30 Templates in Zeolite Crystallization LOUIS D.
ROLLMANN
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
Central Research Division, M o b i l Research a n d Development C o r p . , P . O . Box 1025, Princeton, N J 08540
Crystallization
of zeolites is often a
nucleation-controlled
process occurring from molecularly inhomogeneous,
aque
ous gels. The product is strongly dependent on the cation distribution in these mixtures. A methodology is developed for interpreting crystallization data and for identifying tem plate effects by added quaternary ammonium cations. These techniques are then examined, by way of example, with a series of quaternary ammonium polymers. such polymers can force crystallization
It is shown that
of large-pore zeo
lites (where small-pore structures would otherwise result), and that they can preserve the integrity of a pore system during crystallization of fault-prone zeolite structures.
^ f e o l i t e s are t h r e e - d i m e n s i o n a l , c r y s t a l l i n e n e t w o r k s o f A 1 0 a n d S i 0
4
tetrahedra, a u n i t negative charge b e i n g associated w i t h e a c h A 1 0
4
4
tetrahedron
i n the framework.
intracrystalline
cation—such
a m m o n i u m i o n — s o that
B a l a n c i n g that
charge
as s o d i u m , p o t a s s i u m ,
t h e resultant
zeolite phase
must be
or a
some
quaternary
has a n i d e a l i z e d
formula: M 0 • A1 0 2
2
3
• zSi0
2
• yH 0 2
w h e r e i n M represents a c a t i o n ( m o n o - v a l e n t i n this e x a m p l e ) .
Synthesis
of a z e o l i t e structure is c o m m o n l y effected b y h e a t i n g a n a l k a l i n e , a l u m i n o silicate " g e l , " a n d t h e structure o b t a i n e d is s t r o n g l y d e p e n d e n t o n t h e cation distribution. M o r e t h a n 130 n a t u r a l a n d synthetic zeolites are a l r e a d y d e s c r i b e d i n t h e literature ( I ) , a n d several r e v i e w s h a v e d e t a i l e d t h e r a p i d progress that
has b e e n
made
i n synthesis
efforts
(2-7).
A correlation
0-8412-0429-2/79/33-173-387$05.00/0 © 1979 American Chemical Society In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
exists
388
INORGANIC
Table I.
COMPOUNDS
UNUSUAL
PROPERTIES
II
Comparison of Hydrocarbon and Zeolite Pore Dimensions
Pore
Diameter
Examples
12-Ring 10-Ring 8-Ring 6-Ring
6-8 5-7 4-6 2-3
M o r d e n i t e , Y , gmelinite Ferrierite, dachiardite Erionite, A S o d a l i t e , sodalite cages i n A a n d i n Y
A A A A
Hydrocarbon
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
WITH
Minimum
n-Hexane Cyclohexane Benzene
Dimensions
3.5 X 4.2 A 4.8 X 6.4 A 2.2 X 5.6 A
b e t w e e n the s m a l l e r cations, s o d i u m , p o t a s s i u m , a n d p o s s i b l y t e t r a m e t h y l a m m o n i u m ( T M A ) , a n d t h e p o l y h e d r a l b u i l d i n g units of several z e o l i t e structures ( 5 ) , s u g g e s t i n g that these cations t e m p l a t e o r d i r e c t c r y s t a l l i z a t i o n of specific zeolite phases.
I n g e n e r a l h o w e v e r , t h e r o l e of o r g a n i c
cations i n d i r e c t i n g c r y s t a l l i z a t i o n is a t o p i c o p e n to debate ( 5 ) . O n c e f o r m e d , m a n y z e o l i t e f r a m e w o r k s possess a p o r e system access i b l e to h y d r o c a r b o n s a n d a large, i n t e r n a l surface area w h i c h is p o t e n t i a l l y the locus of c a t a l y t i c a c t i v i t y . A l t e r n a t i v e l y , t h e a c c e s s i b i l i t y o f a z e o l i t e p o r e system to h y d r o c a r b o n s of d i f f e r i n g size c a n b e a p r o b e of t h e d i m e n s i o n s of those pores. a r i n g of S i 0
4
E a c h c h a n n e l i n a zeolite is d e f i n e d b y
a n d A 1 0 tetrahedra, a n d i t is u s e f u l to g r o u p zeolites 4
a c c o r d i n g to t h e n u m b e r of t e t r a h e d r a w h i c h constitute that r i n g , f o r e x a m p l e , 6-, 8-, 10- o r 1 2 - r i n g zeolites. the most c o m m o n catalyst c o m p o n e n t s ,
T h e last three groups c o m p r i s e a n d t h e diameters of v a r i o u s
examples of e a c h p o r e size are c o m p a r e d w i t h m i n i m u m d i m e n s i o n s of several C h y d r o c a r b o n s i n T a b l e I. 6
I n the f o l l o w i n g pages, t h e p o t e n t i a l effects of o r g a n i c cations i n d i r e c t i n g c r y s t a l l i z a t i o n of specific zeolite structures a n d t e c h n i q u e s f o r identifying such directing functions w i l l be reviewed briefly. T h e n , b y way
of e x a m p l e , t h e i n f l u e n c e of selected c a t i o n i c p o l y m e r s o n z e o l i t e
crystallization w i l l be described. Template
Effects
I n g e n e r a l , a d d i t i o n of a q u a t e r n a r y a m m o n i u m c a t i o n to a r e a c t i o n m i x t u r e c a n effect changes of three t y p e s : ( a ) a different z e o l i t e structure is o b t a i n e d ; ( b ) a z e o l i t e crystallizes w h e r e t h e r e a c t i o n m i x t u r e w o u l d o t h e r w i s e r e m a i n a m o r p h o u s i n d e f i n i t e l y ; ( c ) the same zeolite is o b t a i n e d as w i t h o u t q u a t e r n a r y , b u t i t possesses a n a l t e r e d c h e m i c a l c o m p o s i t i o n . U n l e s s c r y s t a l l i z a t i o n w a s m a r k e d l y accelerated, o n l y ( a ) a n d ( b ) w o u l d represent " t e m p l a t e effects" a t t r i b u t a b l e to t h e q u a t e r n a r y c a t i o n , a n d ( a ) is b y f a r the m o r e c o m m o n of t h e t w o effects.
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
30.
ROLLMANN
Templates
in Zeolite
389
Crystallization
I d e n t i f i c a t i o n of s u c h effects is m a d e d i f f i c u l t , h o w e v e r , b y the c o m p l e x i t y of a c r y s t a l l i z a t i o n e x p e r i m e n t .
C r y s t a l l i z a t i o n t y p i c a l l y occurs
f r o m a m o l e c u l a r l y i n h o m o g e n e o u s , aqueous g e l , p r e p a r e d b y c o m b i n a t i o n of a s i l i c a a n d a n a l u m i n a source together w i t h v a r y i n g amounts
of
h y d r o x i d e i o n . Since the p r o d u c t o b t a i n e d is o f t e n n u c l e a t i o n - c o n t r o l l e d , v a r i a b l e s i n a n e x p e r i m e n t c a n i n c l u d e not o n l y the s i l i c a source ( g e l , sol, s o d i u m silicate) a n d the a l u m i n a source ( s o d i u m a l u m i n a t e , a l u m i n u m s u l f a t e ) b u t also the d e t a i l e d m i x i n g a n d c r y s t a l l i z i n g p r o c e d u r e s
(tem-
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
peratures, a g i n g , s t i r r i n g rate, e t c . ) . A
c r y s t a l l i z a t i o n e x p e r i m e n t is best d e s c r i b e d b y m o l e ratios
r e a c t i o n m i x t u r e c o m p o n e n t s , as l i s t e d i n T a b l e I I .
of
S o d i u m silicate, f o r
e x a m p l e , is treated as a m i x t u r e of N a O H a n d S i 0 , s o d i u m a l u m i n a t e 2
as N a O H a n d A 1 0 , a n d a l u m i n u m sulfate as A 1 0 2
3
2
r e c o g n i z e d i n the c a l c u l a t i o n that A 1 0 2
3
and H S 0 . 2
4
It is
is i n c o r p o r a t e d i n t o a z e o l i t e
3
f r a m e w o r k as A 1 0 ~ , i.e., e a c h m o l e consumes t w o moles of h y d r o x i d e : 2
A1 0 2
3
+ 2 0 H " -> 2 A 1 0 - +
H 0.
2
2
M o s t s i m p l y , the ratios i n T a b l e I I Si0 :Al 0 2
2
can be d i v i d e d b y function.
ratio defines a constraint o n the o v e r a l l f r a m e w o r k c o m p o -
3
s i t i o n of the p r o d u c t . Since m a n y z e o l i t e structures c a n be s y n t h e s i z e d i n o n l y a l i m i t e d range of c o m p o s i t i o n , S i 0 : A l 0 ratio c a n also restrict 2
2
3
the n u m b e r of z e o l i t e phases p o s s i b l e f r o m a g i v e n r e a c t i o n m i x t u r e . (The
actual number w i l l
be,
c o n t i n u e to be d i s c o v e r e d . )
of course,
u n k n o w n since n e w
phases
I n most cases (the w e l l - k n o w n L i n d e z e o l i t e
4 A b e i n g a n e x c e p t i o n ) , the S i 0 : A l 0 ratio of a p r o d u c t zeolite w i l l b e 2
2
3
l o w e r t h a n that of the r e a c t i o n m i x t u r e , zeolites f r e q u e n t l y i n c o r p o r a t i n g a l l of the a l u m i n u m i n a m i x t u r e a n d l e a v i n g v a r y i n g a m o u n t s of silicate i n s o l u t i o n . I n the examples b e l o w , S i 0 : A l 0 2
2
3
ratios of the
reaction
m i x t u r e s are i n the r a n g e 10-100. F o r m a t i o n of a n o r d e r e d a l u m i n o s i l i c a t e f r a m e w o r k r e q u i r e s h y d r o l ysis a n d r e a r r a n g e m e n t of S i - O - S i ( a n d S i - O - A l ) b o n d s , the rate of that f o r m a t i o n b e i n g d e p e n d e n t o n h y d r o x i d e c o n c e n t r a t i o n (19). r e l a t e d values of H 0 : S i 0 2
Table II.
2
and O H " : S i 0
2
2
H|0:Si0 OH:Si0 +
4
molecular
Influence F r a m e w o r k composition
3
Viscosity , . molec. w t .
2
S l h c a
2
cj.p. RN-SiO K J N .HiUs
A T
define b o t h the
Reaction Mixture Composition
Mole Ratio Si0 : A1 0
2
T h e inter-
t e
| Hydroxide concentration )
Cation distribution Templating ) F r a m e w o r k A l content
)
{20,21)
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
390
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
w e i g h t d i s t r i b u t i o n of the silicate species i n a r e a c t i o n m i x t u r e a n d the rate of c h a n g e
of that d i s t r i b u t i o n . A s the O H " : S i 0
m o r e silicate r e m a i n s i n s o l u t i o n a n d l o w e r S i 0 : A l 0 2
T h u s the ratios H 0 : S i 0 2
2
2
3
ratio
increases,
p r o d u c t s result.
a n d O H " : S i 0 exert a second, i m p o r t a n t i n f l u -
2
2
ence o n the course of a c r y s t a l l i z a t i o n a n d o n the p r o d u c t o b t a i n e d . At
h i g h h y d r o x i d e levels, m o r e
dense,
more
thermodynamically
stable phases result, either as a result of the f a c i l e r e d i s t r i b u t i o n p o s s i b l e w i t h l o w m o l e c u l a r w e i g h t silicate species or as a result of
product
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
dissolution and recrystallization. F o r example, zeolite A ( a n eight-ring structure
capable
of s o r b i n g n o r m a l paraffins)
converts
to z e o l i t e
P
( t h e r m a l l y unstable, s o r b i n g o n l y molecules smaller t h a n H 0 ) i n d i l u t e 2
s o d i u m h y d r o x i d e a n d , i n m o r e c o n c e n t r a t e d s o l u t i o n , to the dense, sixr i n g sodalite structure ( I ) . Si0
2
I n the examples b e l o w , H 0 : S i 0 2
2
and O H ' :
h a v e values i n the ranges 10-50 a n d 0.1-2.0, r e s p e c t i v e l y . If t e m p l a t i n g is i m p o r t a n t , k e y ratios w i l l define the c a t i o n d i s t r i b u -
t i o n , N a : S i O o , K : S i 0 , R N : S i 0 , a n d so f o r t h , ratios w h i c h c a n r a n g e +
+
2
+
4
2
( i n d i v i d u a l l y ) f r o m zero to m o r e t h a n t w o . I n T a b l e I I I , examples
are
selected f r o m the literature to illustrate c a t i o n effects i n c r y s t a l l i z a t i o n experiments.
T h e Na-series examples s h o w a shift i n p r o d u c t f r o m Y to
m a z z i t e - r e l a t e d structures
(ZSM-4, Omega)
o n a d d i t i o n of o n l y s m a l l
a m o u n t s of T M A i o n . W h e n p o t a s s i u m replaces s o d i u m , the L results b u t l i m i t e d a d d i t i o n of T M A p r o d u c e s yet another
structure structural
t y p e , the offretite-type zeolites. Experiments effects, b u t they
s u c h as those w i t h T M A s t r o n g l y suggest are not of themselves
crystallization products species to nucleate
conclusive.
template
A s noted
earlier,
are o f t e n d e t e r m i n e d b y n u c l e a t i o n , the
b e i n g the
normally inhomogeneous,
product
(12).
Reaction
a n i n h o m o g e n i t y w h i c h c o u l d be
b y a d d e d q u a t e r n a r y a m m o n i u m cations.
first
mixtures
are
influenced
A d d i t i o n a l e v i d e n c e f o r tern-
p l a t i n g b y T M A i n these examples is p r o v i d e d b y e l e m e n t a l analysis. T h e offretite structure is k n o w n ( 1 3 ) .
O f f r e t i t e has a t w o - d i m e n -
s i o n a l p o r e system, large 1 2 - r i n g channels i n t e r c o n n e c t e d b y a n e i g h t - r i n g network.
It is i n the d e t a i l e d structure that e v i d e n c e
for templating
Table III. Product Dependence on Cation Distribution S i 0 : A l 0 = 16-20, H 0 : S i 0 = 14-25 1 0 0 ° C , Static 2
Zeolite Y ZSM-4 Omega L TMA-0 TMA-OfTretite
2
3
2
OH~:Si0
2
0.8 0.8 0.7 0.8 0.9 1.1
2
Na :Si0
TMA :Si0
K :Si0
0.8 0.8 0.6 0 0 0.4
0 0.04 0.14 0 0.09 0.10
0 0 0 0.8 0.8 0.7
+
2
+
2
+
2
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Ref. 1 9, 10 1 1 1 11
30.
ROLLMANN
Templates
s h o u l d be sought.
in Zeolite
391
Crystallization
A u n i t c e l l of offretite contains t w o a l u m i n o s i l i c a t e
cages, a n 1 1 - h e d r o n ( c a l l e d a n e- or c a n c r i n i t e c a g e ) accessible o n l y v i a six r i n g s a n d a 1 4 - h e d r o n r e s t r i c t e d b y eight r i n g s ( a y - o r g m e l i n i t e c a g e ) . W h e n s y n t h e s i z e d , T M A - O a n d T M A - o f f r e t i t e c o n t a i n one T M A p e r u n i t c e l l that cannot b e e x c h a n g e d a n d t h a t is l o c a t e d i n e a c h of t h e g m e l i n i t e cages ( 1 , 1 3 ) . T h u s the T M A m u s t h a v e b e e n i n s i d e t h e c a g e w h e n it was f o r m e d .
( I t is i n t e r e s t i n g t h a t these T M A samples also
c o n t a i n one n o n - e x c h a n g e a b l e p o t a s s i u m i o n p e r u n i t c e l l , l o c a t e d i n s i d e Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
the c a n c r i n i t e c a g e . ) O m e g a a n d m a z z i t e are p r o b a b l y i s o s t r u c t u r a l (14).
Omega then
w o u l d be a l a r g e - p o r e , 1 2 - r i n g zeolite c o n s t r u c t e d of the same 1 4 - h e d r o n or g m e l i n i t e cages f o u n d i n the offretite structure b u t w i t h t w o cages p e r u n i t c e l l . W h e n s y n t h e s i z e d , o m e g a t y p i c a l l y contains 1.6 T M A ions p e r u n i t c e l l , almost one p e r g m e l i n i t e cage examples f r o m T a b l e I I I
(J).
Thus both structural
s h o w that T M A w a s i n c o r p o r a t e d i n t o
the
z e o l i t e f r a m e w o r k as it w a s f o r m e d . It is the c o m b i n a t i o n of this f a c t w i t h the c r y s t a l l i z a t i o n d a t a i n T a b l e I I I that constitutes strong e v i d e n c e f o r t e m p l a t i n g b y T M A i n these synthesis experiments. Polymeric
Templates
U n t i l recently ( 8 ) , quaternary a m m o n i u m polymers represented an u n e x p l o r e d s p e c i a l class of o r g a n i c cations.
W i t h polymers, a growing
c r y s t a l h a d to a d m i t not just a single c a t i o n b u t a c o m p l e t e , l i n k e d c h a i n of d e f i n e d structure. F o r the present e x a m p l e , p o l y m e r s w e r e s y n t h e s i z e d b y r e a c t i o n of 1,4-diaza[2,2,2]bicyclooctane
( d a b c o ) w i t h the c o m p o u n d s B r - ( C H ) - B r , 2
n
w h e r e n = 3, 4, 5, 6, a n d 10 ( 1 5 , 1 6 , 1 7 ) . T h e c o m p o u n d s h a d a s t r u c t u r e as f o l l o w s ,
X
a n d w e r e d e s i g n a t e d b y the b r o m i d e u s e d . W i t h 1 , 4 - d i b r o m o b u t a n e , f o r e x a m p l e , the p o l y m e r w a s d e s i g n a t e d " D a b - 4 B r . " M o l e c u l a r w e i g h t s of the
polymers, estimated
f r o m the
concentration
dependence
of
the
k i n e m a t i c v i s c o s i t y i n aqueous s o l u t i o n , w e r e i n the r a n g e 2000-15,000. T h e D a b - 4 B r , f o r e x a m p l e , h a d a n average m o l e c u l a r w e i g h t of a b o u t 10,000
(8).
A p o l y m e r must, b y its v e r y nature, b e a c c o m m o d a t e d i n t h e pores r a t h e r t h a n i n the s m a l l cages of a c r y s t a l l i z i n g z e o l i t e structure. I n the
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
392
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
f o l l o w i n g results t w o zeolites w i l l be i m p o r t a n t , g m e l i n i t e a n d m o r d e n i t e , b o t h l a r g e - p o r e , 12-ring structures as n o t e d i n T a b l e I. G m e l i n i t e s , h o w ever, b o t h n a t u r a l a n d synthetic, e x h i b i t the sorptive p r o p e r t i e s of s m a l l r a t h e r t h a n large-pore zeolites.
S u c h b e h a v i o r is a t t r i b u t e d to c h a b a z i t e
s t a c k i n g faults, faults that f o r m i n a p l a n e p e r p e n d i c u l a r to a n d b l o c k i n g access to the large g m e l i n i t e channels a n d that c a n be o b s e r v e d b y x-ray d i f f r a c t i o n . If a fault-free g m e l i n i t e c o u l d be p r e p a r e d , t h e n , s u b s t a n t i a l changes i n s o r p t i v e p r o p e r t i e s s h o u l d result f r o m those f o u n d w i t h c u r r e n t
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
samples. M o r d e n i t e is a s e c o n d 1 2 - r i n g z e o l i t e w h o s e s o r p t i v e p r o p e r t i e s d o not a l w a y s c o r r e s p o n d to expectations b a s e d o n structure. T w o synthetic types of m o r d e n i t e h a v e b e e n r e p o r t e d b y S a n d , " l a r g e - p o r t " a n d " s m a l l port" mordenite (18).
T h e former, synthesized from only a narrow range
of r e a c t i o n m i x t u r e c o m p o s i t i o n s , exhibits the s o r p t i v e p r o p e r t i e s e x p e c t e d of a 1 2 - r i n g c h a n n e l ( h a v i n g a d i a m e t e r of 6-8 A ) . T h e latter has a n a d s o r p t i o n d i a m e t e r of o n l y a b o u t 4 A . It is i n d i s t i n g u i s h a b l e f r o m largep o r t m o r d e n i t e b y x-ray d i f f r a c t i o n a n d m a y co-exist w i t h dense
struc-
tures s u c h as analcite. T w o series of experiments w e r e c o n d u c t e d to explore the effects of c a t i o n i c p o l y m e r s i n c r y s t a l l i z i n g m i x t u r e s ; one at 9 0 ° C a n d the at 1 8 0 ° C . base
case of
Na :Si0 +
ensure
2
other
T h e c o m p o s i t i o n of the r e a c t i o n m i x t u r e s w a s v a r i e d a b o u t a S i 0 : A l 0 = 30, 2
2
3
H O:SiO 2
2
= 20,
OH:Si0
2
=
1.2,
and
= 1.2. T i m e w a s v a r i e d i n the r a n g e of 3 - 1 3 days ( o r m o r e ) to
that
the
results
obtained
were
not
artifacts
of
a
sequential
c r y s t a l l i z a t i o n process. I n the absence of p o l y e l e c t r o l y t e , the l o w - t e m p e r a t u r e
experiments
p r o d u c e d the large-pore z e o l i t e Y , c o n t a m i n a t e d w i t h v a r y i n g a m o u n t s of the t h e r m a l l y u n s t a b l e phase P .
T h a t t w o zeolites, Y a n d P , w e r e
p r o d u c e d ,was e x p e c t e d since it is w e l l k n o w n that b o t h c a n f o r m i n t h e same o v e r a l l c o m p o s i t i o n field, t h e i r respective a m o u n t s d e p e n d i n g o n r e l a t i v e n u c l e a t i o n a n d g r o w t h rates ( 1 2 ) .
T h e significant p o i n t is that
o n l y these t w o zeolites w e r e o b s e r v e d i n these p o l y m e r - f r e e , l o w - t e m p e r a t u r e experiments. A s s h o w n i n T a b l e I V , e v e n v e r y s m a l l amounts of the D a b - 4 p o l y m e r ( R N : S i 0 = 0.01) 4
+
2
G m e l i n i t e w a s p r o d u c e d ( a l t h o u g h x-ray d i f f r a c t i o n s h o w e d i t to faulted by chabazite).
Br
effected a c o m p l e t e c h a n g e i n t h e p r o d u c t .
A s the a m o u n t of p o l y m e r w a s i n c r e a s e d ,
be the
p r o d u c t s h i f t e d to p u r e g m e l i n i t e . E v e n t u a l l y c r y s t a l l i z a t i o n w a s i n h i b i t e d b y the p o l y m e r , p r o b a b l y because the f o r m i n g z e o l i t e c o u l d a c c o m m o d a t e o r g a n i c cations o n l y i n a m o u n t s c o r r e s p o n d i n g to its p o r e v o l u m e . If t e m p l a t i n g is i n v o l v e d , one w o u l d expect the effectiveness of a p o l y e l e c t r o l y t e to d e p e n d o n its structure.
T h e data i n Table V
were
o b t a i n e d at the c o m p o s i t i o n o p t i m u m f o r D a b - 4 B r i n the synthesis of
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
30.
ROLLMANN
Templates
Table IV.
in Zeolite
Crystallization Results at Low Static, 90°C
Polymer
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
None Dab-4 Dab-4 Dab-4 Dab-4
N :Si0 +
Temperature Product
2
0 0.01 0.14 0.23 0.43
Br Br Br Br
393
Crystallization
Y(+P) G m e l i n i t e (faulted) G m e l i n i t e (faulted) Pure gmelinite Amorphous
p u r e g m e l i n i t e , a n d three p o l y m e r s p r o d u c e d g m e l i n i t e , D a b - 4 , -5, a n d -6.
N e i t h e r D a b - 3 or -10 nor the d i p r o p y l a n d d i b u t y l m o n o m e r s
were
effective. Product
analysis
f u n c t i o n of the cyclohexane 1.0%
provides supporting evidence
polymer.
( 2 5 ° C , p:p
0
The
pure
f o r the
g m e l i n i t e samples
directing
sorbed
7.3%
after c a l c i n a t i o n , c o m p a r e d w i t h o n l y
= 0.67)
for a natural, faulted sample.
The
C : N r a t i o i n the
gmelinite
samples a v e r a g e d 5.4, c o m p a r e d w i t h 5.1 i n the D a b - 4 B r u s e d . T h e structure of g m e l i n i t e is k n o w n a n d it is i n s t r u c t i v e to c o m p a r e its u n i t c e l l d i m e n s i o n s w i t h the l e n g t h of a p o l y m e r r e p e a t i n g u n i t . u n i t c e l l of g m e l i n i t e contains i n the d i r e c t i o n of that p o r e .
one l a r g e p o r e w h i c h is 10.0
F r o m C o u r t a u l d models one can
A
A
long
estimate
the l e n g t h of a p o l y m e r r e p e a t i n g u n i t as f o l l o w s : Dab-3 -4 -5 -6 -10
7.5 A 8.7 9.9 11.0 14.5
O n l y those p o l y m e r s that h a d r e p e a t i n g units 9-11 A l o n g w e r e effective, a n excellent c o r r e l a t i o n w i t h the d i m e n s i o n s of the g m e l i n i t e u n i t c e l l . F u r t h e r m o r e , one t h e n w o u l d expect t w o q u a t e r n a r y n i t r o g e n atoms p e r u n i t c e l l . E l e m e n t a l analysis a v e r a g e d 2.3.
Table V .
Effect of Polymer Structure on Crystallization at Product
Polymer Dab-3 Br Dab-4 B r Dab-5 Br Dab-6 Br Dab-10 B r Dab-Pr Dab-Bu 2
2
P Pure gmelinite G m e l i n i t e (faulted) G m e l i n i t e (faulted) Y + P Y + P Y + P
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
90°C
394
INORGANIC COMPOUNDS W I T H
Table V I .
UNUSUAL PROPERTIES
II
Crystallization Results at H i g h Temperature Static, 1 8 0 ° C
Polymer None Dab-4 B r Dab-4 B r Dab-4 B r
Product
N :Si0 +
2
Analcite Analcite Analcite + Mordenite Pure mordenite
0 0.11 0.23 0.43
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
I n T a b l e V I a r e d a t a s h o w i n g that these results a r e n o t a n a r t i f a c t specific t o t h e g m e l i n i t e s t r u c t u r e .
A t h i g h temperature the reaction
m i x t u r e o r i g i n a l l y p r o d u c i n g Y y i e l d e d a dense phase, a n a l c i t e ; a d d i t i o n of p o l y m e r s h i f t e d t h e p r o d u c t to a l a r g e - p o r e structure, m o r d e n i t e . T h a t this m o r d e n i t e w a s o f t h e " l a r g e - p o r t " v a r i e t y w a s s h o w n b y cyclohexane sorption ( 6 . 3 % , 2 5 ° C , p : p = 0.67). Correlation was again o
f o u n d between the unit cell dimension along a mordenite pore (7.5 A ) and
t h e l e n g t h o f a p o l y m e r r e p e a t i n g u n i t ( 8 . 7 A ) . B a s e d o n these
d i m e n s i o n s o n e w o u l d expect s o m e w h a t less t h a n t w o n i t r o g e n atoms p e r u n i t c e l l a n d analysis shows 1.7, i n excellent agreement. and
Thus a templating
d i r e c t i n g f u n c t i o n o f these p o l y m e r s c a n b e s h o w n f o r a r a n g e o f
t e m p e r a t u r e s , c o m p o s i t i o n s , a n d resultant structures. Acknowledgment A
s u r v e y p a p e r i n t h e area o f z e o l i t e c r y s t a l l i z a t i o n c a n o n l y b e
written f r o m the legacy a n d the accomplishments of a large n u m b e r of t a l e n t e d researchers.
I a m particularly indebted to G . T . Kerr, R . H .
Daniels, E . W . Valyocsik, a n d D . H . Olson, w h o have directly contributed to these results, a n d to t h e m a n y p e o p l e i n o u r P a u l s b o r o l a b o r a t o r y w h o s e w o r k has p r o v i d e d t h e basis f o r s u m m a r y . Literature Cited 1. Breck, D. W., "Zeolite Molecular Sieves," John Wiley and Sons, New York, 1974. 2. Barrer, R. M., "Molecular Sieves," p. 39, Society of the Chemical Industry, London, 1968. 3. Zhdanov, S. P., ADV. C H E M . SER. (1971) 101, 20. 4. Senderov, E. E., Khitarov, N. E., "Zeolites, Their Synthesis and Conditions of Formation in Nature," Nauka Publishing House, Moscow, 1970. 5. Flanigen, E. M., ADV. C H E M . SER. (1973) 121, 119. 6. Schwochow, F., Puppe, L., Angew. Chem., Int. Ed. Engl. (1975) 14, 620. 7. Robson, H . E., Prepr., Div. Pet. Chem., Am. Chem. Soc. (1977) 22(2), 500. 8. Daniels, R. H., Kerr, G. T., Rollmann, L. D., J. Am. Chem. Soc. (1978) 100, 3097. 9. Ciric, J., French Patent 1,502,289 (1966). 10. Plank, C. J., Rosinski, E. J., Rubin, M. K., British Patent 1,117,568 (1968).
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
30.
11. 12. 13. 14. 15.
Downloaded by SUNY STONY BROOK on December 17, 2014 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch030
16. 17. 18. 19. 20. 21.
ROLLMANN
Templates
in Zeolite
Crystallization
395
Jenkins, E. E., U.S. Patent 3,578,398 (1971). Kerr, G. T., J .Phys. Chem. (1968) 72, 1385. Gard, J. A., Tait, J. M., Acta Crystallogr. (1972) B28, 825. Rinaldi, R., Pluth, J. J., Smith, J. V., Acta Crystallogr. (1975) B31, 1603. Rembaum, A., Baumgartner, W., Eisenberg, A., J. Polym. Sci. B (1968) 6, 159. Noguchi, H., Rembaum, A., J. Polym. Sci. B (1969) 7, 383. Salamone, J. C., Snider, B., J. Polym. Sci. A-1 (1970) 8, 3495. Sand, L. B., "Molecular Sieves," p. 71, Society of the Chemical Industry, London, 1968. Kerr, G. T., J. Phys. Chem. (1966) 70, 1047. Barrer, R.M.,Denny, P. J., J. Chem. Soc. (1961) 971. Kerr, G. T., Inorg. Chem. (1966) 5, 1537.
RECEIVED February 2, 1978.
In Inorganic Compounds with Unusual Properties—II; King, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.