V O L U M E 2 3 , NO. 1, J A N U A R Y 1 9 5 1 Maylott, A. 0.. and Lewis. J. B., ANAL. CHEM.,22, 1051-4 (1950). Mead, J. F., and Howton, D. R., Ibid., 22, 1204-5 (1950). blichel, O., and Deltour, G., Bull. SOC. chim. hiol., 31, 1125-7 (1949). Mohlau, Egbert. P h a r m . Zentralhalle, 89, 105-4 (1950). Naughton, J. J . , and Frodyma, M. M., A x . 4 ~ CHERI.. . 22, 71114 (1950). Seudorffer, Jean. Compt. rend., 230, 750-2 (1950). Xiederl, J. E., and Clegg, D. L., fifikrochemie zer. Mikrochim. Acta, 35, 132-4 (1950). Xiederl, J. B., and McBeth, C. H., Ibid., 35, 98-101 (1950). Sogrady, G., Maguar Olvosi Arch., 45, 135-46 (1944). Ogg, C. L., and Willits, C. O., J . Assoc. 0 8 c . Agr. Chemists, 33, 100-3 (1950). Orekhovich, T. N., and Tustanovskii, A. A., Doklady rllzad. N a ~ k S.S.S.R., , 67, 333-6 (1949). Park, J. T., and Johnson, M. J., 6.Biol. Chein., 181, 149-51 (1949). Parnas, Ya. O., Zhur. A n a l . Khim., 4, 54-9 (1949). Polonovski, hlichel, and Bourillon, Roland, C o m p t . rend. S O C . h i d . , 143, 939-40 (1949). Porter, c‘. C.. and Silber, Ti. H., J . Biol. Chem., 182, 109-17 (1950). Pruner, Giuseppe, d n n . chiin. npplicata, 39, 181-7 (1949). Puddington, I. E., Cnn. J . Rrsearch, 27, 151-7 (1949). Quaife, M. L., Scrimshaw, N. S.,and Lowry, 0. H., .J. Biol. Chem., 180, 1229-35 (1949). Raben, M.Y.,ANAL. CHEX.,22, 480-2 (1950). Rappagort, I;., and Gichhorn, F., Anal. Chi,,,. Actii, 3, 674-8 (1949). Reznik, B. d.,Zouodskaya Lab., 16, 363-4 (1950). Roberts, F. R f . , and Levin, H., \L. C H E M . , 21, 1553-5 (1949). Rosenthaler, L., Alikrochemie vw. Mikrochiin. Acta, 35, 164-8 (1950). Schoniger, IT-., Ihid., 34, 295-7 (1949). Ibid.,pp. 316-18. Schulek, E., and Foti, Gy., A n a l . Chim. Acta, 3, 666-73 (1949). Schulze, H. O., Science, 111, 36-8 (1950). Shaw, J., and Beadle, L. C., .I. Esptl. Biol., 26, 16-24 (1949). Shiniosawa, Takeshi, J . Phnrni. Soc. J a p a n , 63, 482-70 (1943).
51 (108) Silverstein, R. M., and Perthel, Robert, Jr., ANAL. CHEM., 22, 949-50 (1950). (109) Sobel, A. E., and Rosenberg, A. A., Ibid., 21, 1540-2 (1949). (110) Soibel’man, B. I., Zhur. Anal. K h i m . , 3, 258-63 (1948). (111) Sols, .I.,Rev. espafi. fisiol., 5, 149-54 (1949). (112) Samiya, N., and Kamada, H., J . J a p a n . Chem., 1, 63-4 (1947). (113) Steinitz, K., Mikrochemie ver. Mikrochim. Acta, 35, 176-7 (1950). (114) Stock, J. T., and Fill, M. -i., MetaZZurgia, 40, 232 (1949). (115) Ihid., 41, 170 (1950). ( l l G ) Ihid., pp. 239-40. (117) Ihid., pp. 290-1. (118) Stock, J. T., Heath, E’., and Marshment, TV., Ihid., 41, 345-6 (1950). (119) Thomas, J. TV., Shinn, L. A., Wiseman, H. G.. and Moore, L. d.,ANAL. CHEM., 22, 726-7 (1950). (120) Tipson, R. S., and Cretcher, L. H., Ibid., 22, 822-8 (1950). (121) Tsao, XI. U., and Brown, Shirley, J. Lab. Clin. Med., 35, 302-3 (1950). (122) Tschamler, €I., Mikrochemie uer. Mikrochim. i l c t a , 35, 353-8 (1950). (123) Unterzaucher, Josef, Chem. I n g . Tech., 22, 39-40 (1950). (124) Ibid., p. 128. (125) T’entura, antonio, Trahajos inst. nacl. cienc. vied. ( M a d r i d ) ,43, 371-7 (1942). (126) Viollier, G., Helv. Physiol. e l Pharmacol. Acta, 7,C26-7 (1949) (in German). (127) \Veil-Malherbe, H., and Bone, A. D., Biochem. J . , 45, 377-81 (1949). (128) White, L. &I.. and Kilpatrick, VI. D., A x . ~ L CHEM., . 22, 1049--51 (1950). (129) White, L. XI., and Secor, G. E., Ibid., 22, 1047-9 (1950). (130) Willits, C. O., and O g g , C. L., J . Assoc. Ofic. Agr. Chemistu, 33, 179-85 (1950). (131) Wiss, O., Helu. Chim. Acta, 32, 149-53 (1949). (132) Woiwod, A. J., Biochem. J., 45, 412-17 (1949). (133) Zeile, Karl, and Oetael, M., 2. physiol. Chem., 284, 1-19 (1949). (134) Zilversmit, D. B., and Davis, A. K., J . Lab. Clin. M e d . , 35, 155-60 (1950). (135) Zimmermann, W., Mikrochemie uer. Mikrochim. Acta, 35, 80-2 (1950). RECEIVED November 4, 1950.
IN0RGANlC MICROCHEMISTRY PHILIP W. WEST Louisiana S t a t e Unicersity, Baton Rouge, La.
I
SORGAMC niicrocliernistry embraces m a n y fields and
techniques, a n d t h e reader is referred t o accompanying r e v i e w on spectroscopy, polarography, light microscopy, electron micros1 opy, nucleonics, fluorometry, and chromatography for correlative information. T h e scope of t h e present discussion is essentially t h e same as t h a t of t h e previous review (287). T h e articles I onsidered a r e those t h a t were included in Chemical Abstracts lip t o and including t h e September 20, 1950, number. BOOKS AND REVIEWS
A number of reviews have appeared dealing with various phases 01’microchemistry. T h e life a n d work of Pregl have been dewribed by Lieb (166), a n d biographical sketches of Eniich have twen written b y Benedetti-Pichler (20) and Llacer (169). McDonne11 and Wilson ( 1 7 3 ) have discussed t h e use of organic rcsagents a n d spot test procedures in qualitative analysis 8s a p a r t or a series of excellent papers reviem-ing t h e various schemes for group separations used in qualitative inorganic analyais. An outstanding discussion of the uses of organic reagents for specific, selective, and sensitive reactions has been presented b y Feigl ( 7 5 ) . West (288) has considered sources of error a n d their rlimination in t h e use of organic reagents. Absorption (spectral) methods in analytical chemistry have been discussed h y Coumou (62),Duycltaerts (M),3 l a y e r (184),
and Milbauer (190). Other r e v i e w include a discussion of t h e microchemical identification of metals ( d g l ) , t h e determination of residual chlorine concentrations (117), a n d t h e s t a t u s of niicrochemistry in Russia ( 1 7 ) . Mirnik (193) has revierred methods for quantitative inorganic microanalysis. A book on inorganic microanalysis b y Longo (170) is noteworthy. Although relatively short (164 pages), this book contains excellent sections o n organic reagents, spot tests, mirroscopical procedures (including some mention of polarized light microscopy), a n d group separations of anions and cations: a chapter is included on quantitative methods of microanalysis anti there a r e discussions of various special techniques. Unfortunately for many, t h e book is written in Spanish. booklet by Gaddis (90) on semimicro methods of quantitative analysis should b e of interest to those considering t h e use of such methods in t h e teaching of quantitative analysis APPARATUS
Development of measuring devices is of prime importance in analytical chemistry and is especially valuable in microchemical work. A rugged balance for use in t h e submicro range has been described b y Ingram (127) a n d its applications pointed out. Elorenman has described a torsion microbalance (142) together with its applications. A torsion microbalance designed for use
ANALYTICAL CHEMISTRY
52 in measuriirg pressures of monolayers has home i t i t (,resting features (134). A microanalyzer for gas analysis has been designcd for use with the Saunders-Taylor techniques (271 ). Slicroburr,ts have been discussed by Korenman (143) and Lazarow (169). SBmiya and Kamada describe a microburet and microphotoelwtric titrimeter (258), and Daiiiiler (64) has designed a titrimrtcr utilizing an electronic. indicating circuit capable of measuring liquid volumes oi 10-9 ml. nitli errors of t h e order of 1%. B1:ilte has studied devices utilizing surface-tension effects for measuring and dclivering niicrodrops of liquids (30). Sumerous hboratory aids for the niicroaniilj.st have I~cen descrilied by Stock and Fill (665-268)) and Stork xnd vo-worlters have coiistrucsted ronvenient hydrogen sulfide generators (269, 210) for the microchemical laboratory. Special apparatus for microchemical operations include a microbeaker ( 6 9 ) ,separatory funnels (&), :tnd a small gas-reaction unit (14). 1Inliss:t ( 1 7 7 ) arid Mirnik (f92) have considered various useful tlevircs for mic~rochcmicaloperations, arid Duhhs (62) has designed :I “universal iiiicroal)p:ti,atiis’’which can be used succwsivc~lyfor filtration, cstraction, rtAflusing, distillation, tioniogciii~:ition, cviitrifugation, and drying. AttarhnientP for microscopes may he of geiici~:il u;jefulnrss. 1Ielankholin (186)has devised it polarization iritrrI’c,rotiit,ter for use with the microscope. L l a t t h e m (183) and l3erihso (21) 1i:tvc. discussed the cotistruc.tion of hot stages. The Rcckm:tn spectrophotometer has many uses in microanalysis. Tlict carriage for holding microcuvettrs (138) is of value Ixc:iiise it permits greater accuracy in plariiig tho cell. .hc*ur:tte trnnsmittancy measurements on as little as 50 cu. nim. of’ solution :ire thus perniit,ted. T h e flame a t t a c h m t ~ n tfor the Bcckniari DL spcctrophotometer (95) will find ninit!. u number of applic~ationsfor this and other flamc photometers are alreatiy \yell e.jt:tblished and further investigations on nevi uses should prove 1)rofit:~l)le. A versatile photoelectric cdorimeter especially depigned for microchemical work ha;. heen rcxported by Ellis and Brandt ( 7 1 ) . h device for use in conducting confined spot trst? has been built 1,- Stcvens a n d Lakin (262),and a molecular still for niicrochemical rese:twli h:ts possible applications in the study of chelate compounds (158). A ne17 field of invcxstigntion was opened up l)y Blnke in 1946 and Inter, indrpendently, by Jensen when i t \vas found that highfrequency oscillators could be adapted t,o “conductometric” titrations. The great sensitivity obtained with such an apparatus just,ifies spechl mention in this review. Blake has discussed (28, 2Q)the use of high-frequency oscillat’ors,especially in iieutralization titrations. .\ndersou, Bettis, and Revinson (6) have described a grid-dip oscillator, operating a t frequt.nc*ies l)r!t\veen 8 and 40 nic. per second, and suggested vttrious neutr:ilization and preripitation applications. Okabaymhi :tnd c.o-\vorkers (208) used a 30 nw,per second oscillator to study c~oniplesf’orm:ttion, and Arditti and Heitzmann ( 7 ) built an instwnicnt for use in acid-bilse titrations. Blaedel and Xtlnistadt, have made a thorough study of instrumentation and suggested uses in neutralizat,ion, preripitation, comples:ttion, and rcdos titrations ( 2 7 ) . West, B u r l h l t e r , and Broussard linvc described a stable osrillator 11 hi(-h utilizes the heterodyne principle (290) and have suggested :tpplit*:itionsin the direct analysis of bina:.p systems a.s we11 as i n tit1,inwtric m r l i .
it is desirable t h a t an>-nccessary separations tie a n inherent step in the test procedure itself. Extraction. Dithizone extractions remain the most gcnei :illy used. I n most applications t,he dithizone serves as the co101~developing reagent a t the same time as it functions to separart’ the desired constituent. Sill and Peterson, however, h a w uqcd a dithizone extraction t o remove thallium from possible int (xrferences prior t o its determination by fluorescence masurernc~iits made on the thallous chloride complex (253). Delavault and Irish (58) have proposed a rapid method tor collecting copper and zinc based on the use of an emulsified misture of xylene nnd :queous sodium lauryl sulfonate solution, folloning which an ammoniacal solution of dithizone is adtletl. After thorough shaking, the mixt.ure is filtered through a 1vc.t filter to isolate the met:tl dithizonates which do not pass through the filter. Busev has isolated the ruthenium complex with urea 1))- adding djethylthiophosphoric acid and extracting with a suitahle orgmic solvent (42’).Diethyldithiocarbainate has been used iii thtl extraction of cadniiuni (46)by Chernikhov and Dohkina, who also use t h e dithizone extraction of lead, bismuth, and zinc t o eliminate the interfercnce caused b y these metals. A genrr:il summary of the use of diethyldithiocarbamate, including its iibc in extraction procedures, has been presented by these s:in!ct :iuthors (46). Sandell and Cuniniiiigs have studied the chloroform estr:icrioii of ferric rupferratcs (242). Furnian, Mason, and Pekola ( 8 6 ) have investigated the cupferr:ttes of 38 metals and their c1xtr:wtabilities, and have giv6.n speck1 attention to the estraction of ropper (11),niolyi)dcnuni ( V I ) , and uranium (IV). A number of other investigators have studied extraction methods for separating ur:iniuni, iiicluding Korkisch and Rigele (14.1) and Scott (246),who hsve studied t h e use of ether extractions of uranium nitrate. Ljurigpreri, Itynninger, and Sillen (167), together with their aasorintes, have also studied the ether esti‘aet iun of uranium salts. Extrnct,ions of thorium nnd r3re earth salts have been studied by rlsselin, Audrietli, and Comings ( 8 ) , who use I-pentnnol m i taining thiocyanates. The extraction of metal osinates has been used for the sep:~r:ition and sulweqii(~ntcwlorimctric determination of a nuniher of
Table I. Ion or Metal Alkali metals Blkahne earth metal5 Calcium Rare earths Platinum metal6 Palladirim Aluminum Beryllium Bismuth Cadmiuin Carbon Cobalt Copper
Gold Iron Lead Manganese Mercury Xickel
Reagent and Remarks
Reference (3)
1:errocyanide Oxalate 1.10-Phenanthroline; Z,B’-bipyridine a-Furildioxinie .\--Benzoyl phenylhydroxylamine 8-Qiiinolinol (oxine) Benzenearsonic acid Triphen~litiethylaninioniumiodide .A ca ri t e
Rediicinc: agents or osine llorpholine oxalate S-Benzoyll~lienylliydroxylamine slllfate
l,P-(‘yrlohesanedione dioxime Osalenediairiidoxime
(IT,?) (67)
‘180) (251)
(r44)
ii64) 1276) (80)
i49)
a-Fiirildioxinie 1.2-r)ioxiines
SEPARATIONS
Separations of interferences or isolation of desired constituents are of primary concern in most analytical procedures. On the basis of published work, t h e greatest interest a t this time in inorganic microchemistry is in the use of extraction methods, with chromatography and ion exchange a fairly close second. Complexation is also very important, especially in spot, t w t \vorlc \vhel,e
Gra\-inietric >\lethods of Analysis
Silicon Siiver Thallium Titanium Tungsten Zinc Zirconium
Broinoazimidobenzene 8-Qiiinolinol; 2,j-dibromo-S-hydroxyqiiinoline 5-Benzoylplienylhydroxylamine 4,4’-l~iainino-3,3’-diinethoxybiphenyl Isoqiiinoline 11nndelic acid
(164,
le:.?r
(77) (251) (2SZ)
(164) (107)
V O L U M E 2 3 , N O . 1, J A N U A R Y 1 9 5 1 metals (94). Gold and t,hallium chlorides huve Ijeeii estr:icted with ether, and determined colorimetrically with rhodamine B (113). Plloly1)dophosj)horic aiid molybdoarsenic w i d s have been sep:rrated from molylxiosilicic acid by extraction (123). Perry and Serfass have proposed (215) a method for the simultaneous determination of colialt and nickel based on the use of 3-nitrososalicylir :wid. (lodetermination is made po?;sible thrnugli the selective tsxtr:ic+ioii of the cobalt complex. Tribalat has tictcrinined rhenium ($79) with extritrtio~iof the perrhenat 1)y I I ~ ( ~ : L I of I S tetrapheiiylsrsoiiiuni chloride : ~ n d chloroform, :ind Sag ( 2 4 2 ) h:tr used dil~utylammonium c1it)utylthio(.:irhn:itt! in tht, (sxtr:wtion of various metals. Complexation. The formation of stable coniplcses :IS i i inciiiis of sequestering intctrfei,irig inns is the most elegant of :ill methods of separatioii. I ~ r a u u s ocomplexation requires no special operations, othcr thaii the d d i t i o n of the complexing : g e n t , iio eniphasis is made of such separation operations in niaily of the pipem publishccl. It is regrettable that there is so lit tlc stress laid on tht: reporting of questering agents, and i t is :tlso unnot done in developing itnd $iritiying fortunate th:it nioi'e work IICW conipl~~sin :igthii g ts. Iron 1r:ts t j c w i caoniplesed using fluoride (266) :tnd tttrtriitt, or (*itrule(6,$?80, 125, 285). dluminuni (91) anti v:inudiiini (228) h:tve h v n scquestt.red through u s r of fluoritler. TitiLiiiuni has ~n and sulfate ioii (106). titsen ni:iskd uhiiig I i ~ ~ d r o g t peroxitk 1'hosph;itct h : t ~l)f:(>ii uhed to prevent tungsten interferciic,es in the determination of molyl)denum (46). Interferenc*e due to free sulfur has t ) e t a n ot)vi:rtrd through use of sulfite t o form tlic stable thiosulf:ttv ioii (79). 1Ierc~ui~y c~tilorideconiplexes have Iwen used t o nxisl; the t.ffect of mercuric, ion (214), and the vonverse process hrts Iweii uwd (206)in \vliic~hIroniides and iodides are romplesed through use of mercuric ioii. Connors (49) has used dieth3-ldithioc.arl)~tiii:ite to r.liiiiinatv ( ~ o p p ~interferenc-es. i' Fluorides have 1)ec~irenioved through formation of the tetrafluoroliorate complex (31). Electrodeposition. Various approaches in the use of elrcirodeposition methods Iiuvc been advocated for niic:i,oseyiarlitioils, F k m a has utilizcd i,evcixal current methods for srpar:iting raoppcr (70).:ind Bonnier has separated lead 1))- nir:inr of electrodeposition (.?I). -4 nuni has been isolated from copper, zinc, a t the mercury cat,hode ( tin, et,(#.,by elerrro mercury cathode has been used by Cooper and JVinttar to separate interferrnc,es ( 5 1 ) in the determination of v:mitliuni. Silver, I(.ad, copper, l)isniuth, antimony, and arsenic 11:tve heen renioved from solution t)>. :irepliwenient reavtion (67) in t h c s detection of vitdmiuni u*irig t t,ipheiiylarsonium iodide. Chromatography. As mentioned previously in this review, chroniatogr:iphic scparations are now taking a n increasingly iinportnnt rolc in inorganic chemistry. Although various types of chro~natograpliyare reviewed elsewhere, certain work of spcrial interest is nit~ntionedhere. Of special interest in regard to general terhnique is the use of x-r:ty methods for identifying separated platinum metals ( 2 4 4 ) and the us(' of spectroscopy in locating and determining cadmium wpar:rted as the clithizonate on a n alumina column ( 6 3 ) . Paper clironiatogr:tph>- has been widely used and is proving very useful (163, 15.1, 160, 161, 210, 233). X somewhst similar technique is t h a t of s u r f w e chromatography tlesvrilied by Meinhard and Ha11 (185); this method presents it iiuni1)er of possible variations aiid hold3 promise of interesting future development. Special columns have been suggested bj. Burriel and Perez, \vho separate nickel on dimethylgl\-oxime columns ( 3 9 ) ,and by Rach, \rho has used zinc sulfide as the adsorbant for sepiirating copper (13). lumina i* t h e most generally used adsorlumt (15, 2',?9, 260, 673). Ion exchange holds great promise a.nd microchemical applieat ions are certain t o appear. Precipitation Methods. Classic separations b y nieaiis of precipitation continue to be of great importance ( 2 5 , 173, 20.9, 286). (b
53
Of spcci:il iiitcwst to the miurochemist is the use of gatlieiiiig agents. Ebert aiid Dirscherl have collected gold sols oii aluniina (68) and Chuiko h:is g:tthered nickel on precipitated iixiiig:iii(w Pulfide ( 4 7 ) . ORGANIC REAGENTS
Approsinistc~l!. o i i c ' 1i:ilf of the, references collectetl foi, t l!)X revie\\. of inorganic* ~ i i i ~ ~ r n t ~ h e t i i deal i s t r y with orgitnic rc3:tgcnt.; or theii, applic~ttions,and it is safe to say t h a t developnirnts iii the field of organic reagents a r e of t h e greatest import:tnc,e to t h e menmicroanalyst. The applications of individual reagenth : t i ~ % tioned under the appropriate headings in other parts of this papers, however, are given siyar:it(% revien . Certain gt~nc~ral vonsidcrntion because of special bearing they may havc, on t lit, development of neiv reagents. T h e paper by Feigl o n the role of organic reagents in apec,ific., selective, and sensitive reavtions (75) is of particular intwcnt. This discussion prtxxents an integrated review of the fundanirnt:il principlc,s involved in the development and use of org:inic r('agents for inorganir analysis. Lester has reviewed the stutu.: of organic rc~:igentsin mirroanalysis ( l S 4 ) ,and West has discausswl (288) possible soui'cer of vi'ror in t h e use of such compound.. The work by Br:indt : ~ n dSmith (35)is not,eworthy bemuse of t l i v significant and logic,nl developnient of a series of redox indic.:itoi,-. t h a t was acconqdishrd 11). nicwis of a program of reagent syiitheses; i t is one of the beat ex:tniples of the production of r(~:igeiits having p r e s e l e c t d properties. GHAVIMETRIC ANALYSIS
T h e gravimetric microdetermination of a number of ioiir I I : ~ < been reported. T h e development of water-soluble diosiniw for use in nickel determinations is of particular interest (149, 286). Gravimetric procedures of specific interest are sunini:trizt~tl i i i Table I. TITKI\lE'I'RIC ANALYSIS
.Is :I rule, titrimetric, niic,roprocedures are bastd o n the s:inic chemical reactions as tho standard macromethock: Llefinenientn in technique contribute niost significantly to the devrlopnient oi microchemical titrimett,y. T h e detection of end points h:ia Iwen onr of the major p ~ ~ o l ~ l in e mniicrotitrimetr ~ yet used for niicroc.lit~niica1work, the sensit frequency oscdlator should prove of value (6, 7 , 27-2.9, 208, 290). T h e special titrimetrw designed hy Daimler (64)and SBmi!~t :ind IIicrochemical detection of nitrites and nitrates. (121) Hovorka, V,, and Holzbecher, Z., Ibid., 14, 490-4 (1949). Microchemical detection of chlorates and chloric acid. (122) Humpoletz, J . E.. Australian J . Sci., 12, 111 (1949). C'olorinietric dcterniination of hydrogen peroxide.
V O L U M E 2 3 , NO. 1, J A N U A R Y 1 9 5 1 Hure, J., and Ortis, T h . , Bull. xoc‘. chin?. F r u n c c . 1949, 834-5. Colorimetrio determination of traces of silira i n presence of phosphates and arsenates. t12.4) Hynes, W.A , Yanowski. L. K., and Ransford. .J. E., Mikrochemic aer. Mikrochim. Acta, 35. 160-3 (1950). T-erscne as spot reagent for gold. 4 1 3 5 1 Ibarra, Felix de, I n s t . hicrro y n m ~ 2, , S o . 3. 29-32 (1949). Spot tests on steels. / LL‘(i) Ingols, K. S.,Shaw, E. H., Eberhardt. \I-.H.. and Hildebrand, ,J. C., A s a ~ CHEM., . 22, 799-803 (1950). 1)eterniiriation of fluoride ion with ferric thiocyaiiate. , 127’1 Ingram, G., Metallurgia, 40,231-2. 2885-4 (1949). Submicrobalance and its applications. Techniques and applications. ( 1 2s I Zbid., 41, 54-5 (1949). Split-type niicroconihustion furnace. I % ) Jalfe. Emilio, A n n . chim. opylicatn, 38, 456 !) (1948). Molybdenum blue as qualitative test for phosphate ion and to distinguish levulose, invert sugar, and sucrose from other sug-
(I?:+)
RI’S.
Johnson, E. A , , and Johnson, Detection of semimicro qu :1 :iI .Jurany, H., &f ikrocheinie is? (1949). Sensitive microchemical test ior thalliuni as thallium-cesium iodide. / ) Ihid.. pp. 412-17. Specific test for tin as staniiic iodide. 3 ) Kainz, G., and Pohni, XI.. I b i d . , 35, 189-93 (1950). hlicrodetermination of hydrochlorides, hydrohroniides. and iodine methylates of organic bascs. tt;34) Kalousek, hIikro, J . Clienr. Soc., 1949, 894-8. Torsion microbalance for measuring low uressures of monolayers. (i:35i liingery, W. D., and Hume, D. S . , J . Ani. Chem. Soc., 71, 2393-7 (1949). Spectrophotometric investigation of bismuth thiocyanate complexes. I:W) Kinsey, V. E., ANAL.CHEM.,22, 362--:1 (19.50). Assembly for positioning cuvettes used for microanalysis with Beckman spectrophotometer. t:371 Kirtchik, H., Steel, 122, S o . 8, 91. 106 (1948). Separation of alloys by spot-testing. I:iS) Koch, C. W., Katl. Nuclear Energy Ser., Div. I\-. 14B, “Trausuranium Elements,” Pt. 11. pp. 1337-8 (1949). Microdetermination of plutonium. l;W Iiomar, N. P., and Tolmachev, T’. S . ,Zhur. d ~ lKliirn., . 5, 217 (1950). Colored cobalt compounds of analytical significance. Cobalto-1-nitroso-2-naphtholate. ( 1 IO) Komarovskaya, A. A., Zhur. Obshchel R h i m ( J . (Ax,C h e m . ) . 19, 1459-60 (1949). Detection of cadmium. i 14 I ) Konecny, Jan, Mikroehernie uer. Milirochim. A c t a . 35, 384-9 (1950). Nitrosophenolphthalein, a new organic reagent. ~,142) Korenman, I. M., and Fertel’mesiter, Ta. X.. Zncodskayn Lab., 15, 785-96 (1949). Ultramicrobalance. (143) Korenman, I. M., and Gronsberg, E. Sh., Ziiur. Anal. Khim., 4, 26-34 (1949). Titration of small volumes. (144) Korkisch, F. E., and Rigele, Olga, ,%likrochcmie eer. Mikrochini. Acta, 35, 365-83 (1950). hIicrochemi(,al determination of uranium and lead in monazite. (14.51 Kozlyaeva, T. N., Zhur. A n d . I i h i n i . , 4, 7544 (1949). Photocolorimetric determination of sniall quantities of sulfur dioxide in air. (!I(\) Kuhn, Richard, and Ludolphy. Erich. .Inn., 564, 35-43 (1949). Kaphthotriazolium salts as reduction indicators and a reagent for cobalt. 1117) Iiul’berg, L. XI., and Liokuniovich. R. R., Zhtir. A n a l . K h i m . , 4, 255-6 (1949). Color reaction for barium ion. (148) Kulenok, M. I., Ibid., 4, 248-54 (1949). Photocolorimetric iodometry and use in analyses of natural waters. (14!1) KuraB, Vi., Chem. Listy, 38, 54-5 (1944). Oxalenedianiidoxime as analytical reagent for nickel. (1.50) ICuznetsov, V. I., Zavodskaya Lab., 14, 545-9 (1948). Color test for detecting small quantities of dissolved inorganic salts. (151) Kuznetsov, V. I., Zhur. Anal. Khim., 2, 373-6 (1947). Color test for zinc with methyl violet (assisted by thiocyanate). ( l j 2 ) Ibid., 3, 295-302 (1948). Color reaction for lithium. ( I X ) Lncourt, A., Gillard, J., and Walle, 11. van der, Mikrochemie W T . Milirochim. Acta, 35, 262-5 (19.50). Chromatographic separation and absorptiometric determination of nickel and cobalt present, in micromilligrani quantities. (154) Lacourt, A., Sommereyns, G., Degeyndt, E.. Baruh, J., and Gillard, J., Metallurgin, 40, 181-2: S n l u r e , 163, 999-1000 (1949). Quantitative inorganic paper chromatography. Submicro separation and determination of aluminum, iron, and titanium. ( 1 5 3 Lacroix, S., and Labalade, >I., A n / i l . Chim. d c t n . 3, 262-71 (1949). Colorimetric determination of manganese and rhromium. (15(i! I d o r c e , J. R., Ketchum, D . F.. and Ballard, d. E., dsar.. C’HEM., 21, 879 (1949). ~Iicrodeterniination of total carbon
i
1:Xi)
57 caiboiiatcs. cyanides, and alkali, or alkaline earth organic salts and mixtures. (157) Lang, F. A I . , and Aunis, G., Chin;. ctnul.. 32, 139-43 (1950). Semimicrodetermination of nitrous acid. Elimination of error caused by oxygen of air. (158) Layton, L. L.. Lazzell, C. L., and Collett, A. R., Proc. F. T-a. Acad. Sci., 13, 53-9 (1939). Modified type of mieromolecular still suitable for research purposes. (159) Lazarow, Arnold, J . L a b . Clin. M e d . , 35, 810--14 (1950). I-niversa1 syringe buret and use in microcolorimetric analysis. (160) Lederer, &I., Australian J . Sci., 12, 78 (1949). Paper chromatography of ~ o m metals. e ( l i i l ) Lederer, hlichael, Science, 110, 115-16 (1949). Separation of chloride-group anions by partition chromatography on paper. (162) Leihowitz, A., and Young, R. S., Ii?o?l and Steel, 22, 486 (1949). 13eryllium determinatiou in presence of much iron, aluniinuni, and magnesium. (163 Lester, F., Metallztrgia, 40,285-6 (1949). AIetallo-organic reagents used in microanalysis. Determination of bismuth and cadmium. (164) Ibid., 41, 49-51 (1949). AIetalioarganic reagents used in microanalysis. (16.5) Levy, M. E., Ir071 Age, 164, No, 7 , 98-100 (1949). Electrographia analysis for identifying high-temperature alloys. (166) Lieh, H.. Mikrochemie m-.Mikrochim. Acta, 35, 123-9 (1950). Fritz Pregl, founder of quantitative organic microanalysis (1869-1930). (167) Ljunggren, Gustaf, Rynninger, Roland, and Sillen, L. G., ,Svensk Kern. T i d . , 61, 17&80 (1949). Determination of small quantities of uranium. Critical discussion of methods previously used and general survey of present investigation. (168) Llncer, A. J., A n a l e s f a r m , bioqutm., 19, 48-55 (1948). hIicroelectrodeposition of cobalt. (169) Llacer, A. J., Ciencia e invest., 5, 449-57 (1949). llicronnalysis. Contribution of Friedrich Emich;, (170) Longo, It. E., “Rlicroanalisis inorganico, IIuenos Aires. (’iordia y Rodriguez, 1949. (171) Longo, It. E.,Pubs. inst. inwst. niicroquim., C-nir. nacl. L f t o r d , 9, 41-51 (1945). Chemical microscopy (techniques). (172) LIcCrumb, F. R., Power Generation, 53, KO.12. 79, 102 (1949). Versenate test for total water hardness. (173) lIcDonnel1, F. R. M.,and Wilson, C. L., hletallrargin, 40, 33942 (1 949). Group separation in inorganic qualitative analysis. Organic reagents and spot analysis. (174) Llagill, P. L.. Rolston, hf. V., and lIreniiier, It. K., A s . 4 ~ . CHEM.,21, 1411-12 (1949). 1)etcrminatioii of free sulfur i n atmosphere. (175) Majumdar, A. K., and Sarma, R. S . S.,.I. I m f i n n Chem. Soc., 26, 477--82 (1949). Estimation of bismuth. Gravimetric analysis m-ith benzenearsonic acid. (176) Nalissa, Hanns, Anal. Chim,. S c t o . 4 , 1-5 (1950). C‘haracterization of niir1,oanalytical reartioris. Preliminary conimunitation. ( I 77) ~Inliss:c,Harms. X i k r o c h e m i e wr. d i i k r o c k L r r I . dr:tn, 34, 293-7 (1949). Some laboratory aids. (lis) Ibid., 35, 2fi6-301 (1950). Sensitivity of microanalytical reactions. (179) IlIalissn, H., and Spitzy, H., Ibid.. 35, 302-5 (1950). Practical application of microchemical methods in cxaniination of paintings. (180) JIalowan, L. 8.. I b i d . , 35, 104-6 (1950). Determination of gold with morpholine oxalate. (181) JIarshall, E. D., and Rickard, R. R., .As.LI.. CHEM.,22, 7 9 5 7 (1950). Spectrophotometric dcterniination of ruthenium (in ruthenium compounds). (182) AIarrel, C. S., and Richards, J. C., Ibid., 21, 1480-3 ! 1949). Separation of polyhasic acids hy fractional extraction. (183) LIatthews, F. W., Ibid., 20, 1112-15 (1948). Microscope hot stage in melting point determinations. (184) 1Iayer. F. X., Osterr. C h e m - Z t g . , 49, 156..67 (1948). Recent analytical applications of measurement of IiKht ahsorption. (185) 1Ieitihard. .T. E., and Hall, S . F,, .i?i.u..C’HEV.. 22, 344-51 (1950). Surface chromatography-. rcfinenicnts in apparatus and technique. (186) Melankholin, N. >I., Zarodsknya L ~ r h . , 13, 4 9 5 7 (1947). Polarization interferometer for microscope. (1s;) lrestayer, H.. Em!, 36, 174-8 (1940). RaIiid methods nf determining sodium and potassium. (188) Milaazo, Giulio, A n a l . Chim. d c t n , 3, 126-36 (1910\. IlIicrodetermination of gold with hydroquinone and o-dianisidine. (189) 1Iilazzo. Giulio. and Paolini. Leonello, Rend. ist. sicpar. sunitb, 12, 693-704 (1949). Volumetric microanalysis of iridium. (190) Milbauer, J.. Chem. L i s t y , 38, 81-5, 109-12 (1944). Colorimetry of cations. (191) JIiller, C . F., Chemist-dnulyat, 39, 9 (1950). Detection of nietnllic copper by clertrolysis. iii
ANALYTICAL CHEMISTRY
58 (192) hlirnik, SI., Arhiv K e n t . , 20, 126 9 (1948).
Improved lahoratory equipment for inorganir qualitative semimicroanalysis. (193) [hid., pp. 187-224. Inorganir quantitative seminiirro- and microanalysis. (194) Slonnier, D., Vaucher, R., and TVenger, P., Helv. Cliim. Acta, 33, 1-10 (1950). Colorimetric determination of fluoride ions. (195) Slorandai, Josette, and Duval, Clement, Mikrocheijiie ver. Mikrochi~n.Acta, 35,194-204 (1950). Analytical charncteristics of chlorites. (196) SIoses, A. J., J . Chena. Educution, 27,337 (1950). rhelates in confirmation of organic compounds. (197) hlosher, R. E., Bird, E. J., and Boyle, h.J., A x . 4 ~(’HEM., . 22, 715-17 (1950). Flame photometric determination of calcium in hrucite and magnesit,e. (198) Xliiller, Johannes, Oesundh.-Ing., 70, 407-10 (1949). Colorimetric deterniination of lead in drinking water. and Raghavarao, Bh. S. V., Currr.rit S c i . , 18, olorimetric detection and estimation of thorium. (200) Saito, Takio, Kinoshita, Yahyoe, aud Hayashi, Junichi, J . Pharm. SOC.J a p a n , 69,361-3 (1949). Phenylthiosrniic~arbazide as analytical reagent. (201) Sash, L. K., ANAL.CHEX., 21, 1405-10 (1949). Submerged bulblet methods in microchemistry. (202) Xeissner, M., Arch. Metalkunde, 3, 305-6 (1949). Rapid ident,ification of light metal alloys. (203) Nikitina. E. I., Zavodskaya Lab., 13,923-5 (1947). Spot analysis in grading stellite, beryllium, steels, Chromansil. and bronzes. (204) Nilsson, Gustav, L4clu Chern. Scand., 4, 205 (1950). (‘oior ].eaction of copper and ccrtain carbonyl compounds. (205) Nydahl, Folke, A n d . Chivi. Acta, 3, 144-57 (1949). Determination of manganese hy persulfate method. (206) Oesper, R. E., aiid Klingenherg. J. J., AXAL.CHEV..21, 150911 (1949). Glycolic acid derivatives in determination of zirconium. , R1.r. h t s ; l . Q U ~ I J . 28, , 23 -5 (1949). Determination of niicroquaritities of cyaiiide. (208) Okahayashi, Hideo, Sakano. Kunio. arid E’ujiwara, Shizuo, Repts. Radiation Chem. Research Inst., 4, 23-4 (1949). Volumetric analysis with high-frequency oscillator. (209) Okac, A., Pubs. facctlt4 sci. 7 ~ 7 i i r .M a s a r y k , No. 311 (1948). Qaalitative separation of catioua without hydrogen sulfide. (210) Osborn, G. H., and .Icwsbury, -4.. Xatu.re, 164, 443-4 (1949). Inorganic paper chromatography. Qualitative separation of aluniinuni and beryllium. (211) Ottino, hliranda, Boll. c h i 7 n . , f ~ i r n ~88, . , 245-51 (1949). Organic reagents in qualitative inorganic analysis. (212) Patrick, TV. -4.. and IYagner, H. B., L4s.u,.t in proce-
dures designed t o improve the physical characteristics of the precipitate. Following the previous practice of t h e authors, this review covers publications whose abstracts were iecorded during t h e period J u n e 1949 t o June 1950. GEYERAL PROCEDURES
Preparation of Samples a n d Precipitates. Chapman, h r v i n , m d Tyree (26) investigated losses incident t o evaporations in t h e presence of perchloric a n d hydrofluoric acids. Of 34 elements investigated, appreciable lossr~s occurred n i t h horon, silicon, germanium, arsenic, antimony, chromium, -elcnium, manganese, a n d rhenium. A method of preparing aaniples of iron a n d mangane,se ores a n d of unslnkrd lime n-aq liescribed b y Khripach (88). Benedetti-Pichler (10, 11) recorded efficient procedures for the calibration of weights a n d included suggestions for safeguarding against errors. T h e advantages of internal calibration were also discussed. E a t o n (49)modified Richard’s method of standardization of weights. Provision was made for cases where t h e rider differed significantly from its nominal value.
Toronto,
Cunadu
I h v n l (40)found that, it11 asbestos iilteiing nic~tliuinlost neiglit, Ivhrn licnted above 283” C. Dupuis and 1)uval (38) csaminmt the temperatures of stability of precipitates used for the d e t w niination of anions, ineluding phosphates, arsenates, si1icate.s.. :tnd halides. Suitable temperatures m r e given for heating about seventy compounds encountered in gravimetric mork (S9). For drying prrcipitates, etc., >LIonnirr and Besso (104) recommended the use of infrtrred rays, t h u s avoiding decomposition by heat. Kuenetsov (99)dcwrihwl t h r preparation of two organic reagents which could be used for cstimating the efficiency of ~vashing precipitates. Colored salts o r solutions were ohtained by a wide range of cat,ions including uranyl ion. Methods of Selective Separations a n d General Gravimetric Reagents. For t h e annlysis of alloys containing nickcl, copprr, sulfur, phosphorus, and arsenic, Lur’e a n d Filippova (98) used phenol or resorcinol sulfonated resins to remove nickcl a t pH f i :md copper a t p H 5.5. Lassieur (96) discussed the use of cupferron in analytical chemistry. Shome (157) preferred S-henzoylphenylhydroxyl:imine to cupferron for the gravinwtric determination of copper,