i a l r u t h e n i u m source. 2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
C l o s e r e x a m i n a t i o n of t h e r e a c t i o n s o l u t i o n reveals t h a t t h e n a t u r e of t h e base species changes m a r k e d l y i n t h e e a r l y stages of t h e catalysis r u n s . C a r b o n m o n o x i d e is k n o w n t o react w i t h aqueous a l k a l i h y d r o x i d e t o f o r m t h e analogous a l k a l i f o r m a t e (10,11).
T h i s r e a c t i o n occurs u n d e r
t h e i n i t i a l s o l u t i o n c o n d i t i o n s of t h e catalyst runs d e s c r i b e d here a n d is r e l a t i v e l y fast c o m p a r e d w i t h t h e shift r e a c t i o n (12).
N o t a b l y , t h e pres-
e n c e o f t h e r u t h e n i u m catalyst has l i t t l e i f a n y effect o n t h e rate of f o r m a t e formation.
T h u s , f o r t h e t y p i c a l catalysis
runs at 1 0 0 ° C ,
titrimetric
studies i n d i c a t e t h a t w i t h i n a p e r i o d of h o u r s v i r t u a l l y a l l t h e K O H first a d d e d has b e e n c o n s u m e d a n d that > 9 0 % of t h e base e q u i v a l e n t s a r e present i n t h e guise of p o t a s s i u m f o r m a t e .
T h e r e m a i n i n g base e q u i v a -
lents are l a r g e l y a m i x t u r e of p o t a s s i u m b i c a r b o n a t e a n d p o t a s s i u m carbonate.
I n this context, i t is n o t a b l e t h a t R u ( C O ) i 3
solutions p r e p a r e d u s i n g K C 0 2
plus K H C 0
3
3
2
and H R u ( C O ) i 4
4
2
as t h e i n i t i a l bases g i v e
c o m p a r a b l e c a t a l y t i c a c t i v i t y t o those p r e p a r e d u s i n g K O H ( T a b l e I ) . "Possible Mechanisms for
Catalysis
A t this p o i n t i t c a n b e of v a l u e t o speculate
o n the mechanisms
w h i c h m i g h t b e c a t a l y z i n g t h e shift r e a c t i o n . O n e m e c h a n i s m is d e s c r i b e d i n S c h e m e 1. I n this scheme i n i t i a l a c t i v a t i o n of c a r b o n m o n o x i d e i n v o l v e s n u c l e o p h i l i c attack of O H " o r H complex M - C 0 H \
0 o n M - C O to f o r m t h e h y d r o x y c a r b o n y l
2
A m p l e p r e c e d e n t exists f o r this r e a c t i o n .
2
F o r ex-
a m p l e , several m e t a l c a r b o n y l c o m p l e x e s h a v e b e e n r e p o r t e d t o u n d e r g o oxygen exchange w i t h
l s
O - l a b e l e d w a t e r i n s o l u t i o n (13,14),
a n d the
r e v e r s i b l e f o r m a t i o n of h y d r o x y c a r b o n y l species has b e e n p o s t u l a t e d i n l o g i c a l m e c h a n i s m s f o r this exchange.
S u c h species h a v e i n d e e d b e e n
i s o l a t e d , e.g., R e a c t i o n 3 ( 1 5 ) . H 0 — IrCl (PhPMe ) (CO) (-C0 H) dry HC1 2
IrCl (PhPMe ) (C0) 2
2
2
2
+
2
2
2
2
(3)
T h e d e c a r b o x y l a t i o n of t h e h y d r o x y c a r b o n y l species H M - C 0 H s h o u l d b e f a c i l e a n d has b e e n p r o p o s e d f o r other conversions of c o o r d i n a t e d c a r b o n y l t o h y d r i d e , e.g., R e a c t i o n 4 (16). Subsequent reductive e l i m i n a t i o n o f d i h y d r o g e n f r o m M H has p r e c e d e n c e f o r a n u m b e r o f 2
2
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
FORD E T A L .
Water Gas Shift
85
Reaction
Scheme 1 O H " (or H 0 )
OH
2
/
M—CO
- •
M —C = 0
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
i{
CO
(+H ) +
•H 0 2
C
J
OH-
' OH
/ HM—C = 0
CO,
"M"
H
f
3
2
2
(Et P) (CO) C l
transit
MH
+
+ O H " - » Pt (Et P) C 1 H + C 0 3
2
(4)
2
m o n o n u c l e a r a n d p o l y n u c l e a r systems (17). T h i s last step f o r m s t h e c o o r d i n a t i v e l y u n s a t u r a t e d species " M " w h i c h undergoes r a p i d r e a c t i o n w i t h free C O to r e f o r m M - C O . ( A s i m i l a r c y c l i c scheme has also b e e n p r o p o s e d r e c e n t l y b y E i s e n b e r g (18)). A m o d i f i c a t i o n of this s c h e m e w o u l d b e to h a v e C O assist i n t h e d e h y d r o g e n a t i o n step i n some m a n n e r , p e r h a p s b y c o o r d i n a t i o n w i t h M H p r i o r t o loss of h y d r o g e n . 2
T h e c o m p o s i t i o n of t h e r u t h e n i u m catalyst s o l u t i o n is consistent w i t h t h e steps p r o p o s e d i n S c h e m e 1, i f w e v i s u a l i z e M - C O as H R u ( C O ) - ( o r H R u ( C O ) ) a n d M H as H R u ( C O ) - ( o r H R u ( C O ) i ) . C o n s i d e r a b l y m o r e i n f o r m a t i o n ( k i n e t i c s , etc.) needs a c c u m u l a t i o n t o s u p p o r t o r d i s p r o v e this m e c h a n i s m , b u t at present i t serves as a reasonable w o r k i n g h y p o t h e s i s . W i t h r e g a r d t o t h e details of S c h e m e 1, it is n o t a b l e that n u c l e o p h i l i c attack o n c o o r d i n a t e d c a r b o n y l s is o f t e n q u i t e f a c i l e (13-16,19,20). I n a d d i t i o n , w e h a v e f o u n d t h e react i o n of R u ( C O ) i w i t h base i n aqueous a l c o h o l i c s o l u t i o n t o o c c u r at l o w e r t e m p e r a t u r e a n d m o r e r a p i d l y t h a n t h e shift r e a c t i o n catalysis. T h u s i t appears that C O a c t i v a t i o n is n o t rate l i m i t i n g b u t another step, p e r h a p s t h e r e d u c t i v e e l i m i n a t i o n of h y d r o g e n , i s . 4
1 3
2
4
1 3
2
3
4
1 2
2
3
2
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
4
4
86
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
Scheme 2 C O + O H " (or H 0 ) -> H C 0 " (or H C O O H ) 2
H C 0 ~ (or H C O O H ) + 2
(5)
2
catalyst H 0 -> H 2
2
+ C0
2
+
O H " (or H 0 )
(6)
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
A n o t h e r p o s s i b l e m e c h a n i s m f o r t h e shift r e a c t i o n w o u l d b e i n v o l v i n g f o r m a t e or f o r m i c a c i d as a n i n t e r m e d i a t e ( S c h e m e 2 ) .
one The
f a c i l e r e a c t i o n of C O w i t h s t r o n g base a n d the r e s u l t i n g presence of formate i n the reaction solution initially prepared w i t h K O H make c o m p e l l i n g the c o n s i d e r a t i o n of this m e c h a n i s m . O t h e r p l a t i n u m m e t a l catalysts h a v e b e e n r e p o r t e d f o r R e a c t i o n 6 ( 2 1 ) .
H o w e v e r , w e a n d others
h a v e d e m o n s t r a t e d catalysis of the shift r e a c t i o n i n a c i d i c s o l u t i o n ( v i d e i n f r a ) . I n a d d i t i o n , w e h a v e f o u n d that a d d i n g s i g n i f i c a n t c o n c e n t r a t i o n s of s o d i u m f o r m a t e to a n a c t i v e r u t h e n i u m catalyst s o l u t i o n h a d l i t t l e effect o n the rate of H
2
a n d C O o p r o d u c t i o n . T h e s e observations
against the i m p o r t a n c e of S c h e m e 2 f o r this system. ( 7 ) that H C O o " is r a p i d l y d e c o m p o s e d to H
2
argue
( O u r earlier r e p o r t
p l u s C O o b y the r u t h e n i u m
catalyst i n a l k a l i n e s o l u t i o n is a p p a r e n t l y i n c o r r e c t .
I n that s t u d y , f o r -
m a t e w a s a d d e d as f o r m i c a c i d i n q u a n t i t i e s sufficient to a c i d i f y t h e s o l u t i o n to g i v e c o n d i t i o n s u n d e r w h i c h the system does
decompose
f o r m a t e . W e are e v a l u a t i n g the r e a c t i o n i n a c i d s o l u t i o n f u r t h e r . ) Other Catalysts
in Alkaline
Alcoholic
Solution
W e also h a v e s t u d i e d other m e t a l c a r b o n y l c o m p l e x e s i n a l k a l i n e e t h o x y e t h a n o l to s u r v e y the
g e n e r a l i t y of the s h i f t - r e a c t i o n
catalysis.
U n d e r c o n d i t i o n s (0.9 a t m C O , 1 0 0 ° C ) c o m p a r a b l e w i t h those u s e d f o r the r u t h e n i u m catalyst d e s c r i b e d a b o v e , i r o n , r h o d i u m , o s m i u m , a n d i r i d i u m c a r b o n y l s a l l p r o v e d a c t i v e b u t r h e n i u m c a r b o n y l d i d not. systems
starting w i t h the
activities (see
Initial
For
normalized catalytic
Activities of Various Catalysts for Water—Gas Shift Reaction Complex
A l k a l i n e solutions (low p r e s s u r e ) H FeRu (CO) Ir (CO)i2 H Ru (CO) 2
3
1 3
4
4
the
T a b l e I; n o r m a l i z e d a c t i v i t y is b a s e d o n the n u m b e r of
Table I.
A.
listed complexes,
4
1 2
Initial
the
Solution
Activity
c c c d e
10.3 5.3 2.5 3.3 2.5
0
6
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
FORD E T A L .
Water
Table I . Initial Ru (CO)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
3
87
Gas Shift Reaction Continued
Complex
Initial
Solution
1 2
Fe(CO) Rh (CO) Ru C(CO) H Re (CO)i2 Re (CO) Ru (CO) /Fe(CO) 5
6
1 6
G
3
B.
1 7
3
2
1 0
3
1 2
5
A l k a l i n e solutions (high pressure) Rh (CO)i Ru (CO) Ru (CO) /Fe (CO) Fe,(CO)i* Ir (CO)i2 Os (CO) (Ir(CO) Cl) Re (CO)i 0
0
3
1 2
3
1 2
3
1 2
i
4
3
1 2
3
2
2
C.
0
A c i d i c solutions (low p r e s s u r e ) Ru (CO) H Ru (CO)io 3
4
c d e / d c c c c h
2.3 2.6 ^ I 3 2 ~1 3.4' 1.5 -0.15 I r ( C O ) i 2
(CO)
-
1 2
Ru (CO) 3
H Re (CO)i 3
3
2
>
1 2
-
Fe(CO)
Re (CO)i . 2
3
3
> Rh (CO)
5
G
4
>
1 G
2
>
Ru C(CO) 6
H Ru 4
4
>>
1 7
A s o m e w h a t different o r d e r w a s seen f o r
0
the catalysts s t u d i e d u n d e r c o n d i t i o n s w h e r e C O pressure a n d t e m p e r a t u r e w e r e m u c h h i g h e r a n d m e t h a n o l w a s the p r i n c i p a l solvent ( T a b l e
I).
H o w e v e r , i t s h o u l d be n o t e d that the latter d a t a are l a r g e l y f r o m s i n g l e Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
d a y runs i n p r e s s u r i z e d b o m b s i n contrast to the c o n t i n u o u s l y m o n i t o r e d , p e r i o d i c a l l y flushed runs i n the l o w pressure glass vessels.
It is p a r t i c u -
l a r l y n o t a b l e that u n d e r the h i g h e r pressure a n d t e m p e r a t u r e
conditions
the catalyst solutions b a s e d o n R u ( C O ) i
are
3
2
and R h ( C O ) G
1 G
quite
a c t i v e f o r the h y d r o f o r m y l a t i o n a n d h y d r o h y d r o x y m e t h y l a t i o n , respect i v e l y , of olefins b y C O p l u s H 0
(22).
2
A p a r t i c u l a r l y i n t e r s t i n g o b s e r v a t i o n is the h i g h a c t i v i t y seen f o r H FeRu (CO)i . 2
3
Since this is c o n s i d e r a b l y h i g h e r t h a n that seen f o r
3
either r u t h e n i u m c a r b o n y l or i r o n c a r b o n y l alone, these metals a p p a r e n t l y act i n a synergistic m a n n e r .
S i m i l a r enhancements
of a c t i v i t y are n o t e d
w h e n the i r o n a n d r u t h e n i u m are a d d e d together i n the f o r m s F e ( C O ) a n d R u ( C O ) i respectively ( T a b l e I ) . 3
m a l i z e d ) w a s o b s e r v e d w h e n the F e ( C O ) : R u ( C O ) i 5
( a F e : R u ratio of 2 : 3 ) .
The
J
5
O p t i m a l catalytic activity (nor-
2
3
2
r a t i o is a b o u t 2 : 1
H N M R a n d I R spectra of these i r o n /
r u t h e n i u m r e a c t i o n solutions i n d i c a t e d the presence of a n u m b e r of species.
A m o n g these, F e ( C O )
5
and H R u ( C O ) i 3
4
2
could be identified.
_
N e u t r a l i z a t i o n of the r e a c t i o n s o l u t i o n w i t h s u l f u r i c a c i d f o l l o w e d b y s i l i c a g e l c h r o m a t o g r a p h y l e d to the i d e n t i f i c a t i o n of H R u ( C O ) i 4
H FeRu (CO)i 2
3
4
2
and
as the m a j o r cluster species as w e l l as m i n o r amounts of
3
the t r i a n g u l a r c a r b o n y l s R u ( C O ) 3
possibly F e ( C O ) 3
1 2
i 2
, R u F e ( C O ) i , R u F e ( C O ) i , and 2
2
2
2
.
O u r observations a n d those of others h a v e l e d us to v i e w these s o l u tions i n the f o l l o w i n g m a n n e r .
F i r s t , it appears that u n d e r the r e a c t i o n
c o n d i t i o n s ( a l k a l i n e s o l u t i o n at 1 0 0 ° C u n d e r a n atmosphere both H
2
containing
a n d C O ) i n t e r c o n v e r s i o n b e t w e e n the cluster species is r e l a -
t i v e l y f a c i l e . T h u s , w i t h i n h o u r s or p e r h a p s less, a s o l u t i o n p r e p a r e d b y mixing F e ( C O )
5
and R u ( C O ) i 3
2
i n a 1:1 m o l a r r a t i o m a y n o t b e d i s -
t i n g u i s h a b l e f r o m one p r e p a r e d f r o m H F e R u ( C O ) i . C l u s t e r species, 2
3
3
s p e c i f i c a l l y h y d r i d o c a r b o n y l anions, are the p r o m i n e n t reservoirs of t h e metals i n the s o l u t i o n , b u t o u r m e c h a n i s t i c studies are too u n d e v e l o p e d to e s t a b l i s h w h e t h e r the clusters are the p r o b a b l e catalysts. w e f o l l o w the course of the e a r l i e r m e c h a n i s t i c
H o w e v e r , if
speculation based
on
S c h e m e 1, t h e n H F e R u ( C O ) i a n d H F e R u ( C O ) i or t h e i r d e p r o t o 4
3
2
2
3
3
n a t e d analogs m a y b e M H a n d M - C O r e s p e c t i v e l y i n the m i x e d m e t a l 2
catalysts.
K a e s z (23)
has r e p o r t e d the synthesis of H F e R u ( C O ) i , b u t 4
3
2
this species is r e l a t i v e l y u n s t a b l e i n s o l u t i o n , d e c o m p o s i n g to g i v e the
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
FORD E T A L .
more
Water
Gas Shift
stable H F e R u ( C O ) i 2
3
a m o n g other
3
89
Reaction species.
This
observation
t e m p t s one t o suggest that t h e s y n e r g i s t i c effect of t h e t w o m e t a l catalysts m i g h t b e a t t r i b u t e d t o t h e i n s t a b i l i t y of t h e p r o p o s e d M H
intermediate
2
toward reductive elimination (Reaction 7) ( 8 ) .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
MH Catalysis in Acidic
2
-» M + H
(7)
2
Solution
O u r i n i t i a l forays i n t o the s h i f t - r e a c t i o n catalysis
(7) focussed o n
a l k a l i n e c o n d i t i o n s o w i n g t o t h e p r e j u d i c e t h a t i n i t i a l a c t i v a t i o n of coord i n a t e d C O w o u l d b e p a r t i c u l a r l y f a c i l e v i a h y d r o x i d e attack o n C O ( R e a c t i o n 8 ) . H o w e v e r , w a t e r itself m a y b e a c t i v e ( R e a c t i o n 9 ) .
To
M - C O + O H "*± M - C 0 H "
(8)
M - C O + H 0 *± H M - C 0 H
(9)
2
2
2
e v a l u a t e this p o s s i b i l i t y , w e also h a v e s t u d i e d t h e r u t h e n i u m clusters i n acidic solution. N o t a b l y Eisenberg r e a c t i o n catalyst
based
has r e c e n t l y r e p o r t e d a shift-
(18)
o n the R h ( I ) complex
(Rh(CO) Cl) 2
2
i n an
a q u e o u s a c e t i c a c i d / H C l / N a l m e d i u m , c o n f i r m i n g t h e v i a b i l i t y of s u c h an approach. W h e n t h e r e a c t i o n w a s r u n u s i n g 0.1N H S 0
i n aqueous
ethoxy-
as t h e i n i t i a l m e t a l l i c
species,
2
e t h a n o l as t h e solvent a n d H R u ( C O ) i 4
4
2
4
the a c t i v i t y first seen w a s a f a c t o r of six h i g h e r t h a n that f o u n d i n t h e alkaline solution (Table I ) .
H o w e v e r , after several days t h e a c t i v i t y
d e c r e a s e d m a r k e d l y , o w i n g t o t h e s u b l i m a t i o n of t h e r u t h e n i u m f r o m t h e s o l u t i o n i n t o t h e cooler n e c k of the all-glass r e a c t i o n vessel. T h e orange s o l i d c o l l e c t i n g at this l o c a t i o n w a s i d e n t i f i e d as R u ( C O ) i 3
s p e c t r u m b u t m a y h a v e c o n t a i n e d traces of H R u ( C O ) 2
4
tempts w e r e m a d e t o effect t h e catalysis w i t h R u ( C O ) i 3
1 3
2
2
b y its I R
. W h e n atitself i n t h e
same a c i d i c m e d i u m , l i t t l e r e a c t i o n w a s seen o w i n g t o t h e r e l a t i v e l y r a p i d s u b l i m a t i o n of this m a t e r i a l f r o m t h e s o l u t i o n . S i m i l a r l y t h e c a r b i d e cluster R u C ( C O ) i 7 d i s p l a y e d i n i t i a l a c t i v i t y m u c h h i g h e r i n a c i d i c t h a n 6
i n a l k a l i n e s o l u t i o n b u t a g a i n w a s u n s t a b l e t o w a r d s u b l i m a t i o n of R u 3
(CO)
1 2
.
D e s p i t e t h e i n s t a b i l i t y of these r u t h e n i u m c a r b o n y l solutions i n a c i d , the h i g h i n i t i a l a c t i v i t y e n c o u r a g e d t h e search f o r other solvents i n w h i c h Ru (CO)i 3
2
m a y prove more soluble.
D i g l y m e meets this c r i t e r i o n , a n d
preliminary data indicate that H R u ( C O ) 4
4
i 2
in I N H S 0 2
4
aqueous d i -
g l y m e is r o u g h l y one o r d e r of m a g n i t u d e m o r e active as a s h i f t - r e a c t i o n catalyst t h a n i n a l k a l i n e e t h o x y e t h a n o l ( T a b l e I ) .
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
90
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
II
V a r i o u s r a t i o n a l e c a n b e offered f o r t h e e n h a n c e d c a t a l y t i c a c t i v i t y i n a c i d . T h e k e y steps i n S c h e m e 1 are l i k e l y t o b e t h e a c t i v a t i o n of C O b y n u c l e o p h i l i c attack o n M - C O a n d t h e r e d u c t i v e e l i m i n a t i o n o f H from M H . 2
species
I f M - C O is either H R u ( C O ) i " o r H R u ( C O ) 4
3
2
4
1 3
2
, t h e latter
( w h i c h is f a v o r e d b y l o w e r i n g t h e p H ) s h o u l d b e t h e m o r e
s u s c e p t i b l e one t o n u c l e o p h i l i c attack.
I n a c i d i c s o l u t i o n t h e m o r e reac-
t i v e n u c l e o p h i l e O H " is at a n i n c o n s e q u e n t i a l c o n c e n t r a t i o n , b u t i t is Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
w o r t h w h i l e t o r e m e m b e r t h a t t h e c o n c e n t r a t i o n of H experiments)
2
0 ( 6 M i n these
is a l w a y s m u c h l a r g e r t h a n ( O H " ) regardless of t h e p H .
W i t h r e g a r d t o t h e r e d u c t i v e e l i m i n a t i o n of h y d r o g e n ( R e a c t i o n 7 ) , i t is e n t i r e l y p o s s i b l e that a n e u t r a l species (e.g., H R u ( C O ) i ) c a n b e m o r e 4
4
2
r e a c t i v e t h a n its d e p r o t o n a t e d a n a l o g (e.g., H R u ( C O ) i " ) . T h e s e are 3
4
2
m e c h a n i s t i c aspects of these systems i n n e e d o f greater e x p l o r a t i o n a n d under study i n our laboratory.
Catalysis in Amine
Solution
T h e r e is c o n s i d e r a b l e p r e c e d e n t f o r the reactions of o r g a n i c amines w i t h metal carbonyls, i n particular w i t h iron carbonyls. a m i n e s react d i r e c t l y w i t h F e ( C O ) h y d r o g e n (6,19),
5
N o t only do
to f o r m various products i n c l u d i n g
b u t they are c o m p o n e n t s of t h e i r o n c a r b o n y l c o n t a i n i n g
catalysts f o r t h e h y d r o f o r m y l a t i o n of olefins w i t h C O a n d H
2
0
(5,6,24).
T h u s , catalysis of t h e shift r e a c t i o n u n d e r analogous c o n d i t i o n s is n o t u n e x p e c t e d , e s p e c i a l l y i n t h e context of t h e a c t i v i t y d i s p l a y e d b y t h e m e t a l c a r b o n y l s i n a l k a l i n e solutions ( a b o v e , et a l . (25),
Indeed, Imyanitov
(7)).
i n a study of the hydrogenation a n d hydrocarboxylation of
dienes w i t h C O a n d H
2
0 catalyzed b y C o ( C O ) 2
8
and by R h ( C O ) i 6
6
plus organic amines, noted the formation of h y d r o g e n a n d C 0 . I n t h e 2
absence of olefins, R h ( C O ) i 6
6
plus pyridine apparently catalyzed the
s h i f t r e a c t i o n u n d e r h i g h pressure ( 2 5 0 a t m o f C O ) a n d e l e v a t e d t e m p e r a t u r e ( 2 1 0 ° C ) ; h o w e v e r , r e d u c t i o n of t h e p y r i d i n e t o p i p e r i d i n e is a serious side r e a c t i o n . V a r i o u s a m i n e s i n c l u d i n g p y r i d i n e also h a v e b e e n r e p o r t e d as c o m p o n e n t s i n t h e p u r p o r t e d h o m o g e n e o u s catalysis of t h e s h i f t r e a c t i o n b y systems c o n t a i n i n g g r o u p V I I I m e t a l salts ( 2 6 ) , a n d v e r y r e c e n t l y there has b e e n a r e p o r t (27)
of b o t h t h e h y d r o f o r m y l a t i o n o f
olefins a n d t h e w a t e r gas shift r e a c t i o n c a t a l y z e d b y s e v e r a l m e t a l carb o n y l s p l u s t r i m e t h y l a m i n e i n p r e s s u r i z e d autoclaves. O u r studies h a v e f o c u s s e d l a r g e l y o n t h e catalysis o f t h e s h i f t r e a c t i o n b y ruthenium carbonyl a n d b y the ruthenium carbonyl/iron carbonyl m i x t u r e s i n t h e presence of o r g a n i c a m i n e s u n d e r l o w pressures o f C O . R e p r e s e n t a t i v e studies are i n d i c a t e d i n T a b l e I I w h e r e i t is n o t a b l e t h a t r u t h e n i u m a l o n e is a c o n s i d e r a b l y b e t t e r catalyst t h a n is i r o n
alone.
A m o n g t h e r u t h e n i u m systems, p y r i d i n e solutions a r e s o m e w h a t
more
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
FORD E T A L .
Water Gas Shift
Table II.
Catalysis i n A m i n e Solutions ( L o w Pressure) °
Complex
Amine
H Ru (CO)i2 (0.04 m m o l ) H Ru (CO)i2 (0.02 m m o l ) Fe(CO) (0.16 m m o l ) H Ru (CO) :Fe(CO) (0.02 m m o l :0.08 m m o l )
Solvent
Activity * 1
4
4
pyridine
c
13
4
4
piperidine
d
8
piperidine
d
0.9
piperidine
d
5
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
91
Reaction
4
4
1 2
5
e
10'
Peo = 0.9 atm, T = 100°C, initial solutions contained 0.022 mol H 0 . Activity is number of moles of H2 produced per day per mole of the initial complex added ( H R u ( C O ) i plus F e ( C O ) ) . P y r i d i n e (3 m L ) . Piperidine (1.5 mL):ethoxyethanol (2.8 m L ) . * Low CO2 :H2 ratios. Normalized activity is 12 mol H2/day/g-atcm of metal added ( R u + Fe). a
2
b
4
4
2
5
e
d
1
a c t i v e t h a n p i p e r i d i n e solutions. H o w e v e r , t h e most a c t i v e systems a m o n g these are d e r i v e d f r o m i r o n / r u t h e n i u m m i x t u r e s , w h i c h a r e m u c h m o r e a c t i v e t h a n catalysts p r e p a r e d u n d e r s i m i l a r c o n d i t i o n s f r o m t h e i n d i v i d u a l metal carbonyls.
( I f t h e n o r m a l i z e d c a t a l y t i c activities are c o m -
p a r e d f o r p i p e r i d i n e solutions, t h e F e ( C O ) / H R u ( C O ) i system is a 5
4
f a c t o r of six m o r e a c t i v e t h a n t h a t of H R u ( C O ) i 4
m o r e a c t i v e t h a n that b a s e d o n F e ( C O )
5
4
4
2
2
a n d a f a c t o r of 13
alone).
T h e e n h a n c e d a c t i v i t y of t h e r u t h e n i u m a n d t h e r u t h e n i u m / i r o n catalysts i n t h e a m i n e solutions o v e r those i n a l k a l i base solutions m a y b e t h e result of several p e r t u r b a t i o n s . C e r t a i n l y , t h e solvent effects a l o n e c a n p l a y a role i n this case g i v e n that t h e a m i n e concentrations are suffic i e n t t o c h a n g e m a r k e d l y t h e p r o p e r t i e s of t h e m e d i u m . T h u s s o l v a t i o n effects o n a r a t e - d e t e r m i n i n g step o r k e y e q u i l i b r i u m i n a c y c l e s u c h as S c h e m e 1 w o u l d h a v e m a j o r consequences o n t h e c a t a l y t i c a c t i v i t y .
If
C O a c t i v a t i o n i n steps s u c h as R e a c t i o n s 8 o r 9 c a n b e affected i n s t e a d b y other n u c l e o p h i l e s ( f o r e x a m p l e , R e a c t i o n s 10, 11, 1 2 ) , t h e n t h e h i g h concentrations of t h e amines, h i g h e r e v e n t h a n [ H 0 ] u n d e r these c o n 2
d i t i o n s , p l u s t h e r e l a t i v e n u c l e o p h i l i c i t y of these species m a y accelerate t h e C O a c t i v a t i o n step.
M - C O + B «=> M - C — O B
+
M - C — O + H 0 *± H M - C — O 2
I B
+
(10)
I B
+
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(11)
92
INORGANIC COMPOUNDS W I T H UNUSUAL
HM-C — 0 + H B
2
0*± H M C 0 H + H 2
+
+ B
+
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
II
(12)
+
or « ± M H + B — C 0 " -> B + C 0
Concluding
PROPERTIES
a
2
Remarks
I n this c h a p t e r w e h a v e d e m o n s t r a t e d that m e t a l c a r b o n y l c o m p l e x e s c a n b e a c t i v e catalysts f o r t h e w a t e r - g a s shift r e a c t i o n u n d e r a v a r i e t y o f conditions.
F o r example, H R u ( C O ) i 4
4
2
f o r m s active catalysts i n either
a c i d i c o r b a s i c s o l u t i o n a n d f o r t h e latter t h e base c a n b e a n a l k a l i hydroxide or carbonate or a n organic amine.
S o m e differences
between
different m e t a l c a r b o n y l s are a p p a r e n t ; h o w e v e r , i n b a s i c s o l u t i o n t h e m o s t a c t i v e catalysts are those p r e p a r e d f r o m t h e m i x e d m e t a l F e / R u systems either b y s t a r t i n g w i t h t h e H F e R u ( C O ) 2
(or H R u ( C O ) i ) / F e ( C O ) 4
4
2
5
mixtures.
3
i 2
or w i t h R u ( C O ) i 3
2
A logical mechanism for the
catalysis w o u l d i n v o l v e t h e a c t i v a t i o n of C O b y n u c l e o p h i l i c attack o n the c o o r d i n a t e d c a r b o n m o n o x i d e f o l l o w e d b y h y d r o l y t i c steps l e a d i n g t o f o r m a t i o n of a m e t a l d i h y d r i d e .
A k e y a n d p e r h a p s r a t e - l i m i t i n g step
w o u l d b e t h e r e d u c t i v e e l i m i n a t i o n of d i h y d r o g e n f r o m this
species.
M e c h a n i s t i c studies c u r r e n t l y i n progress i n these laboratories are d i r e c t e d t o w a r d t h e e v a l u a t i o n of this a n d other p o s s i b l e c a t a l y t i c cycles a n d t o w a r d t h e o p t i m i z a t i o n of c a t a l y t i c a c t i v i t y .
Experimental
Procedures
C a t a l y s i s runs u n d e r l o w (0.9 a t m ) C O pressures w e r e c a r r i e d o u t i n glass reactors. T h e catalysis solutions w e r e p r e p a r e d b y d i s s o l v i n g t h e a p p r o p r i a t e components i n the solvent u n d e r a n i n e r t a t m o s p h e r e at a m b i e n t t e m p e r a t u r e . T h e r e s u l t i n g solutions i n t h e r e a c t i o n vessels w e r e t h e n degassed b y a f r e e z e / t h a w t e c h n i q u e a n d t h e d e s i r e d pressure of C O gas c o n t a i n i n g 6 % m e t h a n e as a n inert m a r k e r gas w a s i n t r o d u c e d to t h e b u l b at a m b i e n t t e m p e r a t u r e . T h e glass reactors w e r e t h e n s u s p e n d e d i n a n o i l b a t h a n d h e a t e d at a constant t e m p e r a t u r e . I n this c o n f i g u r a t i o n the r e a c t i o n s o l u t i o n w a s a g i t a t e d v i g o r o u s l y b y a m a g n e t i c s t i r r i n g b a r . T h e gas phase above t h e catalyst s o l u t i o n w a s s a m p l e d p e r i o d i c a l l y b y gas syringe, a n d t h e gas samples w e r e a n a l y z e d b y h i g h - r e s o l u t i o n gas c h r o m a t o g r a p h y o n a c a l i b r a t e d H e w l e t t P a c k a r d 5830A p r o g r a m m a b l e G C . Q u a n t i t i e s of C O c o n s u m e d a n d of C 0 a n d H p r o d u c e d w e r e d e t e r m i n e d b y c o m p a r i s o n w i t h t h e m a r k e r gas s i g n a l . T h e r e a c t i o n vessels w e r e p e r i o d i c a l l y r e c h a r g e d b y f r e e z e / t h a w degassing f o l l o w e d b y r e f i l l i n g w i t h t h e C O / m a r k e r gas m i x t u r e . S o m e runs u n d e r h i g h e r C O pressures w e r e c a r r i e d o u t i n P a r r stainless steel b o m b s e q u i p p e d w i t h T e f l o n liners. 2
2
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
8.
FORD E T A L .
Water
Gas Shift
Reaction
93
Acknowledgment T h i s w o r k was supported b y the D e p a r t m e n t of E n e r g y , D i v i s i o n of B a s i c E n e r g y Sciences.
H o w a r d W a l k e r a n d R a l p h G . Pearson
con-
t r i b u t e d s i g n i f i c a n t l y t o t h e d i s c u s s i o n a n d i n t e r p r e t a t i o n o f these results.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 29, 2013 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch008
Literature Cited 1. Farbsman, G. H., NASA-CR-134918, JA 76. 2. K. E . Cox, K. D. W. Williamson, Jr., Eds., "Hydrogen Production Technology," Vol. I, CRC Press, 1977. 3. Thomas, C. L., "Catalytic Processes and Proven Catalysts," p. 104, Academic, New York, 1970. 4. Aldridge, C. L., U.S. Patent 3,850,840 (1974). 5. Reppe, W., Vetter, H., Justus Liebigs Ann. Chem. (1953) 582, 133. 6. von Kutepow, N., Kindler, H., Angew. Chem. (1960) 72, 802. 7. Laine, R. M., Rinker, R.G.,Ford, P.C.,J.Am. Chem. Soc. (1977) 99, 252. 8. Eady, C. R., Johnson, B. F. G., Lewis, J., J. Chem.Soc.,Dalton Trans. (1977) 838. 9. Koepke, J. W., Johnson, J. R., Knox, S. A. R., Kaesz, H. D.,J.Am. Chem. Soc. (1975)97,3947. 10. "Encyclopedia of Chemical Technology," 2nd ed., Vol. 10, p. 101, Wiley, New York, 1972. 11. Iwata, M., Nagaoka Kogyo Tanki Daigaku Koto Semmon Gakko Kenkyu Kiyo (1968) 4, 307; Chem. Abstr. (1969) 70, 76989. 12. Walker, H., unpublished results. 13. Meutteries, E. L., Inorg. Chem. (1965) 4, 1841. 14. Darensbourg, D. J., Froelich, J. A., J. Am. Chem. Soc. (1977) 99, 5940. 15. Deeming, A. J., Shaw, B. L., J. Chem. Soc. A (1969) 443. 16. Clark, H. C., Dixon, K. R., Jacobs, W. J., J. Am. Chem. Soc. (1969) 91, 1346. 17. Mays, M. J., Simpson, R. N. F., Stefanini, F. P., J. Chem. Soc. A (1970) 300. 18. Cheng, C. H., Hendriksen, D. E., Eisenberg, R., J. Am. Chem. Soc. (1977) 99, 2791. 19. Edgell, W. F., Yang, M. T., Bulkin, B. J., Bayer, R., Korzumi, N.,J.Am. Chem. Soc. (1965)87,3080. 20. Casey, C. P., Neumann, S. M., J. Am. Chem. Soc. (1976) 98, 5395. 21. Coffey, R. S.,J.Chem.Soc.,Chem. Commun. (1967) 923. 22. Laine, R. M., unpublished data. 23. Knox, S. A. R., Koepke, J.W., Andrews, M. A., Kaesz, H. D.,J.Am. Chem. Soc. (1975)97,3942. 24. Hieber, W., Vetter, H., Z. Anorg. Allg. Chem. (1933) 212, 145. 25. Imyanitov, N. S., Kuvaev, B. E . , Rudkovskii, D. M., Zh. Prikl. Khim. (Leningrad) (1967) 40, 2821. 26. Fenton, D. M., U.S. Patents 3,490,872 and 3,539,298 (1970). 27. Kang, H., Mauldin, C. H., Cole, T., Slegeir, W., Cann, K., Pettit, R., J. Am. Chem. Soc. (1977) 99, 8323. RECEIVED February 22, 1978.
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.