12 Polymer Solvent Interactions by Ultrasonic Impedometry J. K E N N E T H C R A V E R and D A V I D L . T A Y L O R
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
Monsanto Company, St. Louis, Mo.
Some unexpectedly complex liquid solid interactions
have
been detected and studied by ultrasonic impedance measure ments (ultrasonic
impedometry).
Small amounts of water
and alcohols have pronounced effects on the physical state of hydrophilic
polymers; specifically,
the high
frequency
shear modulus and crystallinity index of a poly(vinyl alcohol) film increases with water content to a maximum before normal solution phenomena occur. These effects are attrib uted to the increased molecular order owing to water hydro gen bonded between polymer chains. The unusual effects of moisture on a novel poly(vinyl chloride)/plasticizer and on hydrophilic
system
polymers other than poly(vinyl alcohol)
are also described.
Τ η o u r studies o n the cellulose p u l p / w a t e r system a n d the v a r i o u s v i s c o *·*
elastic changes w h i c h take p l a c e i n this system d u r i n g d r y i n g
w e f o u n d M a s o n ' s u l t r a s o n i c shear i m p e d a n c e d e v i c e (12)
(5),
to b e a most
u s e f u l a n d versatile t o o l , c a p a b l e of m o n i t o r i n g r a p i d changes i n the shear stiffness of systems u n d e r g o i n g p o l y m e r i z a t i o n , c o a g u l a t i o n , or other l i q u i d - s o l i d transitions. T h e w o r k w e are r e p o r t i n g here relates to a v a r i e t y of transient changes i n the h i g h f r e q u e n c y shear m o d u l u s (stiff ness ) of p o l y m e r films i n d u c e d b y w e t t i n g of the films w i t h p o l a r solvents or near solvents. T h e s e transient effects are p a r t i c u l a r l y m a r k e d i n the case of p o l y ( v i n y l a l c o h o l ) films w h i c h are i n contact w i t h l i q u i d w a t e r . Methods and
"Procedures
T h e t e c h n i q u e of u l t r a s o n i c i m p e d o m e t r y w a s d e v e l o p e d b y M a s o n a n d M c S k i m m i n of B e l l T e l e p h o n e laboratories for m e a s u r i n g the c o m p l e x m e c h a n i c a l shear m o d u l u s of p o l y m e r l i q u i d s (11, 12). T h e y d e s c r i b e d three r e l a x a t i o n m o d e s for the s y s t e m s — c o n f i g u r a t i o n a l e l a s t i c i t y , l o n g 154 Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
12.
CRAVER
AND
TAYLOR
155
Polymer Solvent Interactions
c h a i n entanglement, a n d c h a i n segment t w i s t i n g . L i t o v i t z a n d co-workers u s e d this h i g h f r e q u e n c y t e c h n i q u e i n t h e i r i n v e s t i g a t i o n of the v i s c o elastic properties of associated l i q u i d s (13, 1 7 ) . M y e r s a n d co-workers h a v e m o n i t o r e d the l i q u i d - s o l i d transitions associated w i t h the coalescence of latexes a n d the d r y i n g of l i n s e e d o i l ( J5,16). B a r l o w a n d L a m b s t u d i e d the h i g h shear rate b e h a v i o r of l u b r i c a t i n g oils at pressures u p to 1,000 atmospheres a n d at frequencies u p to 85 m e g a h e r t z ( 1 ). H u n t e r , M o n t rose, a n d S h i v e l y h a v e s t u d i e d the viscoelastic constants of s h o r t - c h a i n p o l y m e r s u s i n g this t e c h n i q u e (10). I n u l t r a s o n i c i m p e d o m e t r y , the test s a m p l e is s u b j e c t e d to a h i g h f r e q u e n c y c y c l i c shear strain b y a p l a n e - p o l a r i z e d , p u l s e d u l t r a s o n i c shear w a v e w h i c h is generated w i t h i n a q u a r t z echo b a r as s h o w n i n F i g u r e 1. T h e test m a t e r i a l is p l a c e d o n t o p of the b a r a n d the u l t r a s o n i c w a v e is generated i n the b a r b y means of a p i e z o e l e c t r i c c r y s t a l b o n d e d to one e n d of the b a r a n d d r i v e n at resonant frequencies b y a n e l e c t r i c a l i m p u l s e f r o m a p u l s e d oscillator. T h e p u l s e generator emits a r a d i o f r e q u e n c y e l e c t r i c a l p u l s e of 2 to 80 M h z . l a s t i n g a b o u t 5 microseconds a n d r e p e a t i n g a b o u t 400 times p e r second. T h e p a c k e t of u l t r a - s o u n d is reflected f r o m the test surface a n d is r e c e i v e d at the other e n d of the b a r b y a second p i e z o e l e c t r i c c r y s t a l w h e r e it is r e c o n v e r t e d to a n e l e c t r i c a l s i g n a l a n d d i s p l a y e d o n a n oscilloscope as a series of peaks of d e c r e a s i n g a m p l i t u d e . T h e geometry of the echo b a r is s u c h that the o r i g i n a l p u l s e is reflected b a c k a n d f o r t h c r e a t i n g the p u l s e echo p a t t e r n s h o w n i n F i g u r e 1. I n f a v o r a b l e cases, as m a n y as 50 echoes c a n b e observed. W i t h a test s a m p l e o n the o p t i c a l l y flat t o p surface of the b a r , t h e p u l s e echo t r a i n is r e d u c e d i n a m p l i t u d e . T h i s a t t e n u a t i o n is o w i n g to the r e f r a c t i o n of p a r t of the u l t r a s o n i c w a v e i n t o the test s a m p l e at the f r e q u e n c y used. T h e r a t i o of successive p e a k a m p l i t u d e s m a y b e m e a s u r e d o n the oscilloscope a n d expressed i n decibels loss p e r echo. F r o m this, t h e loss p e r echo w i t h n o s a m p l e o n the b a r c a n b e substracted t o give a v a l u e àdb w h i c h is r e l a t e d to the m e c h a n i c a l shear i m p e d a n c e of the sample. R a p i d changes c a n be c o n v e n i e n t l y m o n i t o r e d b y a r e c o r d e r w h i c h f o l l o w s the p e a k s i g n a l of a selected echo. T h e p o l y m e r i c films u s e d i n o u r studies w e r e p r e p a r e d b y a l l o w i n g a d i l u t e s o l u t i o n of the p o l y m e r i n a s u i t a b l e solvent to evaporate o n the test surface of the i m p e d o m e t e r b a r . F i l m thicknesses w e r e v a r i e d o v e r the range 10-100 m i c r o n s b y a p p r o p r i a t e c h o i c e of s o l u t i o n v o l u m e a n d c o n c e n t r a t i o n . T h e polyvinyl alcohols) ( P V A ) u s e d i n o u r w o r k w e r e M o n s a n t o ' s G e l v a t o l 20-30 a n d 20-90. T h e s e are 8 8 % h y d r o l y z e d p r o d u c t s a n d h a v e m o l e c u l a r w e i g h t s of 10,000 a n d 125,000 r e s p e c t i v e l y . T h e y b e h a v e d s i m i l a r l y i n t h e i r responses to w e t t i n g , h u m i d i f i c a t i o n , a n d redrying. T h e test f r e q u e n c y u s e d w a s n o r m a l l y 2.5 or 5.0 M h z . A spot c h e c k s h o w e d that the transient effects f o u n d w e r e m o r e p r o n o u n c e d at h i g h e r frequencies ( u p to 60 M h z . ) . Theory of Ultrasonic
Impedometry
T h e a m o u n t of a t t e n u a t i o n suffered b y the p u l s e echoes
depends
d i r e c t l y o n the shear m e c h a n i c a l i m p e d a n c e , Z , of the p o l y m e r film. Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
For
156
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
viscoelastic m a t e r i a l s Ζ has resistive a n d r e a c t i v e components, R a n d X ( u n i t s of m e c h a n i c a l o h m s ) .
T h e r e l a t i o n of R a n d X to shear stiffness
G a n d shear viscosity η is g i v e n b y : G=(R?-X*)/
(1)
η = 2RX/ωρ
(2)
p
and
w h e r e ρ is the d e n s i t y of the m a t e r i a l a n d ω is the c i r c u l a r f r e q u e n c y of the measurement.
A s discussed i n greater d e t a i l elsewhere ( 5 ) , the c o m
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
p o n e n t R is d e p e n d e n t almost solely o n the m e a s u r e d a t t e n u a t i o n of the p u l s e echo a m p l i t u d e . T h e c o m p o n e n t X is m u c h m o r e difficult to measure a c c u r a t e l y ( i n v o l v i n g s m a l l phase shifts at h i g h f r e q u e n c y )
and, i n our
w o r k w a s not m e a s u r e d . Sample Piezoelectric Transducer
ΖΖΣΖΣΖΖΖΖΖΖ
y Piezoelectric Transducer
Quartz impedometer bar (4x1 =1 inch) Calibrated Attenuator
Pulsed Oscillator
Oscilloscope
2-80 Mc
Amplifier Amplifier
Recorder Figure 1.
Ultrasonic Impedometer
F o r N e w t o n i a n l i q u i d s , X = R a n d therefore shear stiffness G , b y E q u a t i o n 1, is zero. V i s c o s i t y is t h e n g i v e n b y the f u n c t i o n 2 R / ω ρ . T h i s w i l l h o l d a p p r o x i m a t e l y t r u e i n t o the m e g a c y c l e f r e q u e n c y r a n g e for 2
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
TAYLOR
157
Polymer Solvent Interactions
l i q u i d s w i t h a n o r m a l viscosity b e l o w a b o u t 100 c p .
T h u s , w a t e r for
instance, w i l l s t i l l h a v e a v i s c o s i t y of 1 cp. at 10 M h z . a n d above. F o r elastic solids, s u c h as those w e are d e a l i n g w i t h e x p e r i m e n t a l l y i n this w o r k , X approaches zero a n d thus t h e shear stiffness is s i m p l y W/p
w h i c h is a d i r e c t f u n c t i o n of the m e a s u r e d echo a t t e n u a t i o n
Adb.
A n i n c r e a s e d a t t e n u a t i o n means i n c r e a s e d R a n d therefore i n c r e a s e d shear stiffness.
S u p e r f i c i a l l y , this w o u l d a p p e a r to b e opposite to the u s u a l
i n t e r p r e t a t i o n of " a t t e n u a t i o n " or " d a m p e n i n g " i n other d y n a m i c c h a n i c a l test methods.
me-
F o r e x a m p l e , i n t o r s i o n p e n d u l u m t y p e tests, a
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
r u b b e r y p o l y m e r gives a r a p i d l y d a m p e d o s c i l l a t i o n . A c t u a l l y , there is n o d i s c r e p a n c y at a l l because i n the t e c h n i q u e w e are u s i n g t h e w a v e a m p l i tudes m e a s u r e d o n the oscilloscope sample.
screen are those not e n t e r i n g the
M o r e energy escapes f r o m the q u a r t z b a r as the p o l y m e r
film
approaches the m e c h a n i c a l i m p e d a n c e of q u a r t z . T h e reader s h o u l d b e c a u t i o n e d to k e e p i n m i n d the different m e a n i n g w h i c h " a t t e n u a t i o n " has i n u l t r a s o n i c i m p e d o m e t r y as o p p o s e d to its use i n t r a d i t i o n a l d y n a m i c a l testing t e c h n i q u e s .
Results and
Discussion
P o l y ( v i n y l alcohol) / W a t e r .
W h e n d i s t i l l e d w a t e r is p o u r e d
onto
t h e surface of p o l y ( v i n y l a l c o h o l ) films d r i e d onto the i m p e d o m e t e r b a r , the i n i t i a l response is not the e x p e c t e d decrease i n stiffness c a u s e d
by
the s o l v a t i n g effect of the w a t e r , b u t r a t h e r a m a r k e d increase i n stiffness f o l l o w e d b y a s l o w r e l a x a t i o n as s h o w n i n F i g u r e 2.
( T h e Adb
scale o n
this a n d most f o l l o w i n g graphs has b e e n a d j u s t e d to r e a d as c h a n g e i n Adb film.
f r o m the i n i t i a l v a l u e . T h u s , the zero p o i n t is for the d r i e d p o l y m e r T h e absolute v a l u e Adb
16 Adb
f o r d r i e d p o l y m e r films r a n g e d f r o m 1 t o
d e p e n d i n g o n film thickness a n d p o l y m e r t y p e . )
T h i s u n u s u a l effect of i n c r e a s e d h i g h f r e q u e n c y
shear stiffness o n
i n i t i a l contact w i t h w a t e r w a s e v i d e n t e v e n w h e n the w a t e r was a p p l i e d as v a p o r . W i t h t h i n films of P V A , the Adb
increases r a p i d l y w i t h e v e n a
single m o i s t b r e a t h b l o w n o n the s a m p l e a n d t h e n returns to its i n i t i a l v a l u e s l o w l y as the s o r b e d w a t e r diffuses out of the moist a i r c o n t i n u o u s l y over a d r i e d P V A film, the Adb
film.
By blowing
c a n b e m a d e to
pass t h r o u g h a m a x i m u m just as i t does w h e n l i q u i d w a t e r is a p p l i e d . T h e s e responses are s h o w n s c h e m a t i c a l l y i n F i g u r e 2a. T h e same c u r i o u s effects o c c u r w h e n the m o i s t u r e sequence is r e versed. A n e x p e r i m e n t of this sort is s h o w n i n F i g u r e 3, w h e r e w e e q u i l i b r a t e d a P V A film w i t h a 1 0 0 % r e l a t i v e h u m i d i t y atmosphere a n d t h e n r e c o r d e d the Adb c h a n g e as this film d r i e d out i n a 5 0 % r e l a t i v e h u m i d i t y atmosphere.
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
158
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
+0.5h
I
ι
ι
I
3
6
I
ι
10
30
ι
60
L
100
TIME AFTER H 0 APPLICATION, SEC. 2
Figure 2a. . Poly(vinyl alcohol): water interaction
Adb
TIME Figure 2b.
Response of PVA film to breath moisture (schematic)
T o c h e c k t h e p o s s i b i l i t y that this a n o m a l o u s m e c h a n i c a l b e h a v i o r m i g h t b e c a u s e d b y a solvent g r a d i e n t w i t h i n t h e p o l y m e r film o r b y
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
159
Polymer Solvent Interactions
TAYLOR
some b u l k effect of w a t e r at the interface, another P V A film ( G e l v a t o l 20-30, 200 ft t h i c k ) w a s p r e p a r e d o n a n i m p e d o m e t e r b a r a n d d r i e d over p h o s p h o r u s p e n t o x i d e for one w e e k . It w a s t h e n c o n d i t i o n e d successively at r e l a t i v e h u m i d i t i e s of 50, 65, 75, 85, a n d 9 3 % . T h e film w a s e q u i l i b r a t e d at e a c h h u m i d i t y for 48 hours. M o i s t u r e content ( w e i g h t g a i n ) a n d
Adb
w e r e m e a s u r e d at i n t e r v a l s d u r i n g e a c h t w o d a y c o n d i t i o n i n g p e r i o d . T h e d a t a are g i v e n i n T a b l e I a n d F i g u r e 4.
N o t e that the stiffness of
the P V A film increases w i t h i n c r e a s i n g m o i s t u r e content u n t i l the n o r m a l solvent effect of w a t e r comes i n t o p l a y i n the r e g i o n b e t w e e n 85 a n d 9 5 % r e l a t i v e h u m i d i t y . D u r i n g e a c h a p p r o a c h to e q u i l i b r i u m , as s h o w n b y Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
the d o t t e d l i n e , the shear stiffness passes t h r o u g h a m a x i m u m i n d i c a t i n g that the transient m o i s t u r e g r a d i e n t i n the film also causes a n increase in
Adb.
Exposure Time at 50% RH,Sec. Figure 3. Mason (II)
Dehumidification of PVA film
has s h o w n t h a t the h i g h f r e q u e n c y shear stiffness of a
p o l y m e r is l a r g e l y a measure of the m o b i l i t y of segments of the p o l y m e r c h a i n . W e p r o p o s e that w a t e r m o l e c u l e s a c t i n g i n d i v i d u a l l y or i n s m a l l clusters serve as m o l e c u l a r crosslinks t h r o u g h h y d r o g e n b o n d i n g b e t w e e n adjacent p o l y m e r m o l e c u l e s or n e i g h b o r i n g c h a i n segments.
If the l i f e -
t i m e of these crosslinks is l o n g e r t h a n the f r e q u e n c y u s e d to m e a s u r e m e c h a n i c a l stiffness, i n our case 10"
T
second, t h e n one w o u l d expect to
see a n i n c r e a s e d stiffness o w i n g to a d s o r b e d w a t e r w h i c h c o u l d not b e m e a s u r e d b y t r a d i t i o n a l m e c h a n i c a l t e s t i n g methods o p e r a t i n g at m u c h l o w e r frequencies. W h a t w o u l d l o o k v e r y r i g i d at 1 0 c.p.s. m i g h t a p p e a r 7
q u i t e flexible i n a c o n v e n t i o n a l t o r s i o n p e n d u l u m or tensile tester. T h u s , it is c o n c e i v a b l e
t h a t the " s t a t i c " m o d u l u s w o u l d b e r e d u c e d b y
the
a d s o r p t i o n of m o i s t u r e u n d e r the e x p e r i m e n t a l c o n d i t i o n s w e h a v e u s e d
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
160
INTERACTION
OF
LIQUIDS A T
SOLID
SUBSTRATES
here e v e n t h o u g h the " h i g h f r e q u e n c y " m o d u l u s is i n c r e a s e d w i t h i n t h i s range. Several
findings
d e n s i t y measurements
i n t h e l i t e r a t u r e s u p p o r t this v i e w .
F o r example,
i n other h y d r o p h i l i c p o l y m e r systems
(collagen
a n d g e l a t i n ) h a v e r e v e a l e d a m a x i m u m u p o n t h e a d d i t i o n of w a t e r ( 7 ) . T h e d e n s i t y m a x i m u m w a s a t t r i b u t e d t o t h e f o r m a t i o n of w a t e r b r i d g e s , doubly hydrogen-bonded alignment.
structures, j o i n i n g accessible c h a i n s i n closer
Also, thermodynamic
i n t e r p r e t a t i o n of s o r p t i o n
isotherms
i n d i c a t e that p o l y m e r / w a t e r m o l e c u l a r contacts are f a v o r e d o v e r w a t e r / w a t e r contacts i n some h y d r o p h i l i c p o l y m e r s u p t o r e l a t i v e h u m i d i t i e s of Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
8 0 % a n d o v e r ( 1 9 ) . I n e a r l i e r w o r k , Z i m m suggested that t h e effect of w a t e r m o l e c u l e s o n p r o t e i n s t r u c t u r e c o u l d give rise to a n e n t r o p y l o s s — i.e., i n c r e a s e d o r d e r i n g — of c o n s i d e r a b l e m a g n i t u d e Table I.
(21).
Humidification of P V A F i l m
% Relative Humidity
Conditioning Time, Hrs.
Moisture Content %
Adb at 5 MHz.
0 50 50 50 50 65 65 65 75 75 80 80 93
(1 week) 1 4 24 46 5 22 28 2 66 6 24 22
0 1.0 2.1 3.5 3.8 7.7 10.9 11.2 13.7 20.4 23.2 27.2 47.9
15.0 15.0
— 15.6 15.6 16.7 16.1 16.2 17.5 17.9 19.6 20.0 16.8
I n a s t u d y of P V A / w a t e r relations, i t w a s f o u n d that a m a r k e d r e d u c t i o n i n P V A s w e l l i n g results f r o m p r e t r e a t m e n t of t h e p o l y m e r b y exposure to a h i g h h u m i d i t y atmosphere (18).
films
T h e explanation was
that t h e c h a i n segments, a l l o w e d greater f r e e d o m of m o t i o n b y t h e a b s o r b e d w a t e r , c o u l d assume configurations f a v o r a b l e f o r g r o w t h of n e w o r d e r e d regions. O t h e r w o r k e r s h a v e f o u n d large interactions of P V A w i t h w a t e r , as m e a s u r e d b y changes i n specific v o l u m e (20).
Russian workers
h a v e s h o w n b y heat c a p a c i t y a n d t o r s i o n t e c h n i q u e s that t h e p l a s t i c i z i n g a c t i o n of w a t e r o n a h y d r o p h i l i c p o l y m e r ( r a y o n ) consists " n o t o n l y i n increasing the
flexibility
of t h e m o l e c u l a r c h a i n s b u t also i n i n c r e a s i n g
t h e i r orderedness" (14).
C r o s s l i n k i n g of p o l y e t h y l e n e g l y c o l d e r i v a t i v e s
w i t h w a t e r m o l e c u l e s has b e e n i n d i c a t e d b y y i e l d v a l u e (9).
measurements
T h u s , f r e q u e n t reference has b e e n m a d e to t h e o r g a n i z i n g influence
of w a t e r o n h y d r o p h i l i c p o l y m e r s .
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
TAYLOR
161
Polymer Solvent Interactions H 0 CONTENT, %
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
2
40
60
80
100
RELATIVE HUMIDITY, % Figure 4.
PVA humidification
— Equilibrium — Approach to equilibrium (schematic) If w a t e r acts as a c r o s s l i n k i n g agent, it s h o u l d increase the m o l e c u l a r o r d e r i n g i n the p o l y m e r film a n d this effect s h o u l d b e detectable b y x - r a y d i f f r a c t i o n t e c h n i q u e s . P V A films w e r e p r e p a r e d o n glass slides that w e r e c o n d i t i o n e d at 0, 30, a n d 8 5 % r e l a t i v e h u m i d i t y . X - r a y diffractograms of these films are p r e s e n t e d i n F i g u r e 5, w i t h a n a l y t i c a l d a t a i n T a b l e I I . At 0%
r e l a t i v e h u m i d i t y , o n l y a b r o a d a m o r p h o u s b a n d is present.
3 0 % r e l a t i v e h u m i d i t y , a p e a k at 20 = h u m i d i t y , a s e c o n d p e a k at 20 =
At
19.3° appears; at 8 5 % r e l a t i v e
22.2° is b a r e l y e v i d e n t .
are c h a r a c t e r i s t i c of the P V A c r y s t a l l i n e phase ( 3 ) .
T h e s e peaks
T h e i n t e n s i t y of the
a m o r p h o u s phase d e f r a c t i o n h a l o decreases w i t h i n c r e a s i n g r e l a t i v e h u midity.
It appears, therefore, that w a t e r i n d u c e s the a g g r e g a t i o n
of
s m a l l crystallites ( w h i c h c o n t r i b u t e to the a m o r p h o u s p a t t e r n ( 2 ) ) i n t o groups large e n o u g h to be d e t e c t e d b y x - r a y as b e i n g t r u l y c r y s t a l l i n e . I n a s t u d y of the s w e l l i n g b e h a v i o r of P V A i n w a t e r , P r i e s t m a d e reference to e a r l i e r u n p u b l i s h e d w o r k w h e r e the x - r a y d i f f r a c t i o n p a t t e r n for P V A b e c a m e sharper o n h u m i d i f i c a t i o n ( 1 8 ) . i n c r e a s i n g the Adb
T h u s , the effect of m o i s t u r e i n
of P V A films correlates w i t h s t r u c t u r a l changes i n
the p o l y m e r as v i e w e d b y x - r a y t e c h n i q u e s . Poly (vinyl alcohol)/Methanol.
W h e n m e t h a n o l is u s e d i n s t e a d of
w a t e r , the increase i n a t t e n u a t i o n is not as r a p i d as that w i t h w a t e r b u t
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
INTERACTION
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
162
OF
LIQUIDS
A T SOLID
SUBSTRATES
Ο
| = VERTICALLY SHIFTED FOR CLARITY J
35
I
30
I
I
25
L
20
15
10
DIFFRACTION ANGLE,2Θ Figure 5.
X-ray diagram polyvinyl alcohol)
0% Rehtive Humidity 30% Revive Humidity 85% Revive Humidity Table II.
-
Effect of Water Vapor oit Poly (vinyl alcohol) Crystallinity Peak Intensity
Sample Condition
Rroad
Structure
20: 19.5
19.3
22.2
0-5
46.5
—
Lab Air
30
41.0
11.5
— —
28
Humid
87
34.0
12.5
5
64
Redried
0-5
46.5
12.5
—
27
Dry
% RH
Crystallinity Index 0
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
TAYLOR
Polymer Solvent Interactions
the p e a k i n t e n s i t y is m o r e persistent as is s h o w n i n F i g u r e 6.
163 Ethyl
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
a l c o h o l has a s i m i l a r response, b u t the i n t e n s i t y is o n l y 1 / 1 0 as great.
Figure 6.
Poly(vinyl alcohol): methanol interaction
P r o p y l a l c o h o l , b u t y l a l c o h o l , b e n z e n e , a n d octane s h o w n o effect.
These
results correlate w i t h the r e l a t i v e h y d r o g e n b o n d i n g c a p a b i l i t i e s of the a l c o h o l series. A p p a r e n t l y m e t h a n o l is also c a p a b l e of f o r m i n g h y d r o g e n b o n d i n g crosslinks b e t w e e n p o l y ( v i n y l a l c o h o l ) c h a i n segments b u t w i t h out d i s s o l v i n g the p o l y m e r . E t h y l a l c o h o l w i t h its i n c r e a s i n g m o l e c u l a r v o l u m e is s t i l l c a p a b l e of f o r m i n g some h y d r o g e n b o n d i n g crosslinks, p e r h a p s o n l y i n the m o r e r e a d i l y accessible regions of the p o l y m e r n e t w o r k w h i l e t h e h i g h e r a l c o h o l s — p r o p y l a l c o h o l , b u t y l a l c o h o l , etc., i f t h e y are h y d r o g e n b o n d e d , d o not f o r m crosslinks w h i c h are detectable at the frequencies w e used. B e c a u s e m e t h a n o l is not a c t u a l l y a solvent for P V A , some i n t e r e s t i n g s o r p t i o n / d e s o r p t i o n c y c l i n g experiments c a n b e c o n v e n i e n t l y r u n o n P V A films
w i t h o u t d i s r u p t i n g the film i n t e g r i t y . A s n o t e d a b o v e , m e t h a n o l
p r o d u c e s a s l o w increase of shear stiffness ( Adb ) w h e n l a y e r e d o n P V A . T h e t i m e scale a n d c u r v e shape are suggestive of a d i f f u s i o n process ( l i q u i d into polymer).
B y r e m o v i n g the l i q u i d l a y e r , w e s h o u l d p e r m i t
m e t h a n o l to evaporate f r o m the film a n d thus reverse the effect.
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
The
164
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
results s h o w n i n F i g u r e 7 are s u r p r i s i n g . T h e first a p p l i c a t i o n of m e t h a n o l p r o d u c e d a s l o w increase i n Adb
as before.
T h e excess m e t h a n o l w a s
d r a w n off t h e surface b y syringe at p o i n t B . W e t h e n expected to see Adb
r e t u r n s l o w l y to t h e i n i t i a l v a l u e as t h e film d r i e d out. R e m o v a l of
t h e l i q u i d l a y e r ( a t B ) c a u s e d a decrease i n a t t e n u a t i o n u n t i l t h e film surface a p p e a r e d d r y ( at C ). T h e n , as m e t h a n o l e v a p o r a t e d f r o m w i t h i n the film, t h e Adb passed t h r o u g h a v e r y h i g h m a x i m u m . A second
flooding
of t h e surface after a i r d r y i n g r e s u l t e d i n a n i m m e d i a t e increase i n Adb i n contrast to t h e s l o w b u i l d u p o n i n i t i a l w e t t i n g . A f t e r t h e first w e t t i n g , the sequence of responses to subsequent w e t t i n g / d r y i n g cycles w a s r e Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
markably reproducible.
P e r h a p s the first w e t t i n g is u n i q u e i n that i t
"opens u p " t h e surface s t r u c t u r e of t h e film, p e r m i t t i n g r a p i d p e n e t r a t i o n of m e t h a n o l i n t o t h e film o n s u c c e e d i n g r e w e t t i n g s .
Figure 7.
Poly(vinyl alcohol): methanol interaction
Polymer: Gelvatol 20-30 Film thickness = 50 μ Frequency = 5 MHz. Film Adb = 6.0
A: MeOH added Β: MeOH drawn off C: Polymer surface dry
A n o t h e r e x a m p l e of a n i n t r i g u i n g c y c l i n g effect r e s u l t e d f r o m a n e x p e r i m e n t i n w h i c h w e c r o s s l i n k e d the surface of P V A film b y p a i n t i n g the film w i t h b o r a x s o l u t i o n . T h e surface w a s n o w v i s i b l y less r e c e p t i v e to w a t e r ( d r o p l e t s d i d n o t s p r e a d ) , b u t t h e film Adb
was unchanged.
M e t h a n o l w e t t i n g p r o d u c e d t h e c u r i o u s d o u b l e d p e a k e d increase i n Adb s h o w n i n F i g u r e 8. B y r e d r y i n g t h e film i n a v a c u u m o v e n ( 5 0 ° C ) , t h e p o s i t i o n of t h e first p e a k ( u p o n r e w e t t i n g w i t h m e t h a n o l ) w a s g r a d u a l l y s h i f t e d to longer times. T h e s e c o n d p e a k p o s i t i o n w a s u n c h a n g e d . A p p a r -
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
165
Polymer Solvent Interactions
TAYLOR
ently, whatever was causing the early peak was being
modified
or
r e m o v e d b y the a l c o h o l , r e s u l t i n g i n longer times r e q u i r e d f o r subsequent
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
m e t h a n o l a d d i t i o n s to r e a c h the u n m o d i f i e d r e g i o n of t h e film.
I I
I
I
3
I
I
I
6
I
I
I
I
I
10
I
30
I
I
I
I
I
60
I
I
100
Time after MeOH application, sec. Figure 8.
Poly(vinyl alcohol) crosslinked: methanol interaction Polymer: Gelvatol 20-30 Film thickness = 65 μ Frequency = 5 MHz.
O t h e r P o l y m e r s . O t h e r h y d r o p h i l i c p o l y m e r s also e x h i b i t t h e shear stiffness a n o m a l y w h e n c o n t a c t e d w i t h h y d r o g e n b o n d i n g solvents.
Films
o f a m y l o s e r e s p o n d to w a t e r a n d d i m e t h y l s u l f o x i d e as s h o w n i n T a b l e I I I . W h e n w e t w i t h w a t e r , there is a c o m p a r a t i v e l y l a r g e increase i n a t t e n u a t i o n f o l l o w e d b y a s l o w d e c l i n e to a l e v e l p l a t e a u . W e a t t r i b u t e t h i s l e v e l i n g o u t to t h e c o m p a r a t i v e w a t e r i n s o l u b i l i t y of r e t r o g r a d e d amylose. D i m e t h y l sulfoxide is a m u c h stronger solvent f o r amylose t h a n is w a t e r a n d t h e increase i n stiffness w h i c h is f o l l o w e d b y a r a p i d d e c a y to z e r o i n d i c a t e s c o m p l e t e film s o l u t i o n as w a s t h e case w i t h w a t e r o n P V A . T h e
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
166
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
p e a k h e i g h t is l o w e r w i t h D M S O because r a p i d s o l u t i o n prevents a t t a i n m e n t of m a x i m u m stiffening effect. O t h e r h y d r o p h i l i c p o l y m e r s i n c l u d i n g g e l a t i n , casein, a n d polyvinyl p y r r o l i d o n e ) a l l r e s p o n d l i k e P V A w h e n c o n t a c t e d b y w a t e r ; there is a r a p i d increase i n m o d u l u s f o l l o w e d b y film s o l u t i o n . E v e n t h o u g h cellulose fiber mats are d i s c o n t i n u o u s r a t h e r t h a n h o m o geneous films, a sheet p r e p a r e d f r o m w e l l m a s c e r a t e d cellulose fibers w i l l e x h i b i t this same response to w a t e r as does P V A . A m o r e d e t a i l e d t r e a t m e n t of cellulose fiber w a t e r interactions has b e e n g i v e n elsewhere
(5).
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
H y d r o p h o b i c p o l y m e r s a n d films, s u c h as paraffin w a x a n d p o l y ( v i n y l c h l o r i d e ) , s h o w n o c h a n g e i n stiffness m o d u l u s w h e n flooded w i t h w a t e r . O n the other h a n d , b u t y l a l c o h o l o n a paraffin w a x film causes a s l o w , slight increase of stiffness m o d u l u s over a p e r i o d of several m i n u t e s . T h e effect of b e n z e n e o n paraffin films is s i m i l a r to that of m e t h a n o l o n P V A . A p o l y ( v i n y l c h l o r i d e ) film is unaffected b y p l a s t i c i z e r s s u c h as d i m e t h y l a n d d i e t h y l p h t h a l a t e o v e r short t i m e p e r i o d s . H o w e v e r , P V C gives rise to the u l t r a s o n i c m o d u l u s a n o m a l y w h e n c o n t a c t e d w i t h t e t r a h y d r o f u r a n , a strong solvent for P V C . T h e p l a s t i c i z i n g effect of d i b u t y l p h t h a l a t e o n p o l y s t y r e n e has b e e n
demonstrated b y ultrasonic impedometry
(16).
N o anomalies w e r e f o u n d . Table III.
Response of Amylose Films to Wetting (Film Thickness: 10 μ ) Change inAdb from dry film value after wetting surface with:
Time after Wetting (sec.) 0 (dry) 2 5 10 30
Water
Dimethyl sulfoxide
0 2.1 1.4 1.2 1.0 0.8
oo
Other Transient Interactions.
0 0.8 -0.1 -0.1 -0.1 -0.1
T h e P V A / b o r a x example dealt w i t h
the effects of surface exposure of a t w o - c o m p o n e n t p o l y m e r system to a w e t t i n g l i q u i d . W e d i s c o v e r e d a p r a c t i c a l e x a m p l e of this class of p h e n o m e n a i n a p l a s t i c i z e d p o l y ( v i n y l c h l o r i d e ) ( P V C ) system. A p e c u l i a r plasticizer
(tetraethyl methylene bisphosphonate )
found
w h i c h has the u n u s u a l p r o p e r t y of
(6)
for P V C has
been
e x u d i n g out of
PVC
i m m e d i a t e l y u p o n exposure to h i g h h u m i d i t y . T h e p l a s t i c i z e r q u i c k l y re-enters the r e s i n w h e n the h u m i d i t y is r e d u c e d . and 4 0 %
plasticizer was
A film of 6 0 % r e s i n
solvent cast f r o m t e t r a h y d r o f u r a n onto a n
i m p e d o m e t e r b a r a n d w a s subjected to s u d d e n h i g h h u m i d i t y exposure.
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
167
Polymer Solvent Interactions
TAYLOR
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
+ 2.0
Time after moisture vapor application,sec. Figure 9.
Resin: plasticizer: moisture interaction
Resin: polyvinyl chloride)—Opalon 650 Plasticizer: 40% tetraethyl methylene bisphosphonate A — D = See text Film thickness = 4 mg./cm. Frequency = 5 MHz. 2
T h e response o b t a i n e d is s h o w n i n F i g u r e 9. O u r i n t e r p r e t a t i o n i s : at A — s o r p t i o n of s m a l l a m o u n t
of moisture v a p o r
effect a n d reduces the shear r i g i d i t y .
enhances the p l a s t i c i z i n g
A t Β—water v a p o r
at the
film
surface d r a w s p l a s t i c i z e r out of the r e s i n , l e a v i n g the film m o r e r i g i d . P l a s t i c i z e r c a n be seen a n d felt o n the surface at this p o i n t . is l o s i n g adhesion to the q u a r t z surface.
At C—film
A t D — p l a s t i c i z e r is r e t u r n i n g
to t h e r e s i n ( o b s e r v e d ) a n d film re-adheres to the surface, r e t u r n i n g to its o r i g i n a l state. Supplementary e q u i l i b r a t e d at 5 0 %
experiments
support
this i n t e r p r e t a t i o n :
(a)
films
R . H . h a d l o w e r r i g i d i t y t h a n one e q u i l i b r a t e d at
0 % R . H . — s u g g e s t i n g b e h a v i o r at A , ( b ) film e q u i l i b r a t e d at 1 0 0 % R . H . separated
f r o m q u a r t z surface,
(c)
a b r u p t h u m i d i t y changes h a v e no
effect o n P V C or t h e p l a s t i c i z e r separately. A mundane
e x a m p l e w h i c h w e i n c l u d e for its n o v e l c o m p l e x i t y
the effect of w a t e r w e t t i n g o r d i n a r y c e l l o p h a n e adhesive tape.
is
T h e tape
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
168
INTERACTION
provides a highly complex a n d other c o m p o n e n t s ) .
OF
LIQUIDS A T
substate ( c e l l o p h a n e ,
SOLID
SUBSTRATES
p l a s t i c i z e r , adhesive,
T h e t a p e w a s pressed onto the i m p e d o m e t e r b a r
and wetted w i t h water.
A c o m p l e x response w o u l d b e e x p e c t e d
of a
c o m p l e x system i f the a t t e n u a t i o n changes p r e v i o u s l y o b s e r v e d o n s i m p l e r systems w e r e not of t r i v i a l origin—e.g., i n s t r u m e n t effects.
T h e response
s h o w n i n F i g u r e 10 is q u i t e c o m p l e x a n d r e p r o d u c i b l e ( p a r t i c u l a r l y a l o n g the t i m e a x i s ) . A d o u b l e l a y e r of t y p e ( C u r v e B ) gave a s i m i l a r response s h i f t e d to l o n g e r times a n d s m a l l e r a m p l i t u d e s . W e d o not p r e t e n d to b e a b l e to i n t e r p r e t the b e h a v i o r d e p i c t e d i n F i g u r e 10, b u t i t is c e r t a i n that some subtle l i q u i d - s o l i d interactions are r e s p o n s i b l e as w e l l as gross Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
effects s u c h as s e p a r a t i o n at the c e l l o p h a n e / a d h e s i v e interface. + 3.0
I
1
I
I
I
I
3
I M i l l
6
I
10
I
30
I
I—I
60
Time after Η£θ application, sec. Figure 10.
Cellophane tape/water interaction Frequency = 2.5 MHz.
Summary and Conclusions. " S i m p l e shear is b y f a r the most i m p o r tant t y p e of d e f o r m a t i o n i n studies of viscoelastic bodies, because [for e x a m p l e ] the absence of a v o l u m e c h a n g e facilitates i n t e r p r e t a t i o n of the b e h a v i o r i n m o l e c u l a r t e r m s ( 8 ) . ,,
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
12.
CRAVER
AND
TAYLOR
169
Polymer Solvent Interactions
T h e sequence of events w h i c h w e h a v e d e t e c t e d at u l t r a s o n i c f r e quencies w h e n h y d r o p h i l i c p o l y m e r s are c o n t a c t e d b y strongly h y d r o g e n b o n d i n g solvents i n v o l v e s a s h a r p increase i n shear stiffness f o l l o w e d b y a m o r e or less r a p i d decrease to a t t e n u a t i o n levels close to that of the solvent. W e a t t r i b u t e the i n i t i a l increase i n stiffness to w a t e r h y d r o g e n b o n d i n g p o l y m e r c h a i n s w i t h consequent
increase i n order.
T h i s stage is
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
f o l l o w e d b y progressive s o l v a t i o n of the p o l y m e r film, p l a s t i c i z a t i o n , a n d solution.
W a t e r vapor produces
alcohol)
either t h r o u g h c r o s s l i n k i n g or
mobility.
increased organization i n poly ( v i n y l through increased
molecular
T h i s is m a n i f e s t e d b y the i n c r e a s e d sharpness of the x - r a y
d i f f r a c t i o n p a t t e r n a n d b y the i n c r e a s e d h i g h f r e q u e n c y shear stiffness of the h u m i d i f i e d
films.
T h e m o l e c u l a r b r i d g i n g hypothesis has
been
u s e d b y others to e x p l a i n d e n s i t y m a x i m a i n h u m i d i f i e d c o l l a g e n a n d g e l a t i n , the " b o u n d " w a t e r p h e n o m e n a i n l i v i n g organisms, a n d t h e b o n d i n g of cellulose fibers i n p a p e r m a k i n g . T h e h y d r o g e n b o n d s i n l i q u i d w a t e r h a v e a n average l i f e t i m e of less than 10"
10
s e c o n d as m e a s u r e d b y d i e l e c t r i c r e l a x a t i o n times (4).
But
the h y d r o g e n b o n d s b e t w e e n w a t e r a n d a p o l y m e r c o u l d exist for longer t h a n 10"
7
seconds.
S u c h a s t r u c t u r e w o u l d a p p e a r " p e r m a n e n t " at the
frequencies u s e d i n the u l t r a s o n i c i m p e d o m e t e r ( 1 0
7
cycles/sec.
range),
a n d s h o u l d demonstrate a m e a s u r a b l e shear stiffness at these frequencies. T h e case for i n c r e a s e d o r g a n i z a t i o n i n h y d r o p h o b i c films c a u s e d b y n o n h y d r o g e n - b o n d i n g solvents is not as w e l l d o c u m e n t e d .
It is difficult
for us to see h o w b e n z e n e c a n increase the shear m o d u l u s of paraffin w a x or h o w t e t r a h y d r o f u r a n c a n d o the same for p o l y ( v i n y l c h l o r i d e ) . It is possible that w e are d e a l i n g w i t h a v a n d e r W a a l s b o n d i n g i n s w o l l e n p o l y m e r s i n these cases b u t m u c h m o r e e v i d e n c e w o u l d b e n e e d e d b e f o r e a definite theory c a n b e a d v a n c e d . T h e use of the shear-reflectance i m p e d o m e t e r has p e r m i t t e d us to observe p o l y m e r - s o l v e n t interactions i n t h i n films a n d to m o n i t o r transient effects w h i c h are not r e a d i l y accessible b y other t e c h n i q u e s .
This sug-
gests t h a t this t e c h n i q u e c o u l d b e a p p l i e d to the s t u d y of p o l y m e r - s o l v e n t interactions i n other r e l a t e d research areas s u c h as the diffusion
of
solvents i n t o films, p h y s i c a l effects at p i g m e n t - p o l y m e r surfaces, or t h e n a t u r e of the interface b e t w e e n l i v i n g c e l l surfaces a n d aqueous m e d i a .
Acknowledgment T h e x-ray crystallinity data were supplied b y E m i l e D . Pierron, Central Research Department, Monsanto C o .
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
170
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
Literature Cited (1) (2) (3) (4) (5)
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch012
(6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)
Barlow, A. J., Lamb, J., Proc. Roy. Soc. A253, 52 (1959). Bosley, D. E., J. Appl. Poly. Sci. 8, 1521 (1964). Bunn, C. W., Nature 161, 929 (1948). Collie, C. H . , et al., Proc. Phys. Soc. 60, 145 (1948). Craver, J . K., Taylor, D . L . , 'Consolidation of the Paper Web," p. 445, F. Bolam, Ed., Tech. Section, Β. P. & B.M.A., London, 1966. Darby, J. R., Monsanto (personal communication, 1964). Fels, I. G., J. Appl. Poly. Sci. 8, 1813 (1964). Ferry, J. D., "Viscoelastic Properties of Polymers," p. 6, Wiley, New York, 1961. Gluzman, M . Kh. et al., Polymer Sci. USSR 7, 2216 (1965). Hunter, J. L . , et al., J. Acoustical Soc. Am. 36, 953 (1964). Mason, W. P., McSkimin, H . J., Bell System Tech. J. 31, 122 (1952). Mason, W . P., et al., Phys. Rev. 75, 936 (1949). Meister, R., et al., J. Appl. Phys. 31, 854 (1960). Mikhailov, Ν. V., et al., Poly. Sci. USSR 6, 582 (1964). Myers, R. R., Schultz, R. K., J. Appl. Poly. Sci. 8, 755 (1964). Myers, R. R., et al., J. Paint Tech. 38, 479 (1966). Piccirelli, R., Litovitz, Τ. Α., J. Acoustical Soc. Am. 29, 1009 (1957). Priest, W. J., J. Poly. Sci. 6, 699 (1951). Starkweather, H . W., Jr., Poly. Letters 1, 133 (1963). Tadokoro, H . , et al.,Bull.Chem. Soc., Japan 27, 451 (1954). Zimm, Β. H . , Londberg, J. L . , J. Phys. Chem. 60, 425 (1956).
RECEIVED October 26, 1967.
Alexander; Interaction of Liquids at Solid Substrates Advances in Chemistry; American Chemical Society: Washington, DC, 1968.