Inorganic Microchemistry

(161) Wurzschmitt, B., Mikrochemie ver. Mikrochim. Acta, 36/37,. 614-27 (1951). (162) Ibid., pp. 769-80. (163) Zacherl, . K., Mitt. chem. Forsch.-Inst...
4 downloads 0 Views 1MB Size
ANALYTICAL CHEMISTRY

76 (133) Stetten, DeWitt, Jr., Ibid., 23, 1177-9 (1951). (134) Steyermark, A,, Alber, H. K., Aluise, V. A,, Huffman, E. W.

D., Kuck, J. A., Moran, J. J., and Willits, C. O., Ibid., 23, 523-8 (1951). (135) Stock, J. T., Metallurgia, 42,48-51 (1950). (136) Stock. J. T.. and Heath. P.. Ibid.. 42. 44 (1950). (137) Stohr; R., and Scheibl, F . , 'Mikrochemie vir. Mikrochim. Acta, 36/37,362-5 (1951). (138) Tamiya, N., J . J a p a n . Biochem. SOC.,22, 59-62 (1950). (139) Tanenbaum, M.. and Bricker, C. E., ANAL.CHEM..23, 354-7 (1951). (140) Taussky, H. H., J. Bid. Chem., 181, 195-8 (1949). (141) Teller, J. D., Ibid., 185, 7 0 1 4 (1950). (142) Thompson, J. F., and Morrison, G. R., BNAL.CHEM.,23, 11537 (1951). (143) Tsuzuki, Yojiro, Miwa, Makoto, and Kobayashi, Etsuro, Ibid., 23,1179-80 (1951). (144) Unterzaucher, J., Mikrochemie ver. Mikrochim. Acta, 36/37, 706-26 (1951). (145) Viswanathan, R., Biochem. J . , 48, 2 3 9 4 0 (1951). (146) Wagner, H., Mikrochemie ver. Mikrochim. Acta, 36/37, 634-40 (1951). (147) Wagner, H., and Biihler, F., Ibid., 36/37, 641-7 (1951). (148) Waldmann, H., Ibid., 36/37, 973-88 (1951).

(149) Walter, R. N., ANAL.CHEM.,22, 1332-4 (1950). (150) Wenger, P. E., Mikrochemie ver. Mikrochim. Acta, 36/37, 94103 (1951). (151) West, P. W., ANAL.CHEM.,23, 176-80 (1951). (152) White, L. M., and Long, M.C., Ibid., 23, 363-5 (1951). (153) Wiberley, J. S., Ibid., 23, 656-9 (1951). (154) Williams, H. A., Analyst, 75, 510-21 (1950). (155) Williams, M. B., and Reese, H. D., ANAL.CHEM.,22, 1 5 5 6 6 1 (1950). (156) Willits, C. O., and Ogg, C. L., J . Assoc. Oflc. Agr. Chemista, 34, 607-15 (1951). (157) Ibid., pp. 615-19. (158) Wilson, H. N., and Straw, H. T., J . SOC.Chem. I d . , 69, 7%82 (1950). (159) Wingo, W.J., Davis, 0. L., and Anderson, L., ANAL.CHEM., 22, 1340 (1950). (160) Wurzachmitt, B., Chem.-Ztg., 74, 419-23 (1950). (161) Wurzschmitt, B., Mikrochemie ver. Mikrochim. Acta, 36/37, 614-27 (1951). (162) Ibid., pp. 769-80. (163) Zacherl, M. K., Mitt. chem. Forsch.-Inst. I n d . osterr., 4, 27-9 (1950). (164) Zinneke, F., 2. anal. Chem., 132, 175-85 (1951). RECEIVED Kovember 8. 1951.

INORGANIC MICROCHEMISTRY PHILIP W. WEST Coates Chemical Laboratories, Louisiana State University, Baton Rouge, La.

T

HE present review is based on articles abstracted in Chemical Abstracts and B r i t i s h Abstracts during t h e past year. T h e scope of the review remains the same as t h a t of last year (368), a n d t h e reader is referred t o accompanying reviews on chromatography, microscopy, nucleonics, fluorometry, polarography, and spectroscopy for correlative information. Probably the most significant developments in inorganic microchemistry lie in the field of electrometric techniques. T h e extreme sensitivity of coulometric methods will undoubtedly influence t h e progress of titrimetric analysis, as will t h e use of high frequency oscillators, because sensitivity t o concentration changes at extremely high dilution will permit significant simplification of present titrimetric procedures. Oscillographic polarography employing platinum electrodes is a promising microchemical tool, and t h e studies of microelectrodeposition methods should be followed closely. A very interesting and significant trend is apparent in t h e chemical aspects of microchemistry, where it is now realized b y many investigators t h a t reagents are not all-important. Rather, i t is t h e reaction t h a t is significant-proper conditioning can produce very satisfactory procedures from general reagents t h a t have little selectivity when used directly. A lack of interest in t h e use of bioassay methods is apparent. T h i s is unfortunate, and it should prove very profitable for investigators t o consider such methods when faced with t h e problem of estimating extremely small amounts of inorganic materials. Methods of separation are of recognized importance and have been the subject of many interesting studies. Inorganic chromatography is being widely studied and increased interest is shown in extraction methods. REVIEWS

Reviews and general surveys of microchemistry and microchemical methods include t h e annual review of inorganic microchemistry (568), t h e suggestions of Benedetti-Pichler (32) for t h e development of microchemical methods, and a summary of t h e status of microchemistry in Austria b y Zacherl (591). T h e applications of microchemical methods have been discussed b y various authors (129, 268, 538, 541,367). Microchemical quali-

tative methods were reviewed (60, 166, 266, ,958, 294) and t h e possibilities of quantitative inorganic semimicromethods for instructional purposes were summarized b y Rulfs (301). Vandenbosch discussed (558) the value of polarography in microchemistry, colorimetric methods of trace analysis were reviewed b y Jones (17 6 ) , Sakaguchi considered t h e microchemical ) ~e s t discussed t h e microimportance of organic reagents ( 3 0 ~ 7K chemical applications of catalyzed and induced reactions (369), and Feigl and West reviewed ( 1 0 1 ) the state and outlook of spottest methods. APPARATUS

Steady progress is evidenced in the development of microchemical apparatus. Standardization is of obvious importance and is being studied in both Europe and t h e United States; t h e present status of standardization in this country was discussed by Alber (3). T h e most significant developments are logically in t h e construction of improved balances and a number of papers deal with t h e history (187),maintenance (585), and construction of various types (88, 167, 188) of balances. Electromagnetically controlled microbalances are very promising (86,235) and t h e improved radioactive electronic balance (103) should find Ride application because of its usefulness in measuring small differences (1 microgram and less) in objects weighing as much as 20 grams. Hodsman's discussion and report on microchemical balance design are of interest (167, 158). Various modifications of pipets and burets have been described (48, 4.9, and Buck and coworkers have suggested a calibration procedure for checking pipets and burets based on a real measurement of delivered droplets of dye (50). Miscellaneous microchemical devices include a low-power micromanipulator (19), a microdistillation and microsublimation apparatus (QS),stirrers (336), sulfide generators (337),reductor buret (loa), self-sucking capillary siphon (345), and a very useful extraction pipet (61). Flame spectrophotometry is a part of t h e broad field of spectroscopy, b u t warrants special attention here because of its value in certain microchemical determinations, particularly those of t h e alkali and alkaline earth metals. Flame photometers have been described b y Fox (11%)and Wilberg (579) and a flamephotometer attachment for t h e spectrograph has been proposed b y Schrenk and Smith ( 3 2 1 ) .

V O L U M E 2 4 , N O . 1, J A N U A R Y 1 9 5 2

77

Table I. Methods of Separation Subject Mg

As Sb Rh Sn

U

Se Te Ti

Mn Ca Ba

Sr K Bi Cd Fe

Operation Separation (from Na and K) by coprecipitation with AgzO.zHz0 Chromatography Gathered by means of MnOz.Hz0 Chromatography Comulexation with tartrate Chromatography Extraction of triphenylbenzylphosphonium salt Extraction of Sn (I1 and IV) fluorides with Et20 Complexation with tartrate Chromatography Precipitation with protein with Et20 Extraction of ~02(Iu'o3)2 Extraction of cupferrate with CHaCL Complexation by means of fluoride Chromatography Distillation with HBr-Brz Coprecipitation with Se as gathering agent Extraction of 6,7-dibromo-8-hydroxyquinolates with benzene Complexation with tartrate Chromatography Precipitation using RZg(0H)z rn gathering agent Chromatography Coprecipitation with PbSO Chromatography Chromatography Chromatography Chromatonrawhv Chromato&abh> Pptn. with pyridine (separation from Xi, Co Zn Cd Cu) Pptn.' widh cLpferron [se aration from :'?:,Be, Cr, P, B, Mn, 8 0 , Ni, Zn, u

Reference (957)

co

Mo (960,351)

cu

Operation Extraction of 1,2-cycloheptanedionedioxime complex with CClr eomwlexation bv means of fluoride Chromatography Complexation by means of fluoride Chromatography Extraction of Mo chlorides with Et20 Complexation with tartrate Extraction of dithizonate Extraction of cupferrate with CHCla Extraction Chromatography using di-2-napbthylthiocarba-

Reference

Hg

zone Chromatography Extraction of dithizonate Complexation with tartrate V Extraction of dithiocarbamate complex Extraction of dithiocarbamate complex A1 Complexation with tartrate Chromatography Chromatography Be Chromatography Sulfate Demasking of cyanide complexes Demasking of fluorides Chromatography Y and D y Ion exchange with citrate elution (separation) Th Extraction of T h salicylate with EtOAc Eta0 Rare Extraction of 5.7-dichloro-8-hvdroxvearths quinolinates Volatilization in stream of SzCli Chromatography Sa Extraction of quinalizarin complex with AcOEt Pa Complexation through use of tartrate Pd Extraction of dimethylglyoxime complex into CHCla Complexation as pyrophosphate Pt Extraction of Pt(I1) dithizonate Au Extraction of dithizonate Extraction of HAuCL using AcOEt

Zn

gyanides

+

lVlll

Extraction of FeCla with ethers (separation) Extraction of cupferrates using CHClr Complexation with tartrate Complexation with phosphate or fluoride Chromatography

Subject Ni

( 1 7 , 58, 981, 361) (58) (161)

(66,15'1, 909, 373) ( 5 , 56, S88)

T h e high-frequency oscillator for titrimetry (251) is of potential value for microchemical work, as is t h e microconductometric titrator suggested by Stock (336). A gas analysis microapparatus employing solid absorbents has been described (79) and t h e iodine meter of Ehmert (87) is a significant development. T h e meter operates on depolarization effects and is sensitive t o microgram of iodine in 1 ml. of solution. SEPARATIONS

T h e discussion of separations deals mainly with techniques such as chromatography, extraction, and complexation (see Table I). Precipitation methods are so well established t h a t it seems impractical t o attempt their inclusion here. Separation by precipitation is undergoing important development, however, and new organic precipitants, gathering agents, complex reagents, and homogeneous precipitation methods should be considered carefully for t h e solution of separation problems. T h e general review of separation methods b y Mellon (222) is of importance t o the microchemist. T h e discussion b y West (377) of t h e various techniques used in complex separations in metallurgical analysis should also be consulted. T h e article by Willard and Sheldon (382) is thought-provoking as are the papers by Jewsbury and Osborn (171)and M u r t h y and Rao (245)dealing with basic salt precipitations. T h e microscheme of nonhydrogen sulfide of Querol and Kilson (288) should find use. Romano has presented a scheme of group precipitations followed b y iinal chromatographic separations (298) for use in toxicology. Separations based on density differences as described by Novikov (264) have possibilities for microchemical work. Extraction methods are gaining in popularity. T h e y are often as complete and sharp as precipitation procedures and are usually more rapid t o perform. Morrison has reviewed the analytical uses (233) of liquid-liquid extraction and Abrahamczik ( 1 ) has discussed the use of chelating agents in the separation of metals b y means of solvent extraction. Gorbach and Pohl (130) have

suggested various extractions for use in the enrichment of &all quantities of metals. An impressive number of contributions have appeared dealing with t h e chromatographic (and ion exchange) separation of inorganic materials and the reviews on the mbject should be consulted (193, 263, 274, 512, 348, 556). Discussions of inorganic capillary analysis (110), the comparative v a h e of variow organic solvents in paper chromatography (209), t h e effect of humidity and light on t h e efficiency of certain separations (108),the possible use of chelating exchange beds (223),and t h e studies on the nature of inorganic-alumina chromatograms (313) are all of fundamental interest. Lederer (202)has reported Rf values for 42 inorganic cations in three different solvents using paper chromatography. Burstall and associates have conducted broad studies on the use of cellulose for inorganic separations (55, 66). Pollard and coworkers (276, 277) and Lacourt et al. (206) have likewise made detailed studies of paper chromatography. T,he use of 8-quinolinol columns has been studied b y Robinson (296). T h e work of Rogers on t h e separation of minute quantities of metals (297) b y means of electrodeposition is of special interest.

Table 11. Gravimetric Analyses Subject Alkali metals Na Cd co cu Pb Ge Ni T1 U V Zr

hlethod

Reference

Manganese uranyl acetate Diantipyrylmetbane, (pptn. of CdBrr Salicylaldehyde semicarbasone Benzbydroxamic acid Benahydroxamic acid Chromate ~. .~ ~ ~

~

-

.

Various methods 12-Cycloheptanedione dioxime Dimethylglyoxime (aqueous soln.) Benshydroxamic acid Pptn. as Co(NHa)sTlCl6 8-Quinolinol Various methods Mandelic acid Phthalic acid

78

ANALYTICAL CHEMISTRY Table 111. Titrimetric Analyses

Subject Alkali metals Na

K

Method Zinc uranyl acetate (alkalimetric titration) Cobaltinitrite (iodometrio)

Alkaline earth __ metals Ca Ethylenediaminetetraaoetate Halides F Th(N0dr F~SO~.(NH~):SOI titration of free chlorine c1 Iodometric (ultramicrodetermination) Hg N o d s (high fre uency titration) Ba&h (sodium r h o k m n a t e indicator) BaClt (ethylenediaminetetraacetate) NaOH (high fre uency titration) Be XaOH (mannito? procedure) B NazS (potentiometric) Cd Diethyldithiocarbamate Excess Ce(1V) added. back-titrated with In

Table IV. Reference

(SO) (80)

(196, 880, 384)

Fe

E:

He Pb AP

-

Ti V

Zn

Subject Alkali metals Na Li Rare earths Ce Platinum metals Pd. P t , R h Halides C1

Br F

Sulfur family Sulfide, sulfite Thiocyanate AI Sb

Spot Tests

Reagent or Method

Reference

Fluoaluminic acid Fluoferric aoid Resorcinolsulfonic acid 6,8-Dichlorobenzoyleneurea l,&Dihydroxyanthraquinone Benzidine p-Nitrosodiphenylamine

+

KBr Fluorescein Fluorescein Etch test indicator paper Al(0H)r

+

MnOz and benzidine and thiosulfate Catalysis of iodide-azide reaction l&Dihydroxyanthraquinone

Bi Cd

Dieth ldithiocarbamate Fer(S8r) i FeSOr -( NHI)ZSZOLI Diethyldithiocarbamate

co

Co(

c 11

o-Nitrosophenol Antipyrine Catalysis of K H phthalate decomposition Aniline ~ariii~ tests s Pararosaniline hydrochloride Catalytic Various tests 2-Thenoyltrifluoroaretone Catalvsis of K H Dhthalate decomnosition Citrinin

GRAVIMETRIC ANALYSIS

T h e work on gravimetric methods of microanalysis is summarized in Table 11, I n addition, the methods of automatic gravimetry hold potential promise and thermolysis curves themselves give valuable information to the microanalyst (81).

-411 Hi Fe

(267) (46)

(887)

(86si

(370) 1147) (X'66) (68) (L6) (8071

TITRIMETRIC ANALYSIS

One of t h e most significant trends in titrimetric analysis is the inte,rest in electrometric methods for the detection of end points (30-41, 76, N 8 ,261). High frequency, coulometric, and amperometric titrations are potentially more sensitive than conventional methods baaed on optical indication of end points and can be expected t o undergo careful investigation in the future. T h e articles describing titrimetric procedures are listed in Table 111.

Xi

Dimeth ylglyoxime benzidine Molybdate Various tests Oxalohydroxamic acid Fluorescence in ultraviolet light Various tests K!Fe.(CNh Dithizone PbS (observe fading under ultravi olet light) MnOE and benzidine Turnbull's blue (NH4)MoOi PdS04

+

Si i3r" V Zn

HzOr C y ani d e

Carbon monoxide

+

SPOT TESTS

A summary of the development, present status, and prospects for future development of spot tests was presented by Feigl and West (101). Hahn (146), Gillis (180, I d I ) , and Malissa (216) have discussed t h e question of detection limits and methods for expressing sensitivities. West and Hamilton have studied the variation in sensitivity (37'6) of selected tests caused b y variation in reaction media (as much aa a hundredfold change in sensitivity may be found in going from one spot-test paper t o another). Reports on the application of spot tests include studies of cellulosic fibers (819), metal finishes (206), nickel alloys and stainless steels ( W ) ,bauxite (97), steels ( 8 9 4 , toxicology (698), and industrial waates (58). Odekerken has published (265) a spot-test scheme for identification of a large number of anions. PFibil (680,281) and Tsubaki (563)have suggested test,s for various ions. Individual spot tests are listed in Table IV. COLORIMETRIC ANALYSIS

Table V listing various colorimetric determinations is presented as correlative material because of t h e close relationship between colorimetry and microanalysis. Critical discussion of the principles and methods of colorimetry will be found under the review of absorption spectrophotometry. I n addition t o the determinations listed in Table V, a number of colorimetric procedures are collected and presented in t h e papers by Barnard and Telford (80), Butts and collaborators (69), Murakami (848), Rasmussen and Rodden (895), and Jones (176).

ORGANIC REAGENTS

T h e development of organic reagents and the design of new reactions for their use are probably t h e most important field in the general development of inorganic microchemistry. Consideration of the literature of microchemical methods shows the use of organic reagents in separations as sequestrants, precipitants, ion exchange materials, elutants, and extractants. Certainly, the progress in gravimetry, titrimetry, colorimetry, and spot tests is controlled significantly by the availability of new reagents. Some articles have appeared which have general interest, including the paper on ion exchange beds having free chelating groups (113)and the discussion by Feigl and Schaeffer (99) of the destruction of chelates by wet oxidation so t h a t masking effects can be eliminated. West and Conrad (872) made a study of coprecipitation occurring in the use of some organic precipitants, and Blay and Warren (46)have pointed out that pure l-nitro-2naphthol is not a reagent for cobalt, as reported, but is contamination of the parent nitroso compound t h a t gives rise t o reactivity. T h e reactivity of certain functional groups and the develop ment of some organic reagents have been reviewed by Jonckers (174). T h e reactions of metals in molten &quinolinol (96) has interesting implications. BIBLIOGRAPHY (1) Abrahamczik. E m s t , Mikrochemie ver. Mikrochim. Acta, 36/37, 104-12 (1951). Use of organic complex f o r m e r s f o r separation and determination of metal (ions) by shaking with immiscible

Bolvent.

VOLUME

2 4 , NO. 1, J A N U A R Y 1 9 5 2

79

(2) Abramson, E., and Kahane, E., Bull. SOC. chim. France, 15, 1 1 4 6 9 (1948). Microdetermination of boron in organic substances. (3) Alber, H. K., Mikrochemie v e r . Mikrochim. Acta, 36/37, 75-90 (1951). Standardization of microchemical apparatus, present status in United States of America. (4) Allen, J. A., and Holloway, D. G., Nature, 166, 274-5 (1950). Colorimetric estimation of silver. (5) Al-hlahdi, A. K., and Wilson, C. L., Mikrochemie uer. Mikrochim. Acta, 36/37, 218-23 (1951). Chromatography of organometallic complexes. ( 6 ) Alvarez, E. R., Anales direc. gen. ofic. q u h . nacl., 2, 88-90 (1949). Detection and determination of small concentrations of palladium with 1-nitroso-2-naphthol and 2-nitroso-lnaphthol. (7) Anderson, K., and Revinson, D., ANAL.CHEM.,22, 1272-4 (1950). Use of high-frequency titrimeter. Volumetric determination of beryllium. (8)Ardcn, T. V., Burstall, F. H., and Linstead, R. P., J. Chem. Soc., 1949 (Suppl. Issue, KO.2), S 311-13. Kew method for detection and determination of uranium. (9) Augusti, S.,Ind. aernice, 3, 226-9 (1949). Microchemical detection of anions in inorganic pigments removed from pain& ings. (10) Ayres, G. H., and Meyer, A. S.,Jr., ANAL.CHEM.,23, 299-304 (1951). Spectrophotometric study of Pt(1V)-Sn(I1) chloride system. (11) .4yres, G. H., and Quick, Q., Ibid., 22, 1403-8 (1950). Determination of iridium in perchloric, phosphoric, and nitric acid mixtures. Spectrophotometric study. (12) Ayres, G. H., and Tuffly, Bartholomew, Ibid.,23,304-8 (1951). Spectrophotometric determination of molybdenum with phenylhydrazine hydrochloride. (13) Ayres, G. H., and Young, Frederick, Ibid., 22, 1277-80 (1950). Spectrophotometric study of ruthenium-thiourea complex. (14) Ibid., pp. 1281-3. Spectrophotometric study of rutheniumdithio-oxamide complex. (15) Babko, A. K., and Kodenskaya, V. S., Zavodskaya Lab., 16, 643-8 (1950). Use of nonaqueous solvents for thiocyanate method of colorimetric determination of iron. (16) Back, 3. M., and Raggio, J. A., Rev.obras. sanit. nacion., 13, No. 132, 28-32 (1949). Colorimetric determination of small quantities of aluminum in water.

Table V. Subject Alkali metals

li

Method Cobaltinitrite Dipicrylamine

+ Griess reaction

(17) . . Bane. R. W..and Grimes. W. R.. Katl. Nuclear Enerev Ser.. Div. VIII, 1, Anal. Chem. Manhattan Project, -k5-37 (1950). Iron, cobalt, and nickel. (18) Banks, T. E., Tupper, R. L. F., and Wormall, A., B i o c h J., 47, 466-9 (1950). Fate of some intravenously injected zinc compounds. Determination of &Zn in tissues. (19) Barer, R., and Saunders-Singer, A. E., J . Sci. Instruments, 28, 65-8 (1951). Low-power micromanipulator and microdissector. (20) Barnard, R. L., and Telford, R. E., Natl. Nuclear Energy Ser., Div. VIII, 1, Anal. Chem. Manhattan Project, 469-82 (I 950). Titanium, zirconium, and hafnium. (21) Barnes, H., Analyst, 75, 388-9 (1950). Modified 2,4-xylenol method for nitrate estimation. (22) Rassett, L. G., and Byerley, UT., Natl. Nuclear Energy Ser., Div. VIII, 1, Anal. Chem. Manhattan Project, 339-49 (1950). Sodium, potassium, rubidium, and cesium. (23) Bates, E., and Belcher, R., A n d . Chim. Acta, 3, 405-8 (1949). Analytical chemistry of sodium. Fluoaluminic acid and fluoferric acid as reagents for sodium. (24) Ibid.,pp. 409-11. Resorcinosulfonic acid as reagent for sodium. (25) Ibid., pp. 412 -16. 6,8-Dichlorobenzoyleneureaa8 reagent for sodium. (26) Beck, G., Mikrochemie ver. Mikrochim. Acta, 34,282-5 (1949). Determination of scandium with quinalizarin and relation of scandium pyrophosphate to scandium phytate. (27) Beerstecher, E., ANAL. CHEM.,22, 1200-2 (1950). Micromethod for estimation of potassium by paper chromatograPhy. (28) Beeson, K. C., and Gregory, R. L., J. Assoc. OBc. Agr. Chemistr, 33, 819-27 (1950). Determination of copper and cobalt in plants. (29) Belcher, R., and Goulden. R., Ind. Chemist., 26, 522-4 (1950). Analysis for industry. New reagents. (30) Belcher, R., and Nutten, A. J., Anal. Chim. Acta, 4, 595-601 (1950). Analytical chemistry of sodium. Alkalimetric determination of sodium after precipitation as sodium zinc uranyl acetate. (31) Belyavskaya, T. A., Vestnik Moskov. Univ., 5, No. 5, Set. Fir.M a t . i. Esteat. N a u k , No. 3, 59-62 (1950). Microdetermination of sodium with manganese uranyl acetate. (32) Benedetti-Pichler, A. A., Mikrochemie ver. Mikrochim. Acta, 36/37, 38-53 (1951). Suggestions for development of microchemical methods.

Colorinmetric Analyses

Reference (378) ($80)

(244)

Thiourea 1-h-itroso-2-naphthol SnClz HCIO, HiPOi HSOI Dithio-oxamide Thiourea

(10) (11)

+

Halides oc1Clr F

+

sod-ucsAI Sb

family

(85) (6)

(24)

(863) (343)

% n acetate (pptn. of ZnS)

(800) (187) 1106)

Fe(N0B)t

Stilbazo

(44)

(5’6) (180)

(340)

(168)

sc Si

Bi B Cr co

cu

Ni

NO, -

AS

Be

Rlorin Chromotrop 2B Diphenylcarbazide Thiocyanate f ethyl alcohol Dimethylglyoxime HC! a-Nitrosocresol Tetraphenylarsonium chloride Sodium diethyldithiocarbamate Direct green B

(170)

Ag

(165’) (848)

w

(88) (17) (88, 230, 316, 566) (87.2)

v

(966,5’76) (170) (502)

Dithizone Dithio-oxamide .Pyridine salicylic acid Cuproin o-Tolidine Thiocyanate Thioglyoolic acid 1,lO-Phenanthroline 2.2’-Binvridine PerronDimethylglyoxime Pyrocatechol Citrinin Titan yellow 8-Quinolinol sulfanilic acid p-Nitrobenzene-azo- 1-naphthol Ethylenediaminetetraacetate ( + bismuthate) Tetramethyldiaminodiphenylmethane Periodate Dithiaone Di-2-naphthylthiocarbazone Pyrocatechol HzOz Thiocyanate Phenylhydrazine hydrochloride Dimethylglyoxime strong oxidant Dimethylglyoxime Phenoldisulfonic acid Hydrostrychnine 2,4,Xy!enql Quinalizarin Molybdate (extraction with BuOH) Molybdate Rhodanines Benzidine SnClz Various reagents Ha01 Oxalohydroxamic acid Dithiocarbamate Dithizone Alizarine S

+

(23)

Phenol aq. XH: o-Tolidine Zr alizarine lake Silicomolybdic acid Ti HzOa ,4gX01 ultraviolet light AgNOt followed by dithisone titration

+ +

c1 Sulfur

+

Reference

+

Au Fe Benzidine

Method

Subject

T1

U

Zn Zr

+

(140) (826, 386) (131) (161)

(300) (15,68, 5’04) (1 7, 388) (17, 138)

80 (33) Berenbom, M., Sober, H. A., and White, J., Arch. Biochem., 29, 369-75 (1950). Simultaneous quantitative and isotopic analysis by isotope dilution. (34) Berg, K. B., and Reimers, F., Dansk Tids. Farm., 24, 316-20 (1950). Purity tests. Detection of iron with thioglycollic acid. (35) Bergamini, Clara, Anal. Chim. Acta. 4, 153-8 (1950). Masking of molybdenum complexes by fluoride ions. Spectrophotometric study. (36) Biffen, F. M., ANAL.CHEM.,22, 1014-17 (1950). Determination of sodium and potassium in refractory materials, using flame photometer. (37) Bischoff, F., Mikrochemb ver. Mikrochim. Acta, 36/37, 251-4 (1951). Volumetric microdetermination of high titanium concentrations, particularly in presence of niobium. (38) Blaedel, W. J., and Malmstadt, H.V., A N A L . C H E M .1410-12 ,~~, (1950). High-frequency titrations. Mercurimetric determination of chloride. (39) Ibid., pp. 1413-17. High-frequency titrations. 350-megacycle titrator. (40) Blake, G. G., Analyst, 75, 689 (1950). Application of radiofrequencies to conductometric analysis. (41) Blake, G. G., Chemistry & Industry, 1951, 59. Oscillator to supply current for rectified radio-frequency acid-base determinations. (42) Blay, N. J., and Warren, L. A., Analyst, 76, 115 (1951). 1Nitro-2-naphthol as reagent for estimating cobalt. (43) Boettcher, A.. and Hellwig, E., 2. anorg. Chem., 263, 39-46 (1950). Colorimetric method for quantitative analysis of binary alloys. (44) Boonstra, J. P., Rec. trap. c h i n . Pays-Bas, 70, 325-30 (1951). Modification of Sanchis method for determining fluoride in drinking water. (45) Bottomley, G. A., Analyst, 75, 501 (1950). Delicate test for cupric and ferric ions in aqueous solution. (46) BouissiBres, G., and Ferradini, C., Anal. Chim. Acta, 4, 610-14 (1950). Use of dithizone for separation and purification of radium-D, radium-E, and polonium. (47) Brewster, D. A., and Clausen, C. J., Iron A g e , 166, No. 18, 8892 (1950). Sodium content in aluminum speedily analyzed. (48) Brit. Standards Institution, British Standard Specifications, No. 1428, Pt. D2 (1950). Washout pipets. Microchemical apparatus Group D, volumetric apparatus. (49) Buck, J. B., Rev. Sci. Instruments, 20, 676-7 (1949). Versatile microinjection and micropipetting syringe. (50) Buck, J. B., Keister, M. L., and Zelle, M. R., Anal. Chim. Acta, 4, 130-4 (1950). A real method for calibrating microburets. (51) Burriel-Marti, F., and Perez, F. P., Ibid., 3,468-75 (1949). Application of chromatographic technique to qualitative analysis of traces of nickel. (52) Ibid., 4, 333-9 (1950). Demasking of cyanide complexes. Application to reactions with dimethylglyoxime. (53) Burriel-Marti, F., and Ramirez-Munoa, J., Anales. real SOC. espail. fis.g guim.,47,201-14 (1951). Methods of preliminary concentration in spectroscopic analysis of bismuth in alloys containing lead by means of cupferron. (54) Burriel-Marti, F., and Ramirez-Munos, J., Mikrochemie urn. Mikrochim. Acta, 36/37, 495-512 (1951). Preliminary concentration in spectrochemical determination of trace elements. ( 5 5 ) Burstall, F. H., Davies, G. R., Linstead, R. P., and Wells, R. A,, J . Chem. Soc., 1950,516-28. Inorganic chromatography on cellulose. Separation and detection of metals and acid radicals on strips of absorbent paper. (56) Burstall, F. H., Davies, G. R., apd Wells, R. ii., Discussions Faraday Soc., Xo. 7, 179-83 (1949). Inorganic chromatography on cellulose. Columns of cellulose for separation and determination of metals. (57) Busev, A. I., and Korets, N. P., Zavodskaya Lab., 15, 30-4 (1949). Colorimetric determination of bismuth in lead with thiourea. (58) Butts, P. G., Gahler, A. R., and Mellon, M. G., Metal Finishi n g , 49, KO.4, 50-63 (1951). Colorimetric determination of metals in industrial wastes. (59) Butts, P. G I Gahler, A. R., and Mellon, M. G., Sewage & Ind. Wastes, 22,1543-62 (1950). Colorimetric determination of metals in sewage and industrial wastes. (60) Capelen, P. T.. Tids. K j e m i , Bergvesen Met., 9, No. 2, 23-5 (1949). Semimicro qualitative analysis. (61) Carlton, J. K., ANAL.CBEM.,22, 1072 (1950). Extraction pipet for spot-test analysis. (62) Cefola, hl., Andrus, 77’. S., Miccioli, B. R., and Yanowski, L. K., Mikrochemie ver. Mikrochim. Acta, 35, 439-42 (1950). Color reaction of iron with TTA. (63) Chekhovich, M. D., and Shcherbov, D. P., Zavodskaya Lab., 16, 405-14 (1950). Photocolorimetric determination of nickel in ores.

ANALYTICAL CHEMISTRY (64) Chem. Age, 63, 426-7 (1950). Tannin in chemical analysis. (65) Chernikhov, Yu. A., and Dobkina, B. M., Zavodskaya Lab., 16, 402-5 (1950). Determination of vanadium and aluminum with sodium diethyldithiocarbamate. (66) Clardy, F. B., U. S. Patent 2,452,036 (Oct. 26, 1948). Determination of nickel in steel. (67) Colin, L. L., J . Chem. Met. Mining SOC.S. Africa, 50, 314-19 (1950). Use of tannin in chemical analysis. (68) Corbett, J. A., Analyst, 75, 475-80 (1950). Colorimetric determination of impurities in titanium metal. Iron and manganese. (69) Cornfield, A. H., and Pollard, A. G., J . Sei. Food Agr., 1, 107-9 (1950). Use of tetramethyldiaminodiphenylmethane for determination of small amounts of manganese in plant material and soil extracts. (70) Ibid., pp, 357-8. Use of titan yellow for determination of magnesium in plant material. (71) Crandall, W.R., ANAL.CREM.,22, 1449-50 (1950). Rapid test for fluoride ion. (72) Dalen, E. van, and de Vries, G., Anal. Chim. Acta, 4, 235-41 (1950). Spot test for silicic acid for reduction of silicomolybdic acid. (73) Dasgupta, A. K., and Gupta, J., J . Sci. Ind. Research, 9B, 237 (1950). New reagent for uranium. (74) Davis, M. V., and Heath, F. H., J . Chem. Education, 27, 626 (1950). Qualitative separation of calcium ion from strontium ion in Group IV. (75) Dean, J. A., ANAL.CHEM.,23,202-4 (1951). Modified method for determining potassium. Removal of fluoride and sulfate ions by chromatographic ion exchange. (76) De Ford, D. D., Pitts, J. N., Jr., and Johns, C. J., Proc. Natl. Acad. Sci., 36, 612 (1950). Coulometric titrations with externally generated reagents. (77) Dirscherl, Adolf, Mikrochemie ver. Mikrochim. Acta, 38, 149-51 (1951). Quantitative microanalysis of gold-oleo solutions. (78) Dobbins, J. T., and Norman, H. H., J . Chem. Education, 27, 604-5 (1950). Improved qualitative test for zinc ion. (79) Dobrinskaya, A. A., Neiman, M. B., and Andreev, E. A., Zavodskaya Lab., 16, 934-8 (1950). Apparatus for gas microanalysis. (80) Doden, TV., and Rodeck, H., Biochem. Z., 320, 413-17 (1950). Empirical factor of 0-071 in potassium determinations. (81) Dodonov, Ya. Ya., and Khramov, V. P., J . Anal. Chem. U.S.S.R., 6 , 6 1 4 (1951). Determination of bromides and iodides in mineral waters. (82) Duval, ClBment, Mikrochemie ver. Mikrochim. Acta, 36/37, 425-66 (1951). Thermolysis curves described in book by Hecht and Donau. (83) Dwyer, F. P., and Gibson, N. A., Analyst, 76, 104-6 (1951). Microestimation of osmium in its organic compounds. (84) Dnyer, F. P. J., and Lions, Francis, J . A m . Chem. SOC.,72, 1545-50 (1950). Sexadentate chelate compounds. (85) Dykyj, J., and Cerny, J., Chem. Listy, 39, 84-91 (1945). New method of quantitative chromatography of inorganic cations. (86) Edwards, F. C., and Baldwin, R. R., ANAL.CHEM.,23, 357-61 (1951). Magnetically controlled quartz fiber microbalance. (87) Ehmert, Alfred. Z . Natz~rforsch,4b, 321-7 (1949). Measuring minute iodine concentrations and amounts of iodine and sodium thiosulfate in solutions. (88) El-Badry, Hamed, and Wilson, C. L., R o y . Inst. Chem. Lectures, Monographs Repts., 4 , 23-48 (1950). Construction and use of quartz microgram balance. (89) Elbeih, I. I. M., McOmie, J. F. IT., and Pollard, F. H., Discussions Faraday Soc., No. 7, 183-90 (1949). Application to qualitative analysis of separation of inorganic metallic compounds on filter paper by partition chromatography. (90) Elias, V. E., M o n . /arm. y t e m p . , 57, 23-5 (1951). Volumetric determination of magnesium in blood. (91) Engstrom, 8., J . Iron Steel Inst., 162, 372 (1949); Trans. Instruments & Measurements Conf., Stockholm. 71-5 (1947). Ultramicroanalysis by x-ray absorption spectrography. (92) Engstrom, A,, and Wegstedt, L., Acta Chem. Scand., 3, 1 4 4 2 4 (1949). Simple x-ray colorimeter. (93) Erdos, J., Mikrochemie Der. Mikrochim. Acta, 36/37, 417-19 (1951). Microdistillation and sublimation apparatus. (94) Ethrington, C. G., and Hughes, J. W., Analyst, 72, 472-5 (1947). Determination of small quantities of manganese in caustic soda. (95) Farhan, Mikrochemie ver. Mikrochim. Acta, 35, 560-4 (1950). Determination of traces of magnesium in aluminum with p nitrobenzene-azo-1-naphthol, Magneson 11. (96) Feigl, F., and Baumfeld, L., Anais assoc. quim. Brasil, 9, 7-13 (1950). Analytical value of reactions with molten 8-quinolinol.

V O L U M E 2 4 , N O . 1, J A N U A R Y 1 9 5 2 (97) Feigl, Fritz, Braile, Nicolau, and Ignacio Miranda, Luiz, Anuis 2' congr. panamer. eng., minas e geol., 11, Com. 1. 141-62 (1946). Solubilization of phosphorus-containing bauxite of Maranhao, Brazil. (98) Feigl, Fritz, and Schaeffer, A., ANAL.CHEN.,23, 351-3 (1951). Analytical use of formation of beryllium fluoride complex. (99) Feigl, F., and Schaeffer, A., Anal. Chim. Acta, 4,458-67 (1950). Analytical utilization of oxidative decomposition of organic compounds in wet way. (100) Feigl, F., and Steinhauser, M., Mikrochemie uer. Mikrochim. Acta, 35, 553-9 (1950). Spot tests for detection of hydroxylamine, hydrazine, and ascorbic acid in alkaline solution. (101) Feigl, Fritz, and West, W., Ibid., 36/37, 191-205 (1951). Development, present state, and outlook of spot test analysis. (102) Ferguson, R. C., Voter, R. C., and Banks, C. V , Ibid., 38,ll-14 (1951). 1,2-Cycloheptanedionedioximeas microgravimetric reagent for nickel. (103) Feuer, Irving, Ibid., 35, 419-30 (1950). Improvements in radioactive electronic microbalance. (104) Filippova, N. A , and Kuznetsova, L. I., Zavodskava Lab., 16, 536-46 (1950). Colorimetric determination of small quantities of phosphorus, arsenic, and silicon in nickel and copper. (105) Filippova, N. A., and Lur'e, Yu. Yu., Ibid., 16, 912-17 (1950). Determination of small amounts of zinc in pure nickel. (106) Fischer, R., and Langhammer, T.. Mikrochemie uer. Mikrochim. Acta, 34, 208-14 (1949). Identification of metals by determination of refractive index of precipitates obtained with organic reagents. (107) Flaschka, H., Ibid., 35, 473-6 (1950). Microvolumetric determination of iron. (108) Ibid., 36/37, 269-72 (1951). Microreductor buret. (109) Ibid., 38, 15-20 (1951). Titrimetric determination of iron with micro-R-buret. (110) Flood, H., Discussions Faradav Soc., No. 7, 190-5 (1949). Inorganic capillary analyses. (111) Ford, 0. W., J . Assoc. Ofic.Agr. Chemists, 33,268-84 (1950). Determination of potash in fertilizers. (112) Fox, C. L.. ANAL.CHEM.,23, 137-42 (1951). Stable internal standard flame photometer for potassium and sodium analyses. (113) Freund, Harry, Wright, M.L., and Brookshier, R. K., Ibid., 23, 781-4 (1951). Colorimetric determination of tungsten. (114) Freytag, H., Z . anal. Chem., 131, 77-81 (1950). Detection of hydrogen peroxide by lead sulfide. (115) Fyfe, W.S., ANAL.CHEM.,23, 174-5 (1951). Determination of trivalent and quadrivalent manganese. (116) Gabrielson, G., and Samuelson, O., Svensk Kem. Tid.,62, 2213 (1950). Utilization of ion exchange materials in analytical chemistry. Determination of potassium in presence of sulfate and phosphate. 1117) Gale, R. H., and hfosher, Eve, AXAL.CHEM.,22, 942-4 (1950). Determination of milligram quantities of vanadium in pressence of uranium. (118) Gavioli, G., and Traldi, E., Met. ital., 42, 179-81 (1950). Mandelic acid in determination of zirconium in steels and cast irons. (119) Geilmann, W., and Isermeyer, H., 2. anal. Chem., 131, 249-62 (1950). Microchemical flame analysis. (120) Gillis, J., Mikrochemie Der. Mikrochim. Acta. 36/37, 151-90 (1951). Graphical representation of sensitivity of tests; sensitivity diagrams. (121) Ibid., 38, 50-8 (1951). Absolute sensitivity of analytical reactions. (122) Gilman, H., and Smart, G. N. R., J . Org. Chem., 15, 720-40 (1950). Steric hindrance in highly substituted organosilicon compounds. Reaction of aryllithium compounds with chlorosilanes, ethoxysilanes, and related compounds. Silicon in organic compounds. (123) Glen, I(..and Schwab, R., Angew. Chem., 62, 320-4 (1950). Disubstituted dithiocarbamates (Carbates) as precipitation reagents for metals. (124) Glover, E.,Atomic Energy Commission, AECU-67, nd.; A-uclear Sci. Abstracfs, 4, 305 (1950). Isolation of microquantities of uranium by precipitation with protein prior to fluorometric determination of uranium. (125) Goddu, R. F., and Hume, D. N., ASAL. CHEM.,22, 1314-17 (1950). Determination of small amounts of vanadium in steel by photometric titration (126) Goldberg, C., Am. Foundryman, 18, KO.1, 66 (1950); Met. Abstracts, 18, 203 (1950). Colorimetric determination of nickel in hionel metal. (127) Goldstein, F., J . B i d . Chem., 187, 523-7 (1950). Colorimetric determination of thiocyanate in whole blood. (128) Golubtsova, E. A . . Zacodskaya Lab., 16, 623 (1950). Photometric determination of tellurium in Babbit.

81 (129) Gorbach, G., Mikrochemie v e t . Mikrochim. Acta, 36/37, 604-8 (1951). Outlines of applied microchemistry. (130) Gorbach, G., and Pohl, F., Ibid., 36/37,486-94 (1951). Microchemical enrichment methods in spectral analysis. (131) Gordieycff, V. A., ANAL.CHEM.,22, 1166-8 (1950). Colorimetric determination of copper with pyridine and salicylic acid. (132) Gordon, Saul, and Schreyer, J. M., Ibid., 23, 381-2 (1951). Tetrahydroxy cobalt (11)ion as qualitative test for cobalt. (133) Goto, Hidehiro, and Kakita, Yachiyo, Science Repts., Research Insts. Tdhoku Uniu., Ser. A, 1, 393-4 (1949). Catalytic analysis. Microdetermination of silver with Pulfrich photometer. (134) Ibid., 2, 249-54 (1950). Colorimetric determination of niobium and tantalum. (135) Goto, Hidehiro, and Suzuki, S ! h , J . Chem. SOC.J a p a n , 71, 7-9 (1950). Catalytic analysis. Microdetermination of copper and iron by reaction of pphenylenediamine and hydrogen peroxide. (136) Gottlieb, A., Mikrochemie ter. Mikrochim. Acta, 36/37, 370-8 (1951). o-Phenanthroline as reagent for determination of vanadium. (137) Grade, AI. R. S.,Rev. qulm. ~ p l . 1, , 184-5 (1950). New reactions for protoactinium. (138) Grat-Cabanae, Marguerite, Anal. Chim. Acta, 5, 116-18 (1951). Colorimetric determination of iron in phosphoric acid and ita salts. (139) Gritsyuta, S. D., Zhur. Anal. Khim., 5, 286-9 (1950). Cse of organic substances for determination of small quantities of nitrates. (140) Guenther, R., and Gale, R. H., ANAL.CHEM.,22, 1510-11 (1950). Spectrophotometric determination of traces of silicon in vanadium and uranium. 1141) Guenther, R , and Gale, R. H., U. S. Atomic Energy Commission, Rept. KAPL-305 (1950); Nuclear Sci. Abstracts, 4, 417 (1950). Determination of zirconium in presence of uranium by spectrophotometric method. (142) Gusev, S. I., Zhur. A n a l . K h i m , 5 , 375-80 (1950). Phot+ nephelometric determination of mercury with antipyrine iodide reagent. (143) Haberlandt, H., Mikrochemie ver. Xikrochim. Acta, 36/37, 1075-82 (1951). Detection of traces of rare elements by luminescence analysis. (144) Hach, d.,and Franke, H. W., Ibid., 33, 135-6 (1947). Detection of chloride and bromide with fluorescein. (145) Hahn, F. L., Anal. Chim. A c f a , 4, 583-94 (1950). Analytical applications of Complexones. Titration of calcium and magnesium. Determination of hardness of water. (146) Hahn, F. L., Mikrochemie wr. Mikrochim. Acta, 38, 26-32 (1951). Characterization of sensitivity of analytical reactions. (147) Ibid., pp. 136-41. Catalytic test for gold and preparation of gold and silver solutions free from nuclei. 1148) Hahn, R. B., J . Chem. Education, 27, 597 (1950). Flame testa in presence of sodium. (149) Haniset, Paul, Ing. chim. .32, 51-6 (1950). Colorimetric determination of iron by ferron. (150) Haniset, Paul, and Neirinckx, Gustave, Ibid., 32, 62-3 (1950). Colorimetric determination of ferrous iron in presence of ammonium tartrate by dimethylglyoxime and 2,4-pentanedione. (151) Haniset, Paul, Neirinokx, Gustave, and Vanderstappen, R., Ibid., 32, 57-9 (1950). Colorimetric determination of iron in presence of ammonium tartrate by pyrocatechol. (152) Hecht, Friedrich, and Barthelmus, Gertrude, Mikrochemie ver. Mikrochim. Acta, 36/37, 466-75 (1951). hlicromethods for determining germanium. (153) Hegedus, Andras, M a g y a r K e m . Folyoriat, 56, 141-3 (1950). Colorimetric microdetermination of boron with azo dye Chromotrop 2 B. (154) Hickenbotham. A. R., Analyst, 75, 502 (1950). Test for volatile substances present in-traces. Application to cyanide. (155) Higgins, G. H., and Street, K., Jr., J . Am. Chem. SOC.,72,53212 (1950). Ion exchange separation of europium, gadolinium, and terbium. (156) Hiskey, C. F., Rabinowitz, J., and Young, I. G., ~ A L CHEM., . 22, 1464-70 (1950). Principles of precision colorimetry. Measuring maximum precision attainable with commercial instruments. (157) Hodsman, G. F., Mikrochemie ver. Mikrochim. Acta, 36/37, 13242 (1951). Developments in microchemical balance design. (158) Hodsman, G. F., Roy. Inst. Chem. Lectures, Monographs Repls., No. 4, 5-15 (1950). Report on symposium on microbalances. hIicrochemica1 balance design. (159) Honda, hfasatake, J . Chem. SOC.J a p a n , Pure Chem. Sect., 71, 59-60 (1950). Ion exchange resin applied to chemical analysis. Separation of fluoride from heavy metal ions.

ANALYTICaL CHEMISTRY

82 (160) Hoste, J., Mededel. Vlaam. Chem. Ver., 12. 103-8 (1950). Determination of traces of metala by specific reagents. (161) Hoste, J., Heiremam, A., and Gillis, J., Mikrochemie mr. Mikrochim. Acta, 36/37, 349-61 (1951). Colorimetric determination of copper by means of Cuproin. (162) Hovorka, V., and Holzbecher, Z., Collection Czechoslov. Chem. Communs., 15, 117-19 (1950). Microchemical tests for sulfite, thiosulfate, sulfide, hydrogen peroxide, and formaldehyde. (163) Ibid., pp. 275-80 (1950). Gravimetric estimation of oadmium by thiosemicarbazone of salicylaldehyde. (164) Ibid., pp. 281-7 (1950). Microchemical test for manganese by means of diacetyloxime thiosemicarbazone. (165) Huffman, E. H., and Oswalt, R. L., J. Am. Chem. Soc., 72, 33234 (1950). Rareearth separation by anion exchange. (166) Ingram. Gerald, Chemist and Druggist, 155, 381-3 (1951). Microchemical analysis. Scope. Qualitative analysis. (167) Ingram, I. G., Metallurgia, 39,224-7 (1949). Submicrobalance and applications. (168) Iwantacheff. G., Angw. Chem., 62,361-2 (1950). Determination of low chloride contents by extraction titration of silver bound as silver chloride. (169) Jensovsky, Lubor, Chem. Listy, 42, 31-2 (1948). Simple modification of Gutzeit test. (170) Jewsbury, A,, and Osborn. G. H., A n a l . Chim. Acta, 3, 481-8 (1949). Photometric determination of boron with morin (2’3,4:5,7-pentahydroxyflavone) (171) Ibid., pp. 642-55 (1949). Analytical applications of ammonium benzoate. Uses and limitations for quantitative estimation of tin, titanium, zirconium, thorium, bismuth, and cerium, and their separation from other elements. (172) Johnson, C. M., and Ulrich, A,, ANAL.CHEM.,22, 1526-9 (1950). Determination of nitrate in plant material. (173) Johnson, H. C. E., Chem. Zndus., 67, 34-5 (1950). Microlab cuts research costs. (174) Jonckers, hi. D. E., Chim. Anal., 32, 207-11, 249-54 (1950). Reactivity and group action of organic reagents in inorganic analytical chemistry. (175) Jones, A. G., Analyst, 76, 5-12 (1951). Review of developments in use of Karl Fischer reagent. (176) Jones, A. G., I n d . Chemist, 27, 13-21 (1951). Colorimetric determination of trace elements. (177) Kassner, J. L., and Ozier, hi. A.,AKAL.CHEM.,22, 1216-17 (1950). Determination of phosphorus in alloys. (178) Kayama, Isao. J. Chem. SOC.J a p a n , Pure Chem. Sect., 71, 3840 (1950). Studies on catalytic analysis. Reaction 2NaNa IZ = 2NaI f 3Nz. (179) Kimura, Kenjiro, and Murakimi, Yukio, Mikochemie ver. Mikrochim. Acta. 36/37, 727-40 (1951). Application of new oxidizing agent, silver peroxide, in microanalysis. (180) Kitahara, Saburo, Repts. Sci. Research Inst., 25, 165-7 (1949). Ether extraction of fluorides or hydrofluoric acid solutions of various elements. (181) Klein, A. K., J. Assoc. Ofic. Agr. Chemists, 33, 592-3 (1950). Determination of cadmium in foods. (182) Ibid., pp. 594-7. Determination of mercury in foods, etc. (183) Klockmann, R., Pharm. Zentralhalle, 87, 165-7 (1948). Detection of sodium as sodium uranyl acetate. (184) Knop, Josef, Chem. Listy, 41, 273-84 (1947). New, very sensitive color reactions of magnesium. (185) Knuth-Winterfeldt, E.,Acta Chem. Scand., 4, 963-4 (1950). Simplified method for colorimetric determination of molybdenum in steel. (186) Kochanovska, A , , Trans. Instruments & Measurement8 Con!., 76-8 (1947); J . Iron Steel Inst., 162,372 (1949). Adaptation of secondary x-ray analysis for industrial purposes. (187) Komarek, Karel, Cheniie, 4, 6-8 (1948). Origins of microbalances. (188) Korenman, I. hi.. Fertel’meister, Ya. N., and Rostokin, a.P., Zavodskaya Lab., 16, 800-6 (1950). Torsion ultramicrobalances. (189) Koritnig, Sigmund, 2. anal. Chem., 131, 1-3 (1950). Determination of small quantities of fluorine in minerals. (190) Kosel, G. E.,and Neuman, W. F., ANAL.CHEM.,22, 936-9 (1950). Color reaction of beryllium and aurin tricarboxylic acid. Quantitative studies. (191) Kozlovskil. M.T.,and Gushchina, S. P., Zauodskaya Lab., 16, 554-7 (1950). Chronometric determination of very small amounts of bismuth. (192) Kfepelka, J. H.,and Houda. M., Chem. Listy, 41, 173-8 (1947). Colorimetric determination of thallium. (193) Kunin, R., AXAL.CREM.,22, 64-5 (1950). Ion exchange. (194) Kuroda, P.K., and Sandell, E. B., Ibid., 22, 1144-5 (1950). Determination of chlorine in silicate rocks. (195) Kuznetsov, V. I., Karanovich, G. G., and Drapkina, D. A., Zauodskaya Lab., 16,787-92 (1950). Colorimetric determination of aluminum with new reagent, stilbazo. I

+

(196) Lacourt, A.. Sommereyns, G., and Degeyndt, E., Mededel. Vlaam. Chem. Vm., 12, 91-4 (1950). Inorganic paper chromatography. (197) Lacourt, A.,Sommereyns, Gh., and Degeyndt, E., M i k r o c h i e um. Mikrochim. Acta, 36/37,312-21 (1951). New chromrtographic separation of microgram quantities of iron, titanium, and aluminum. (198) Lacourt, A.,Sommereyns, G., Degeyndt, Ed., Gillard, J., and Baruh, J., Ibid., 12, 7&84 (1950). Separating power of organic solvents in inorganic paper (adsorption) chromatography. (199) Lacourt, A.. Sommereyns, Gh., Degeyndt, Ed. and Jacquet, Od., Mikrochemie uer. Mikrochim. Acta, 36/37, 117-32 (1951). New chromatographic method for separating cations (on paper) with aid of organic solvents. (200) Lea, H. B., Am. SOC.Testing Materials, Symposium Rapid Methoda for Identification of Metals, pp. 69-72 (1949), (1950); Met. Abstracts, 18, 620 (1951). Field-test kit and procedure for rapid identification of nickel alleys and stainless steels. (201) Lederer, Michael, Anal. Chim. Acta, 3, 476-80 (1949). SeDaration of copper and tin groups by partition chromatography on paper. (202) Ibid., 4, 629-34 (1950). Paper chromatography of inorganic cations. (203) Lefeve, R.,and Sneyders, R., Mededel. Vlaam. Chem. Vcr., 12, 99-101 (1950). Microchemistry of old paintings. S e w method of preparing sections. (204) Leithe, W.,Mikrochemie uer. Mikrochim. Acta, 36/37, 265-8 (1951). Volumetric microdetermination of nitrates, (205) Le Peintre, hiarcel, Compt. rend., 231,968-70 (1950). Spectrophotometric determination of calcium in water, using chloroanilic acid. (206) Lewis, A,. and Evans, D. R., Am. SOC.Testing Materials. “Symposium on Rapid Methods for Identification of Metals;” pp. 58-60, 1949 (1950); Met. Abstracts, 18, 622 (1951). Rapid identification of metal finishes. (207) Liang, Shu-Chuan, Science Record, 2, 373-6 (1949). Detection and colorimetric determination of iron by citrinin. (208) Liberti, Arnaldo, and Cervone, Elena, Atti. accud. nazl. Lincei. Rend. chsse sci. fis., mat. e nat., 8, 613-19 (1950). Amperometric titrations with mercaptothiazole. (209) Llacer, -4.J., and Soszi, J. A . , Mikrochemie zer. Mikrochim. Acta, 36/37, 239-44 (1951). Test for cobalt. (210) Lurie, Yu. Yu., and Ginzburg, L. B., Zavodskaya Lab., 15, 2130 (1949); Met. Abstracts, 18, 287 (1950). C’olorimetric methods of determining bismuth. (211) McBryde, W.A. E., and Cluett, M. L., Can. J . Research, 28B, 788-98 (1950). Volumetric determination of small amounts of indium. (212) Mackay, R. A., Bull. Inst. M i n i n g Met.. 60, 129-31 (1951). Detection of columbite (niobite) by ultraviolet light. (213) hicKenna, F.E.,and Templeton, D. H., Natl. Suclear Energy Ser., Div. VIII, 1, Anal. Chem. Manhattan Project, 303-20 (1950). Sulfur, selenium, and tellurium. (214) Mader, P. P., Hamming, W. J., and Bellin, A., ANAL.CHEX.. 22, 1181-3 (1950). Determination of small amounts of sulfuric acid in atmosphere. (215) hlajumdar, A. K., and Sen, B.. J . Indian Chem. Soc., 27, 24550 (1950). Colorimetric estimation of iron with quinaldinic acid, critical study. (216) hlalissa, H.,Mikrochemie uer. Mikrochim. Acta, 38, 3 3 4 9 (1951). Sensitivity of microanalytical reactions. (217) Marks, H. C.,Williams, D. B., and Glasgow, G. U., J . Am. Water W o r k s Assoc., 43, 201-7 (1951). Determination of residual chlorine compounds in water. (218) Mason, A. C., Analyst, 76, 176-7 (1951). Improved technique for precipitation of potassium with sodium cobaltinitrite. (219) Matlin, N. A., Am. Dyestuf Reptr., 40, 44-8 (1951). Spot-test analysis of ash of natural cellulosic fibers. (220) Mattocks, A. M., and Hernandez, H. R., J . Am. Pharm. Assoc., 39, 519-20 (1950). Assay of official calcium products by Schwarzenbach method. (221) Meek, H. V., and Banks, C. V., ANAL.CHEM.,22, 1512-16 (1950). Spectrophotometric determination of beryllium in aluminum with sulfosalicylic acid. (222) Mellon, M. G., Ibid., 22, 1342-6 (1950). Role of separations in analytical chemistry. (223) Mellor, D. P., Australian J. Sci., 12, 183 (1950). Possible method for removal of trace elements from solutions. (224) Miller, C. C.,and Currie, L. R., Analyst, 75, 467-70 (1950). Microgravimetric determination of lead in white metals, fusible alloys, and copper-base alloys. (225) Ibid., pp. 75, 471-5. Microgravimetric determination of lead in bronzes. (226) Miller, W. L.. Geld, Isidore, and Quatinetz, Max, ANAL.CHEM.

V O L U M E 2 4 , N O . 1, J A N U A R Y 1 9 5 2

83

22, 1752-3 (1950). Colorimetric determination of copper in steel with rubeanic acid. (227) Miller, W. L., and Wachter, L. E., Ibid., 22, 1312-14 (1950). Determination of traces of mercury in copper alloys by titration with dithizone. (228) Mitchell, W., Perry, H. M., and Shearing, L. A,, J . P h a n . Phunacol., 2, 747-58 (1950). Arsenic limit testa of British Pharmacopoeia. (229) Moeller, Therald, and Cohen, A. J., Anal. Chim. Acta, 4, 316-21 (1950). Spectrophotometric estimation of gallium in presence of aluminum. (230) Moeller. T., and Jackson, D. E.. ANAL.CHEM.,22. 1393-7 (1950). Rare earths. Separative extraction of certain rareearth elements as 5,7dichloro-8-hydroxyquinolinechelates. (231) Morette, A., Bull. soc. chim. France, 17, 526-32 (1950). Gravimetric determination of vanadium. (232) Morrel, W.E., J . Chem. Education, 27, 274-7 (1950). Specific qualitative test for zinc. (233) Morrison, G. H., ANAL.CHEM.,22, 1388-93 (1950). Role of extraction in analytical chemistry. (234) Moses, A. J., J. Chem. Education, 27, 383 (1950). Spot test for bismuth. (235) hliiller, Gerhard, Mikrochemie uer. Mikrochim. Acta, 36/37, 142-50 (1951). Further development and replacement possibilities of Eigenberger balance. (236) Munger, J. R., Nippler, R. W., and Ingols, R. S.,ANAL.CHEM., 22, 1455-7 (1950) Volumetric determination of sulfate ion, using barium ion and standard disodium dihydrogen ethylenediaminetetraacetate solution. (237) Murakami, Yukio, Bull. Chem. Soc. J a p a n , 22, 206-12 (1949). Determination of thallium with cobalt hexammine trichloride. (238)Ibid., pp. 23641. Determination of thallium in flue-dust and lead-chamber muds. (239)Ibid., 23, 3-7 (1950). Modified colorimetric determination of copper with sodium diethyldithiocarbamate in presence of hydroxylamine. (240) Ibid., pp. 99-102. Colorimetric determination of copper in biological materials. (241) Ibid., pp. 150-3. Determination of zinc and lead by means of sodium diethyldithiocarbamate. (242)Ibid., pp. 157-61. Colorimetric determination of chromium with diphenylcarbazide. (243) Murakami, Yukio, Chem. Age, 64, 356-7 (1951). Improved methods of colorimetric analysis for zinc, lead, vanadium, and chromium. (244) Murthy, T. K.S..and Rao, Bh. S.V. R., J . I n d i a n Chem. Soc., 27, 383-4 (1950). Colorimetric detection and estimation of cerium. (245)Ibid., pp. 459-61. Analytical chemistry of thorium. Separation from cerite earths with o- and paminobenzoic acids. (246) Musante, C., Cazz. chim. ital., 78, 536-51 (1948). Salts of hydroxamic acids. Determination of copper, cobalt, and nickel with benzhydroxamic acid. (247) Nakanishi, M., Bull. Chem. Soe. J a p a n , 23, 6 1 4 (1950). Fluorometric microdetermination of uranium. Fluorescent material for determination. (248) Kakano, Shoichi, J . Chem. SOC.J a p a n , Pure Chem. Sect., 70, 369-73 (1949). Spot tests on filter papers. (249) Neunhoeffer, O.,Z . anal. Chem., 132,9 1 4 (1951). Simple and sensitive reaction for detection of rare earths. (250) Nicholas, D. J. D., J . Sci. Food Agr., 1, 339-44 (1950). Cse of Aspergillus niger for determining magnesium, copper, zinc, and molybdenum in soils. (251) Kishigai, Masaaki, Okabayashi, Hideo, and Tanaka, Kobuyuki, Repts. Radiation Chem. Research Inst., Tokyo Univ., 5 , 4E-7 (1950). Apparatus for volumetric analysis with high-frequency oscillators. (252) Njegovan, V. N.,Arhiv Kem., 21,216-17 (1949). Qualitative detection of antimony in presence of tin. (253) Norwitz, G.,Metallurgia, 43, 46 (1951). Determination of bismuth, lead, and copper in aluminum alloys. (254) Sovikov. P. M., Pochvovedenie. 234-8 (1950); Soils and Fertilisers, 13, 247 (1950). Separating minerals by density. (255) Odekerken, J. hI., 2. anal. Chem., 131, 165-87 (1950). Sensitivity and specificity of anion reactions. (256) OkBE, A , Chrm. Listy, 39,61-3 (1945). Some reactions of hafnium. (257) OkBE, A , , and Celechovsky, J., Ibid., 43,7-8 (1949). Sensitive reaction of cobalt and copper with antipyrine. (258)Ibid., 45,52-4 (1961). Evaluation of newer tests for copper. (259) OkiE, .4.,and Pech, J., Ibid., 42, 161-3 (1948). Pyrogallolcarboxylic acid as reagent for determining calcium. (260) Orange, &I., and Rhein, H. C.. J . Biol. Chem., 189, 379-86 (1951). Microestimation of magnesium in body fluids. (261) Osborn, G. H., and Jewsbury, rl., Nature, 164, 441-4 (1949) ~~

Inorganic paper chromatography. Qualitative separation of aluminum and beryllium. (262) Ostertag, H., and Rinck, E., Compt. rend., 231, 1304-5 (1950). Colorimetric determination of calcium in presence of magnesium by murexide reaction. (263) Otosai, Kiyoteru, Kagaku no Royoiki, 2, 411-19 (1948). Paper chromatography of alkali salts. (264) Ovenston, T.C.J., and Rees, W. T., Anal. Chim. Acta, 5,1237 (1951). Spectrophotometric determination of iodine by extraction with organic solvents. (265) Parks, T. D.. and Agazzi. E. J., ANAL.CHEM.,22, 1179-81 (1950). Determination of small amounts of chromium and vanadium by amperometric titration, (2661 Parks, T. D., and Lykken, L., Ibid., 22, 1444-6 (1950). POtentiometric, amperometric, and polarographic methods for microanal ysia. (267) Parks, T. D., and Lykken, Louis, Petroleum Refiner, 29, No.8, 85-8 (1950). Reduced-scale methods for micro and semimicro organic and inorganic analysis. (268)Ibid., 29, No. 9, 112-14 (1950). Reduced-scale method for micro and semimicroanalysis. (269)Pech, J., Chem. Listy, 43, 8-11 (1949). Colorimetric determination of calcium by means of pyrogallolcarboxylic acld. (270) Pfau, E., and Bergt, S.,P h a n . Zentralhalle, 89, 303-5 (1950). Determination by capillary analysis. (271) Pignard, P., BUZZ. ~ O C . chim. biol., 32, 401-8 (1950). Colorimetric microdetermination of blood magnesium with 8quinolinol. (2721 Pinte, J., and Essertel, Bull. inst. teztile France, No. 15, 63-8 (1949). Direct Green B, reagent for copper. (273)Pinterovic, Z.,Bull. SOC. chim. Belges, 58, 522-7 (1949). Inorganic chromatography. Adsorption of tin on column of alumina. (274) Piearro, A. V.,Inform. quim. anal., 4, 127-39 (1950). Paper chromatography in inorganic analysis. (275) Plank, Jeno, Bodor, Endre, and Rady, Gyorgy, Magyar Kern. Lapja, 4, 638-41 (1949). Determinatign of traces of zinc in aluminum and bauxite. (276)Pollard, F. H.,McOmie, J. F. W., and Elbeih, I. I. hf., J . Chem. Soc., (1951) 446-70. Analysis of inorganic compoundr by paper chromatography. Movement of cations with complex-forming solvent mixtures. (277)Ibid., pp. 470-4. Analysis of cations and aniona. (278) Polster, M., Chem. Listy,43,228-9 (1949). Spot test for copper with o-nitrosophenol. (279) Polys, J. B.,and Wilson, B., Australian J . Sci., 13,26-7 (1950). Colorimetric microdetermination of cobalt. (280) Pfibil, R., Chem. Listy, 41,270-3 (1947). Use of Complexonea in chemical analysis. (281)Ibid., 45, 57-62 (1951). New possibilities of qualitative semimicroanalysis. (282) Pfibil, R., and Hornychova, E., Collection Czechoslor. C h a . Communs., 15, 457-62 (1950). Use of Complexones in chemical analysis. Colorimetric determination of manganese. (283) Pfibil, R., and Simon, V., Ibid., 14, 454-68 (1949). Use of Complexones in chemical analysis. Oxidimetric determination of manganese by ferricyanide. (2841 Price. T. D.. and Telford. R. E.. Natl. Nuclear Enerev Ser.. Div. VIII, 1, Anal. Chem. hfanhattan Project, -iO4-14 (1950). Copper, silver, and gold. (285) Prodinger, Wilhelm, Mikrochemie ver. Mikrochim. Acta, 36/37, 580-4 (1951). Determination of extremely small quantities of manganese with Arnold’a reagent. (286) Purushottam, A., and Rao, B. S. V. R., Analyst, 75, 684-6 (1950). Phthalic acid as selective reagent for zirconium. (287) Pyshkin, N. I., and Lukin, 0. M., Zhur. Anal. Khim., 5,319-20 (1950). Spot reactions for copper, mercury, and lead salts. (288) Querol, M . C. A., and Wilson, C. L., Makrochemie ver. Mikrochim. Acta, 36/37, 224-38 (1951). Micro scheme for cations without hydrogen sulfide. (289) Quill, L.L., and Rodden, C. J. Natl. Nuclear Energy Ser., Div. VIII, 1, Anal. Chem. Manhattan Project, 494-508 (1950). (290) Rabbitts, F. T., Can. Chem. Process Inds., 34, 981-5 (1950). Determination of uranium in ores. (291) Ramsay, J. A , , Falloon, S.W. H. W., and hfachin, K. E., J . Sci. Instruments, 28, 75-80 (1951). Integrating flame photometer for small quantities. (292) Rao. B.R. L., and Rao, B. S. V R., J . I n d i a n Chem. Soc., 27, 457-8 (1950). Analytical chemistry of thorium. Separation from cerite earths with o-chlorobeneoic acid. (293) Rasmussen, S.W., and Rodden, C. J., Natl. Nuclear Energy Ser., Div. VIII, 1, Anal. Chem. Manhattan Project, 459-82 (1950). Vanadium, niobium, and tantalum. (294) Reboul, P., Chimie & industrie, 64,574-9 (1950). Qualitative and semiquantitative analysis for various elements in steels by colored spot tests.

ANALYTICAL CHEMISTRY Robinson, G., Discussions Faraday SOC.,No. 7, 195-8 (1949). Separations on 8-quinolinol columns. Rodden, C. J., and Warf, J. C., Natl. Nuclear Energy Ser., Div. VIII, 1, Anal. Chem. Manhattan Project 1-159 (1950). Uranium. Rogers, L. B., ANAL.CHEM.,22, 1386-7 (1950). Separation of ultramicro quantities of elements by electrodeposition. Romano, C., BolE. SOC. ital. biol. sper., 26, 604 5 (1950). Qualitative analysis of metal ions in toxicology. Roth, H., MikTochemie ver. Mikroehim. Acta, 36/37, 379-92 (1951). Colorimetric determination of very small amounts of sulfur. Rouir, E. V.,and Dietz, H., Congr. groupement atance. method. anal. spectrograph. produifs mBt.. 12, 149-55 (1949). Fluorometric analysis with morin. Rulfs, C. L., A n a l . Chim. Acta, 5 , 46-54 (1951). Quantitative inorganic semimicro procedures. Ryan, D. E., AnaZyst, 76, 167-71 (1951). Detection of palladium, platinum, and rhodium with p-nitrosodiphenylamine. Ryazanov, I. P., and Churmanteeva, L. V., J . A n a l . Chem., U.S.S.R., 6, 49-50 (1951). Use of monoethanolamine with ammonium molybdate for microchemical detection of phosphoric and arsenic acids. Sack, Werner, Z . anal. Chem., 31, 13-16 (1950). Rapid, simplified, spectral-photometric method for low concentrations as illustrated by determination of 1 to 107 of iron per ml. Sakaguchi, Buichi, Kagaku no Ryoiki, 2,258-62 (1948). Microanalysis with organic reagents. Sapir, A. D., Zavodskaua Lab., 16, 494 (1950). Use of aqueous solution of dimethylglyoxime in gravimetric determination of nickel in steel. . . ~ ~. (307) Sohneider, W., Arch. Pharm., 283. 248-53 (1950). Detection of lithium, magnesium, and aluminum by Istizin (1,8-dihydroxyanthraquinone). (308) Schonfeld, T., and Broda, E., Mikrochemie ver. Mikrochim. Acta, 36/37, 537-52 (1951). Ion adsorption on paper and glass surfaces. (309) Schreiner, H., Brantner, H., and Hecht, F., Ibid., 36/37, 105674 (1951). Colorimetric determination of gold. (310) Schrenk, W. G., ANAL. CHEM.,22, 1202-3 (1950). Flame photometry, round-table discussion. (311) Schrenk, W.G., and Smith, F. M., Ibid., 22, 1023-6 (1950). Flame-photometer attachment as excitation source for spectrograph. (312) Schubert, J., Ibid., 22, 1359-8 (1950). Analytical applications of ion exchange separations. (313) Schwab, G. bI., Discussions Faraday SOC.,No. 7,170-3 (1949). Nature and applications of inorganic alumina chromatography. (314) kedivec, V., and VaiBk, V., Collection Czechoslov. Chem. Communs., 15, 52-64 (1950). Sodium diethyldithiocarbamate as reagent in volumetric analysis. (315) Ibid., pp. 260-6 (1950). Use of Complexones in chemical analysis. Colorimetric determination of copper by sodium diethyldithiocarbamate. (316) Seifter, S.,and Novic, B., ANAL.CHEM.,23, 188-9 (1951). Colorimetric determination of molybdate with (pyro) catechol. (317) Senise, P., Mikrochemie ver. Mikrochim. Acta, 36/37, 206-9 (1951). Catalyzed iodine-azide reaction in microanalysis. Spot test for detection of thiocyanate. (318) Ibid., pp, 210-13. Gas-volumetric method for microdetermination of thiocyanate. (319) Severinghaus, J. W., and Ferrebee, J. W., J . B i d . Chem., 187, 621-30 (1950). Calcium determination by flame photometry, Methods for serum, urine, and other fluids. (320) Shawarbi, hI. T.,Mikrochemie ver. Mikrcchim. Acta, 36/37, 366-9 (1951). Colorimetric microdetermination of potassium with dipicrylamine. (321) Shepherd, G. hl., U. S. Patent 2,487,077 (August 1949). Colorimetric detection of gas. (322) Sherman, Milton, Am. Foundryman, 18, No. 3, 54-5 (1950). Direct colorimetric determination of copper and iron in tinand lead-base alloys. (323) Shiokawa, Takanobu, J . Chem. SOC.Japan, Pure Chem. Sect., 71, 1-3 (1950). Analysis of rare elements. hlicrocolorimetric determination of molybdenum. (324) Ibid., pp. 87-9. Colorimetric microdetermination of ruthenium. (325) Shiokawa, T., Sei. Repts. Resenrch Inst. Tdhoku Univ., 2, 287-9 (1950). Catalytic analysis. Microdetermination of tungsten xith Pulfrich photometer. (326) Ibid., pp. 290-2. Microdetermination of osmium by reaction between potassium chlorate and potassium iodide. (327) Ibid., pp. 293-5. hIicrodetermination of osmium by reaction between p-phenylenediamine and hydrogen peroxide. (328) Shiokawa, Takanobu, and Suzuki, Susumu, J . Chem. SOC. ~

~~~~

Japan, Pure Chem. Sect., 71, 629-31 (1950). Catalytic analysis. Rapid microdetermination of sulfide, thiosulfate, and thiocyanate by gas evolution method. (329) Shirley, R. L., J . Assoc. Ofic. Agr. Chemists, 33, 805-10 (1950). Determination of sodium in plants. (330) Silver, S. D., Kethely, T. W.,and Kriete, J. A., Anal. Chim. Acta, 4, 389-92 (1950). Method for microdetermination of cadmium. (331) Smit, J., Alkemade, C. T. J., and Verschure, J. C. M., C h m . Weekblad, 47, 23-5 (1951). Flame-photometric determination of sodium and potassium in blood serum. (332) Speeding, F. H., and Dye, J. L., J . Am. Chem. Soc., 72, 5350 (1950). Efficient separation of dysprosium and yttrium. (333) Spencer, A. G., Lancet, 249, 623-7 (1950). Flame photometry. (334) Spiers, C. H., J . SOC.Leather Trades Chem., 34, 289-90 (1950). Volumetric determination of magnesium sulfate in leather. (335) Stock, J. T., Metallurgia, 42, 48-51 (1950). Simple apparatup for microconductometric titration. (336) Stock, J. T., and Fill, AI. A., Metallurgia, 41, 239-40 (1950). Rotary stirrers for microtitration. (337) Stock, J. T., and Heath, P., Metallurgia, 42, 44 (1950). Miscellaneous microchemical devices. Sulfide precipitation by pressure method. (338) Strebinger, R., Mikrochemie ver. Mikrochim. Acta, 36/37, 80512 (1951). Applied microchemistry. (339) SudB, Toshio, and Hayase, Kitaro, Science, 113, 11-12 (1951). Photoelectric spot analysis of antimony and bismuth. Sugiura, Yoshio, J . Chem. SOC.Japan, Pure Chem. Sect., 71, 86 (1950). Colorimetric spot test for chloride. Swoboda, K., Mikrochemie ver. Mikrochim. Acta, 36/37, 813-24 (1951). Microchemistry in service of chemists a t iron and steel plants. Taras, M. J., ANAL. CHEM., 22, 1020-2 (1950). Phenoldisulfonic acid method of determining nitrate in water. Photometric study. Taras, hf, J., Water and Sewage Works, 97, 404-8 (1950). Simplified calibration of photometric instruments for residual chlorine in water. Telep. G., and Bolts, D. F., ANAL.CHEM.,22, 1030-1 (1950). Ulk-aviolet spectrophotometric determination of molybdenum. Teodorovich, I. L., Zavodskaya Lab., 16, 1132 (1950). Selfsucking capillary for semimicroanalysis. Tinovskaya, E. S.,J . Anal. Chem., U.S.S.R., 5,345-53 (1950). Solubility of certain oxinates. Ibid., 6, 51-55 (1951). Ultramicrovolumetric determination of silver in thin layers. Tompkins, E. R., ANAL.CHEM.,22, 1352-9 (1950). Ion exchange separations. Tongeren, W. van, Chem. Weekblad, 46, 847-50 (1950). Thermometry and automatic gravimetry. Tribalat, Suzanne, A n a l . Chim. Acta, 4, 228-34 (1950). Extraction of chloride and perrhenate of tetraphenyl phosphonium by chloroform. Ibid., 5, 115 (1951). Extraction and determination of rhenium by triphenylbenzylphosphonium chloride. Tsubaki, Isamu, J . Chem. SOC.Japan, Ind. Chem. Sect., 5 1 , l l 12 (1948). hlicroanalysis by indirect determination of phosphates. Ibid., Pure Chem. Sect., 71, 138-9 (1950). Spot analysis. Tyson. G. N., J . Assoc. Ofic. Agr. Chemists, 33, 288-92 (1950). Determination of boron in fertilizers. Uemura, Taku, and Shibata, hluraji, Kagaku n o Ryoiki, 4,40611 (1950). Inorganic paper chromatography. Uri, Norbert, Analyst, 72, 478-81 (1947). Stability of cobaltous thiocyanate complex in ethyl alcohol-water mixtures and photometric determination of cobalt. Valentin, Frantisek, and Sucharova-Tofflerov&, bfagda, Chem. Zvesti, 4, 68-80 (1950). Quantitative separation of magnesium cation from sodium and potassium cations. Vandenbosch, V., Mededel. Vlaam. Chem. Ver., 12, No. 1/3, 6770 (1950). Polarography in microchemistry. VaBBk, Vladimir, and Sedivec, VBclav, Chem. Listy, 45, 10-12 (1951). Use of complexons in colorimetry. Determination of mercury with dithizone. Viswanathan, R., Biochem. J . , 48, 239-40 (1951). Ultramicrodetermination of chloride. VlaiBk, F., and Kosinova, L., Chem. Listy, 42, 32-4 (1948). Separation of uranium and iron. WaBBk, Fr., Svasta, J., Rotter, R., and Bourberle, M., Sbornik Stat. Geol. Ustazlu Ceskoslou. Rep., 16, 433-43, English summary, 444 (1949). Determination of small quantity of uranium in ores and rocks. Wallin, G. R., Tertile Research J . , 20, 514-16 (1950). Colorimetric determination of sodium hypochlorite. Walter, R. N., AXAL.CHEM.,22, 1 3 3 2 4 (1950). Microdeter-

V O L U M E 2 4 , NO. 1, J A N U A R Y 1 9 5 2 mination of sulfur by Grate method. Photometric detection of titrimetric end point. (365) Ware. E., U. S. Atomic Energy Commission, Rept. MDDC1432 (August 1945). Organicreagents for uranium analysis. (366) Webb, J. A. V., S. A f r i c a n I n d . Chem., 4, 189-91 (1950). Rapid sodium diethyldithiocarbamate method for determination of copper in straight carbon steels. (367) Wenger, P. E., Mikrochemie ver. Mikrochim. Acta, 36/37, 94104 (1951). Role of microchemistry in new fields of analytical chemistry. (368) T e s t , P. W., ANAL.CHEM.,23, 51-9 (1951). Inorganic microchemistry. (369) Ibid., pp. 176-80. Microchemical applications of catalytic and induced reactions. (370) West, P. W., and Carlton, J. K., Ibid., 22, 1055-6 (1950). Specific spot test for gold, employing pararosaniline hydrochloride. (371) West, P. W.,and Conrad, L. J., Ibid., 22, 1336-7 (1950). Spot-test detection of antimony by means of gossypol. (372) West, P. W.,and Conrad, L. J., A n a l . Chin. Acta, 4, 561-5 (1950). Comparison of coprecipitation of cations by organic and inorganic precipitants. (373) West, P. IT., and Conrad, L. J., Mikrochemie zer. Mikrochim. Acta, 35, 443-8 (1950). Detection of vanadium by spot tests. (374) West, P. K., and De Vries, C. G., ANAL.C m x , 23, 334-7 (1951). Nature of cobalt thiocyanate reaction. (375) R e s t , P. W., and Granatelli, Lawrence, Mikrorhewiie ver. Mikrochim. Acta, 38, 63-5 (1951). Microscopic detection of chromium as chromium(II1). (376) West, P. TV., and Hamilton, IT. C., Ibid., 38, 100-13 (1951). Effect of media upon spot-test reactions. (377) West, T. S.,Metallurgia, 43, 41-6 (1951). Separation methods in metallurgical analysis. (378) Whittles, C. L., and Little, R. C., J . Sci. Food. A g . , 1, 323-6 (1950). Colorimetric determination of potassium in soil extracts. (379) Rilberg, E., 2.anal. Chem., 131, 405-9 (1950). Determination of lithium by flame photometry.

85 (380) Willard, H. H.. and Horton, C. A., ANAL.C H E M ,22, 1 1 9 0 4 (1950). Indicators for titration of fluoride with thorium. (381) Ibid., pp. 1194-7. Photofluorometric titration of fluoride. (382) Willard, H. H., and Sheldon, J. L., Ibid., 22, 1162-6 (1950). Separation of iron as basic formate from homogeneous solution with urea. (383) Williams, H. A., Analyst, 75, 510-21 (1950). Determination of fluoride by etching. (384) Willson, A. E., ANAL.CHEJI., 22, 1571-2 (19!0). Volumetric determination of calcium and magnesium in leaf tissue. (385) Wilson, D. IT., Roy. I n s t . Chem. Lectures, Monographs Repts., 4, 5-15 (1950). Maintenance and precision of microchemical balance. (386) Wright, P. IT., J . SOC.Chem. Ind., London, Suppl. Issue, 2, S69-S70 (1950). Determination of copper by dithio-oxamide in lead and lead alloys. (387) Yao, Yu-lin, and Yu, Pe-nien, Science Record, 2, 377-80 (1949). Colorimetric determination of traces of arsenic in tin, (388) Yoshino, Y., and Kojima, M., Bull. Chem. SOC.Japan, 23, 46-7 (1950). Separation of small amount of titanium from iron by ion exchange resin. (389) Young, R. S., Analyst, 76, 49-52 (1951). Determination of gold, palladium, and platinum by dithiaone. (390) Young, R. S., Leibowitz, A., I r o n A g e , 164, 75-6 (November 1949); J. I r o n Steel Inst., 165, 363 (1950). Molybdenum separation in iron alloys. (391) Zacherl, hl. K., Mzlt. chem. Forsch.-Inst. I n d . osterr., 4, 27-9 (1950). Present situation of Austria in microchemistry(392) Zettemoyer, A. C., and Walker, W.iC., Am. I n k Maker, 28, No IO, 69-71 (1950). Cobalt analysis in inks and driers. (393) Zhivopistsev, V. P., Doklady Akad. N a u k S.S.S.R., 73, 1193-6 (1950). Possible applications of diantipyrylmethane in inorganic analysis. (394) Ziliani, Giuseppe, M e t . ital., 42, 2 2 5 9 (1950). Microscopic method for determination of oxygen in steels. RECEIVED November 8, 1 9 6 1

FLUOROMETRIC ANALYSIS CHARLES E. WHITE, University of Maryland, College Park, M d .

T

HIS revieLT on fluorometric analysis covers the 2-year period

from approximately October 1949 t o October 1951, and is a continuation of previous surveys (170, 171). BOOKS AND GENERAL ARTICLES

Several books have been published during this period which are of interest from a general standpoint. Under the title, “Lumineszenz,” Bandow ( 7 ) has compiled a book on t h e applications of fluorescence in physics, chemistry. and biology. T h e chief value of this book to the analyst is in the review of German literature. Strugger’s (166) treatise on the use of fluorescence microscopy in microbiology gives t h e general techniques, names many of the fluorescent dyes used, shows the effect of p H , and lists 102 references. Leverenz (98)gives a n excellent treatment of the theory of fluorescence and phosphorescence of solids, scintillation counters, and the composition of phosphors; 750 references are included. Kroger’s (93) book, which is also concerned with the fluorescence of solids, includes tables giving the fluorescence of many inorganic compounds. Curie ( 2 7 ) in a book on t h e general topic of fluorescence and phosphorescence discusses t h e general theory of the production of luminescence in organic and metallo-organic complexes a n d the relation of fluorescence to the constitution of the molecule. A chapter on cathode luminescence, triboluminescence, chemiluminescence, etc., is also included. Foster ( 5 2 ) has published a book on fluorescence of organic compounds which does not give analytical applications, b u t is of interest from a theoretical standpoint. Sandell (138)in t h e second edition of his text gives fluorometric methods for aluminum, beryllium, gallium, indium, scandium, thallium, uranium, zinc, and rare earths. H e also includes a theoretical discussion on the application of t h e

Beer-Lambert law to fluorescence in the same vein a s t h e excellent dcvelopment of this topic b y Lothian (101) and Kavanagh

(84). Several general articles on fluorometric analysis have appeared. DBribBrB (34) reviews recent applications of ultraviolet light in analysis; Radley (131) discusses fluorescence methods in the food industry; White (178) gives specific procedures and apparatus for use in the usual scheme of qualitative analysis; and Levskin (100)reviews the advances in luminescence analysis with 51 references. APPARATUS

Sources of Ultraviolet Radiation. A new series of lamps for both t h e longer ultraviolet light a t 3650 A. and the shorter a t 2537 A. has been announced b y Ultra-Violet Products, Inc. (162). These lamps are of convenient laboratory type and are equipped with mercury vapor lamps and 360 B. L. tubes. Several firms (154, 162) now market fixtures for 4-watt fluorescent lamps which m a y be used with the 360 B. L. tubes for qualitative analysis. As these fixtures are made for daylight lamps, t h e reflectors are usually white enamel and should be replaced b y aluminum reflectors for ultraviolet lamps. T h e Menlo Research Laboratory (108) sells an instrument known as a daylight fluorescence tester u hich includes a viewing apparatus and a source of ultraviolet radiation activated b y a battery or ordinary poner supply. B n interchangeable head converts the source t o either 3650 or 2537 A. Fluorometers. A new fluorometer has been widely advertised by t h e Central Scientific Co. (24). This instrument is equipped with two phototubes, so t h a t measurement m a y be made on