Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
Interaction of Technical and Economic Demands in the Design of Large Scale Electrodialysis Demineralizers DONALD A. C O W A N Physics Department, University of Dallas, Dallas, Tex., and Texas Electric Service Co., Fort Worth, Tex.
In an electrodialysis demineralizing system, per formance is restricted by changes in the thin un stirred layer next to the membrane. When the layer is so thick that diffusion will not supply the current, polarization, charge concentration, and pH change result. Thickness of the layer and limiting current density are functions of fluid velocity through the cell. Fluid velocity controls current density, which in turn controls the ratio between membrane costs and electrical costs. This ratio sets the lowest cost under given circumstances. The lowest cost of demineralization may be ex pressed as a function of input and output concen tration, membrane cost and resistance, and stream thickness. Large scale experiments in municipalsized demineralizers show that optimum conditions can be very nearly achieved.
I η t h e d e s i g n o f a n e l e c t r o d i a l y s i s p l a n t , e c o n o m i c a n d t e c h n i c a l aspects a r e p o w e r f u l determinants. I n general, economic factors control the q u a n t i t y of membranes required, a n d technical considerations govern their arrangement. T h e f o l l o w i n g cost e q u a t i o n s h o w s t h e e c o n o m i c elements d i v i d e d i n t o t h r e e g r o u p s , each affected d i f f e r e n t l y b y c u r r e n t d e n s i t y .
dN/j
Ν
J
*iV
+EF
I (jr + V)dN JN
+ C
Γ V»
0
+ 0.101 c e n t / k i l o g a l l o n Ε I (jr + V)dN + C JN Ε — cents/kw.-hr. Ν = equivalents/liter r = ohm/sq. cm./cell pair C = cents/kilogallon
Ν where M = cents/sq. f o o t / y e a r ; = ma./sq. cm.
dN/j
224
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
225
COWAN—LARGE SCALE ELECTRODIALYSIS DEMINERALIZERS
B e c a u s e s a l t is c a r r i e d b y c u r r e n t , less m e m b r a n e a r e a p e r v o l u m e o f w a t e r p r o d u c e d i s r e q u i r e d as c u r r e n t d e n s i t y i n c r e a s e s ; c o n s e q u e n t l y , i n t h e first g r o u p , a l l costs associated w i t h a r e a v a r y i n v e r s e l y w i t h c u r r e n t d e n s i t y . T h e second g r o u p — PR e l e c t r i c c o s t — i n c r e a s e s w i t h c u r r e n t d e n s i t y . T h e e l e c t r o d e a n d c o n c e n t r a t i o n p o t e n t i a l s , V, w h i c h also a p p e a r i n t h i s g r o u p , m a y b e h a n d l e d as a p e r t u r b a t i o n o f r e sistance a n d h e n c e , i n t h e i n t e r e s t o f s i m p l i c i t y , o m i t t e d f r o m f u r t h e r c o n s i d e r a t i o n . A t h i r d g r o u p i s unaffected b y c u r r e n t d e n s i t y .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
I f t h e d e r i v a t i v e o f t h e cost e x p r e s s i o n i s set e q u a l t o zero a n d s o l v e d f o r c u r r e n t d e n s i t y , a v a l u e i s o b t a i n e d w h i c h w i l l desalt t h e w a t e r a t s m a l l e s t cost. T h i s s m a l l e s t cost, t h e r e q u i r e d " o p t i m u m " c u r r e n t , a n d t h e r e s u l t i n g m e m b r a n e a r e a are :
Ν C u r r e n t condition
Vr
j = 11.1 y/M/Er
dN + C ma./sq. cm.
M e m b r a n e area 2 X 0.408 Λ/Ε/Μ
rNo I VrdN JN
E l e c t r i c energy
ΓΝ I °-v/r diV k w . - h r . / k i l o g a l l o n JN
sq. f e e t / g a l l o n / d a y
0
1.12 WW/Ë
N o l i m i t a t i o n s are p l a c e d o n t h e a r r a n g e m e n t b y t h i s s m a l l e s t cost r e q u i r e m e n t . M a n y short parallel stacks o r a few long stacks satisfy t h e requirement; only t h e t o t a l a r e a i s specified.
01
.03
.05 Q| .2 INPUT NORMALITY
.3
.5
Figure I. Effect of steam thickness and membrane resistance on cost with optimum current density For cost, multiply by 2.24 cents/kilogallon Λ/MÊ and add C. For membrane area, multiply by 2 X 0.408 VË/M sq. ft./gal./ day. For electric energy, multiply by 1.12 Λ / Μ / Ε kw.-hr./kilogallon (M in cents/sq. ft./yr.; Ε in cents/kw.-hr.)
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
226
ADVANCES IN CHEMISTRY SERIES
T h e value of the parameters can be determined w i t h only a cursory consideration of d e s i g n . T h e a r e a resistance, r, i s c o m p o s e d o f t h e m e m b r a n e resistance a n d t h e s t r e a m resistance, i t s s q u a r e r o o t a p p e a r i n g i n t h e s m a l l e s t cost e x p r e s s i o n . T h e m e m b r a n e resistance q u o t e d b y m a n u f a c t u r e r s i s a s t a t i c v a l u e , m e a s u r e d w h i l e t h e m e m b r a n e still has its m i n o r i t y carriers a n d consequently is n o t y e t m a r k e d l y p e r m s e l e c t i v e . I n o p e r a t i o n t h e m e m b r a n e has a resistance n e a r l y t w i c e t h e v a l u e s q u o t e d . A v a l u e o f 2 5 o h m s p e r s q . c m . p e r p a i r , m e a s u r e d f o r some t h i n m e m b r a n e s , i s u s e d i n t h e f o l l o w i n g c a l c u l a t i o n s . B e c a u s e t h e resistance o f t h e c o n c e n t r a t e s t r e a m c a n be m a d e a r b i t r a r i l y s m a l l b y a n increase o f c o n c e n t r a t i o n , a v a l u e / o f d i l u t e s t r e a m resistance has b e e n u s e d f o r t h e fluid resistance i n t h e p r e p a r a t i o n of F i g u r e 1. T h e effect o f s t r e a m t h i c k n e s s i s c l e a r l y e v i d e n t i n t h i s figure. O n l y a m i n o r s a v i n g c o u l d b e effected w i t h t h i n n e r s p a c i n g — a b o u t 2-cent difference p e r k i l o g a l l o n f o r b r a c k i s h w a t e r b e t w e e n 100 a n d 5 0 m i l s i n t h i c k n e s s . F u r t h e r m o r e , t h i s s a v i n g i s n o t a v a i l a b l e unless o n e i s o p e r a t i n g n e a r o p t i m u m c u r r e n t . U n t i l 1 2 - i n s t e a d of 3 0 - c e n t w a t e r i s b e i n g c o n s i d e r e d , t h i s 2-cent m a r g i n does n o t w a r r a n t i n t e r e s t . T h e p r o b l e m o f g e t t i n g w a t e r i n a n d o u t o f t h e c e l l , a n d of k e e p i n g i t flowing, i s m u c h m o r e e a s i l y s o l v e d i n w i d e passages t h a n i n t h i n ones. A d m i t t e d l y , i n o r d e r t o a c c o m p l i s h t h e s a m e d i l u t i o n , a c e l l m u s t b e t w i c e as l o n g i f i t i s t w i c e as t h i c k ; b u t t w i c e as m u c h w a t e r i s p r o d u c e d w h e n t h e size i s d o u b l e d . T h e o n l y p e n a l t y i s t h a t s h o w n i n F i g u r e 1. F o r sea w a t e r , t h e p e n a l t y f o r 100 m i l s i n s t e a d o f 5 0 m i l s a m o u n t s t o a b o u t 7 cents; b u t of far more i m p o r t a n c e is the m e m b r a n e resistance, where greater s a v i n g c o u l d b e effected. U n t i l one considers 50-cent w a t e r f r o m t h e sea i n s t e a d o f t h a t c o s t i n g $1.00 o r m o r e , t h e t h i n passages are a n u n n e c e s s a r y c o m p l i c a t i o n .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
5
Table I.
Cosh Proportional to Area Amortization, Interest, a n d Insurance
Dollars/Sq. Foot
20-year life Press Side strips Instrumentation Contingencies Engineering
4
0.50 0.40 0.03 0.19 0.21
3-year life Membranes Spacers Inlets a n d outlets Assembly
1.33
0.122
2.03
0.769
1.10 0.50 0.01 0.42
1-year life Electrodes L a b o r , a d m i n i s t r a t i o n , a n d overhead Interest on w o r k i n g c a p i t a l
0.030 0.007 0 001 = 0.929
M M
Table II.
= 92.9 cents/sq. f o o t / y e a r
Costs Proportional to Current Dollars/Kw.-Hr. 0.007 0.0014 0.0002 0.0001 0.0007
D e m i n e r a l i z i n g current A d d 1 0 % , efficiency, a n d 1 0 % , p u m p i n g Instrumentation Rectifiers L a b o r , a d m i n i s t r a t i o n , a n d overhead Ε
=
$0.0094
Ε = 0.94 c e n t / k w . - h r .
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
COWAN—LARGE SCALE ELECTRODIALYSIS DEMINERALIZERS
227
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
T h e p a r a m e t e r , M, r e p r e s e n t i n g t h e cost p e r s q u a r e foot o f m e m b r a n e a r e a p e r y e a r ( T a b l e I ) , covers m o s t of t h e cost i t e m s l i s t e d i n t h e s t a n d a r d cost p r o c e d u r e ( # ) . S o m e o f t h e i t e m s a r e p r o j e c t e d f u t u r e costs. F o r e x a m p l e , a m e m b r a n e cost -of 5 0 cents p e r s q u a r e foot i s u s e d . M e m b r a n e costs h a v e b e e n a b o u t $2.00 p e r s q u a r e f o o t , b u t t h e p r e s e n t cost i s l i k e l y t o b e a b o u t h a l f t h i s figure f o r a l a r g e o r d e r , a n d m a n u f a c t u r e r s g i v e a s s u r a n c e t h a t t h e 5 0 - c e n t figure i s i n s i g h t . T h e t o t a l cost p e r s q u a r e f o o t - y e a r i s 9 2 cents, 77 cents o f w h i c h i s f o r 3 - y e a r - l i f e i t e m s — m e m b r a n e s , s p a c e r s , i n l e t s a n d o u t l e t s , a n d a s s e m b l y cost. S h o u l d t h e s t a c k p r o v e t o h a v e a 1 0 - y e a r l i f e , the t o t a l cost w o u l d d r o p t o 4 1 cents p e r s q u a r e f o o t - y e a r , a n d one m i g h t a c c e p t t h i s figure as t h e o p t i m i s t i c l i m i t .
T h e e l e c t r i c cost ( T a b l e I I ) i s t h e cost a t t h e suggested 7 m i l s p e r k i l o w a t t - h o u r of the energy previously calculated, increased b y 1 0 % t o account for p u m p s , lighting, a n d r e c t i f i e r efficiency a n d b y a n o t h e r 1 0 % f o r c u r r e n t efficiency. T h e cost g r o u p u n a f f e c t e d b y c u r r e n t d e n s i t y ( T a b l e I I I ) i n c l u d e s o p e r a t i n g costs a n d certain portions of t h e a m o r t i z a t i o n . Wages have been d i s t r i b u t e d a m o n g t h e t h r e e categories. W i t h these figures, o n e c a n s p e c i f y t h e cost o f 5 0 0 - p . p . m . w a t e r p r o d u c e d b y a p l a n t o f o p t i m u m d e s i g n n o w — t h a t i s , t h e 9 2 cents p e r s q u a r e f o o t p e r y e a r c o s t — a n d t h e cost a t t h e o p t i m i s t i c l i m i t ( F i g u r e 2 ) . T w o a d d i t i o n a l e l e m e n t s of cost a p p l y p r i m a r i l y t o i n l a n d w a t e r s : t h e cost o f c l e a r , r a w w a t e r a n d t h e cost o f s a l t d i s p o s a l . S u r f a c e w a t e r m u s t , i n a l l p r o b a b i l i t y , b e
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
ADVANCES IN CHEMISTRY SERIES
228
t r e a t e d b e f o r e d e s a l i n i z a t i o n . T h i s cost m a y b e a b o u t 4 cents p e r 1 0 0 0 g a l l o n s . S a l t d i s p o s a l p r o b l e m s h a v e n o t y e t b e e n s o l v e d ; i t seems l i k e l y t h a t t h i s r e q u i r e m e n t w i l l a d d 2 0 t o 5 0 % t o t h e cost o f w a t e r .
Table III.
Costs Proportional to Volume Only
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
Dollars/Kilogallon/Day Capacity
Dollars/Kilogallon
8.00 6.00 10.00 2.00 7.14 3.14 3.40
B u i l d i n g a n d site R a w water supply, 2 0 % b l o w d o w n P r o d u c t water storage P u m p s a n d pipes Construction Contingencies Engineering
$39.68
Taxes a n d insurance F u e l , chemicals, supplies L a b o r , a d m i n i s t r a t i o n , a n d overhead
0.010 0.003 0.003 0.008 $0,024
C = 2.4 c e n t s / k i l o g a l l o n
S u m m i n g u p t h e e c o n o m i c s , o n e c a n s a y t h a t b r a c k i s h w a t e r of 2100 p . p . m . c a n be m a d e i n t o g o o d w a t e r o f 500 p . p . m . a t a cost o f a b o u t 18 cents p e r 1000 g a l l o n s , i n c l u d i n g salt d i s p o s a l , w i t h a p o s s i b i l i t y o f p r o d u c i n g i t a t a b o u t 14 cents. Similarly, sea w a t e r c a n b e m a d e u s a b l e a t 7 2 cents p e r k i l o g a l l o n , w i t h a n o p t i m i s t i c l i m i t o f 4 8 cents. T h e p r o b l e m t h a t r e m a i n s , t h e n , i s h o w n e a r l y c a n these o p t i m u m c o n d i t i o n s be r e a l i z e d ?
Realization of Optimum Conditions A r r a n g e m e n t o f m e m b r a n e s i n t o l o n g o r s h o r t cells h a s n o b e a r i n g u p o n cost. T h e e c o n o m i c r e q u i r e m e n t o n d e s i g n i s o n l y t h a t i t ensure t h e o p t i m u m c u r r e n t density a t every point i n t h e cell. A technical requirement, however, imposes a f u r t h e r r e s t r i c t i o n u p o n d e s i g n : t h a t the c u r r e n t d e n s i t y b e m a i n t a i n e d i n t h e n e i g h borhood of the "diffusion l i m i t i n g c u r r e n t . " T h e p h e n o m e n o n of l i m i t i n g c u r r e n t i s m a r k e d b y a n o n o h m i c increase o f v o l t a g e as t h e c u r r e n t i s i n c r e a s e d . A r a t h e r s i m p l e s t u d y o f t h e r a t i o o f c u r r e n t t o v o l t a g e w i l l r e v e a l t h i s i n c r e a s e . T h e v o l t a g e i s t h e s u m o f t h e electrode v o l t a g e , V , w h a t e v e r p o l a r i z a t i o n v o l t a g e s a r e p r e s e n t , V , a n d t h e IR d r o p : e
p
V = V + V + IR e
p
T h e d a t a c a n b e s h a r p e n e d b y a change i n t h e v a r i a b l e s : YII
= R + (V + V )/I e
P
N o w t h e p l o t of V/I vs. I- h a s R f o r t h e i n t e r c e p t a n d V f o r t h e slope u n t i l p o l a r i z a t i o n sets i n as a s h a r p change o f slope. A p l o t o f e x p e r i m e n t a l d a t a s h o w s t h i s slope change a t a c r i t i c a l c u r r e n t d e n s i t y ( F i g u r e 3 ) . A t t h i s same c u r r e n t v a l u e , t h e p H begins t o c h a n g e . T h i s d i f f u s i o n l i m i t i n g c u r r e n t p o i n t m o v e s t o h i g h e r c u r r e n t d e n s i t y v a l u e s as s t r e a m v e l o c i t y a n d c o n c e n t r a t i o n i n c r e a s e . I n experimental w o r k a t the Texas E l e c t r i c l a b o r a t o r y this relationship has been e s t a b l i s h e d (1). T h e w o r k r e p o r t e d a p p l i e d t o fluids i n t u r b u l e n t flow a n d hence t o relatively h i g h velocities. Since t h a t time t h e studies have been extended t o lower velocities. T o support t h i n membranes, a pierced, corrugated m a t e r i a l was placed i n t h e s t r e a m s w i t h t h e c o r r u g a t i o n s i n t h e d i r e c t i o n o f flow, i n a m a n n e r t o cause t h e smallest pressure d r o p ; this obstruction i n d u c e d strong m i x i n g a n d s i m u l a t e d t u r b u 1
e
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
229
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
COWAN—LARGE SCALE ELECTRODIALYSIS DEMINERALIZERS
lence a t r a t h e r l o w R e y n o l d s n u m b e r s . O n t h e b a s i s o f these s t u d i e s , a n e m p i r i c a l expression has been constructed f o r t h e l i m i t i n g current density over t h e entire range of v e l o c i t i e s : j = 0.04 N/w U
112
(U + 1 . 9 )
1/3
w h e r e U i s t h e flow r a t e o f t h e d i l u t i n g s t r e a m i n g a l l o n s p e r m i n u t e p e r i n c h o f w i d t h , w is stream thickness i n inches, a n d Ν is n o r m a l i t y i n equivalents p e r liter. T h e e x p r e s s i o n i s b a s e d o n studies w i t h s o d i u m s u l f a t e ; o t h e r salts s h o u l d h a v e o n l y s l i g h t l y different l i m i t i n g c u r r e n t densities. A n u m b e r o f effects set i n a t c u r r e n t densities a b o v e t h i s l i m i t i n g v a l u e . T h e v o l t age increases a b o v e o h m i c v a l u e s ; t h e p H changes, d r o p p i n g i n t h e d i l u t e s t r e a m a n d
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
230
ADVANCES IN CHEMISTRY SERIES
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
increasing i n t h e concentrate; a n d t h e membranes themselves become polarized, f o r m i n g electrets w h i c h p e r s i s t f o r h o u r s . I t seems l i k e l y t h a t s c a l i n g i s associated w i t h o n e of these effects; hence s c a l i n g p r o b l e m s c a n b e a v o i d e d i f t h e c e l l i s o p e r a t e d b e l o w limiting current. T h e Texas Electric experiments thus f a r indicate that trouble is a s s o c i a t e d w i t h c u r r e n t densities i n excess o f t h e l i m i t , a n d i t h a s b e e n a c c e p t e d as a dictate of n a t u r e t h a t membranes n o t be polarized a n d t h e p H of t h e water n o t be c h a n g e d — t h a t i s , t h a t l i m i t i n g c u r r e n t n o t b e exceeded. O n t h e o t h e r h a n d , t h e r e i s a r e a s o n t o o p e r a t e as n e a r t o t h e l i m i t i n g c u r r e n t as possible. C u r r e n t efficiency of d e m i n e r a l i z a t i o n i s l o w w h e n t h e c e l l i s o p e r a t i n g a t c u r r e n t densities m a r k e d l y b e l o w the l i m i t i n g current. H e r e , then, is t h e technical demand i n electrodialysis plant design: that conditions be fixed so t h a t o p e r a t i o n i s a l w a y s n e a r t h e l i m i t i n g c u r r e n t . T h i s d e m a n d w a s r e vealed i n experimental studies; i t is n o t merely a theoretical nicety, b u t a practical r e q u i r e m e n t . F o r t u n a t e l y , o n e a c h side o f t h e c r i t i c a l c o n d i t i o n s t h e r e i s some l e e w a y w h i c h a l l o w s p r a c t i c a l designs a t s m a l l p e n a l t i e s , b u t i t i s necessary t o c h a n g e t h e flow r a t e f r o m stage t o stage d o w n s t r e a m i n o r d e r t o m a i n t a i n l i m i t i n g c u r r e n t . T h e d e s i g n p r o b l e m resolves i t s e l f , t h u s , t o t h e s a t i s f y i n g o f t w o c o n d i t i o n s , o p t i m u m c u r r e n t a n d l i m i t i n g c u r r e n t . T h e c u r r e n t d e n s i t y c a n b e set a t t h e o p t i m u m v a l u e b y a d j u s t i n g t h e v o l t a g e f r o m stage t o stage. T h i s o p t i m u m current c a n be m a d e t h e l i m i t i n g c u r r e n t b y a n a d j u s t m e n t o f t h e flow r a t e t h r o u g h p a r a l l e l i n g of s t r e a m f r o m stage t o stage. T h u s t h e t w o c o n d i t i o n s c a n b e satisfied. F i g u r e 4 shows
40
5
80
Ί 120
Γ
160
240 200 FEET
.005
Figure 4. Voltage and flow rate per cell which establish optimum current and limiting current simultaneously, as functions of position along path length 0.1-Inch stream thickness and 25 ohm/sq. em. per pair resistance assumed
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
COWAN—LARGE SCALE ELECTRODIALYSIS DEMINERALIZERS
231
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch021
these r e q u i r e d c o n d i t i o n s . B e c a u s e t h e s t r e a m v e l o c i t y i s h i g h a t t h e o u t p u t e n d , i t m a y prove expedient t o accept a s m a l l penalty a n d drop below the o p t i m u m velocity i n t h e l a s t stage o r t w o . T h e r e s u l t i n g d e s i g n w i l l i n e v i t a b l y c a l l f o r a l a r g e p l a n t ; t h e single u n i t s h o u l d a p p r o a c h 2,000,000 g a l l o n s p e r d a y as n o w e n v i s i o n e d , a size q u i t e a c c e p t a b l e f o r c o m m u n i t y s u p p l i e s . A stage l e n g t h o f 4 0 feet a p p e a r s t o b e p r a c t i c a l f o r cells w i t h s t r e a m thicknesses o f 0.1 i n c h . T h e T e x a s E l e c t r i c S e r v i c e C o . i s n o w o p e r a t i n g a 4 0 - f o o t stage a t F o r t h W o r t h a s p a r t o f a d e v e l o p m e n t a l s t u d y . A b r a c k i s h w a t e r p l a n t m i g h t use t h r e e s u c h stages, w h e r e a s a sea w a t e r p l a n t w o u l d r e q u i r e n i n e i n series, w i t h m a n y p a r a l l e l s t a c k s a t t h e i n p u t so t h a t t h e e n t e r i n g w a t e r w o u l d flow s l o w l y .
Conclusions T o produce low-cost water, a plant m u s t meet t w o m a i n conditions: a moderate cost p e r s q u a r e foot o f a c t i v e a r e a a n d a r e l a t i v e f r e e d o m f r o m e x p e n s i v e s u p e r v i s i o n a n d f r e q u e n t o v e r h a u l . T h e s e c o n d i t i o n s c a n b e m e t b y l a r g e cells. I n f a c t , l a r g e scale, c o m m u n i t y - s i z e d e l e c t r o d i a l y s i s p l a n t s c a n a l l o w t h e f r e e d o m of d e s i g n needed t o m a k e d e s a l i n i z a t i o n e c o n o m i c a l l y feasible.
Literature Cited (1) C o w a n , D. Α., B r o w n , J. H., Ind. Eng. Chem. 51, 1445 (1959). (2) Office of Saline W a t e r , W a s h i n g t o n , D. C . ,PB161,375 (1955). RECEIVED for review July 20, 1960. A c c e p t e d A u g u s t 31, 1960.
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.