41 Investigation of Oxygen Mobility in Synthetic Zeolites by Isotopic Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch041
Exchange Method G. V. ANTOSHIN, KH. M. MINACHEV, E. N. SEVASTJANOV, D. A. KONDRATJEV, and CHAN ZUI NEWY N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences, Moscow, USSR 18
A study has been carried out on the O exchange between O and following zeolites: NaX, NaY (SiO /A O = 3.4), NaY (SiO /Al O = 4.7), Na-mordenite, and Cu and Ag forms of Y zeolite. The sodium forms have similar kinetic characteristics of oxygen mobility. Activation energies of exchange for these forms are about 45-50 kcal/mole. The replacement of Na by Cu in Y zeolite causes a large increase of oxygen mobility. The same effect, but less pronounced, has been found for silver. 2
2
2
2
2
3
3
' T ^ h e present p a p e r reports some d a t a o n t h e o x y g e n m o b i l i t y o f N a m o r d e n i t e , a n d N a X , a n d N a Y zeolites, a n d t h a t o f s i l v e r a n d c o p p e r forms of z e o l i t e Y w i t h v a r i o u s degrees of r e p l a c e m e n t of s o d i u m b y t h e cations.
These have been obtained b y studying the zeolite-molecular
o x y g e n i s o t o p i c exchange k i n e t i c s . S u c h d a t a m a y p r o v e v a l u a b l e i n gaining insight into the correlation dependence between zeolite chemical c o m p o s i t i o n a n d t h e i r p r o p e r t i e s , s u c h as c a t a l y t i c a c t i v i t y a n d t h e r m a l s t a b i l i t y (1,4,6).
N o d a t a o n i s o t o p i c exchange b e t w e e n 0
2
a n d zeolites
are a v a i l a b l e i n t h e l i t e r a t u r e , except one w o r k (3) i n w h i c h t h e exchange between 0
2
1 8
a n d z e o l i t e L i n d e 5 A w a s n o t f o u n d at 250 ° C .
Experimental Materials. T h e samples w e r e c o m m e r c i a l l y s u p p l i e d zeolites N a X ( S i 0 / A l 0 = 2 . 4 5 ) , N a Y ( S i 0 / A l 0 = 3.4 a n d 4 . 7 ) , a n d N a - m o r d e n i t e ( S i 0 / A l 0 = 10) w i t h o u t b i n d e r . T h e c r y s t a l sizes of zeolites u s e d w e r e 1-2/x,. S i l v e r a n d c o p p e r forms of z e o l i t e Y w e r e p r e p a r e d b y 2
2
3
2
2
2
2
3
3
514 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
41.
ANTOSHIN ET A L .
Oxygen
Mobility
in Synthetic
515
Zeolites
c a t i o n exchange b e t w e e n the s t a r t i n g s o d i u m c o n t a i n i n g z e o l i t e Y w i t h S i 0 / A l 0 = 3.4 r a t i o a n d s i l v e r n i t r a t e or c o p p e r acetate s o l u t i o n . B e f o r e experiments, the zeolites w e r e w a s h e d b y d i s t i l l e d w a t e r . P e l l e t e d forms of zeolites 4 m m i n d i a m e t e r a n d 5 m m h i g h w e r e u s e d . S u r f a c e areas ( B E T ) of X a n d Y zeolites w e r e ca. 700 m / g r a m . T h e c o r r e s p o n d i n g v a l u e for N a - m o r d e n i t e w a s 300 m / g r a m . O x y g e n e n r i c h e d i n O w a s p r e p a r e d b y electrolysis of h e a v y - o x y g e n w a t e r . O x y g e n w i t h O c o n c e n t r a t i o n a b o u t 7 % a t m ( e q u i l i b r i u m m i x t u r e of different i s o t o p i c species ) w a s u s e d i n most of experiments. Apparatus. A v a c u u m c i r c u l a r static u n i t was u s e d to s t u d y t h e i s o t o p i c exchange. T h e t e m p e r a t u r e i n the z e o l i t e b e d w a s m a i n t a i n e d w i t h a c c u r a c y of d = l ° C . O m e g a t r o n e was e m p l o y e d to a n a l y z e the gas isotopic composition. Procedure. Z e o l i t e samples w e r e t r e a t e d i n h i g h v a c u u m ( 10" m m ) at 7 0 0 ° C for 5 hours a n d t h e n k e p t i n o x y g e n at the same t e m p e r a t u r e for n o t less t h a n 5 hours at a pressure of 5 - 1 0 m m . Isotopic exchange was s t u d i e d at 6 0 0 ° - 7 0 0 ° C u n d e r 5 - 6 0 m m pressure. T h e r e a c t i o n vessel was fitted w i t h traps a n d c o o l e d w i t h l i q u i d n i t r o g e n to p r e v e n t grease f r o m g e t t i n g i n t o the zeolites. T h e c a p a c i t y of the z e o l i t e samples u s e d was d e t e r m i n e d against n i t r o g e n at the t e m p e r a t u r e of l i q u i d n i t r o g e n before a n d after the exchange experiments. 2
2
3
2
2
1 8
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch041
1 8
5
Results
and
Discussion
P r e l i m i n a r y experiments w i t h zeolite N a Y ( S i 0 / A l 0 2
2
3
=
s h o w n o x y g e n m o b i l i t y ( e x c h a n g e b e t w e e n p h a s e s ) to b e
3.4 ) h a v e measurable
o n l y at t e m p e r a t u r e s e x c e e d i n g 600 ° C after v a c u u m - t r e a t i n g the zeolite s h o w e d v a r y i n g i n c r e a s e d a c t i v i t y . T h i s w a s decreased to a constant v a l u e b y m a i n t a i n i n g the z e o l i t e i n oxygen.
T h e data obtained allowed
a c h o i c e of c o n d i t i o n s for the p r e - t r e a t m e n t of the samples.
The
0
1 8
c o n c e n t r a t i o n increase i n z e o l i t e r e s u l t i n g f r o m one exchange w i t h the e n r i c h e d gas w a s n e g l i g i b l e .
( T h e r a t i o b e t w e e n the n u m b e r of o x y g e n
atoms i n the z e o l i t e a n d that i n the gas was a b o u t 200 i n most of the experiments. ) T h i s m a d e possible a series of experiments w i t h the same z e o l i t e s a m p l e to s t u d y the d e p e n d e n c e of the exchange rate o n o x y g e n t e m p e r a t u r e a n d pressure. A f t e r the series of e x p e r i m e n t s , the i n i t i a l one w a s r e p e a t e d u n d e r the s t a r t i n g c o n d i t i o n s . T h e r e p r o d u c i b i l i t y of results was
10%. E v a l u a t i o n of the e x p e r i m e n t a l d a t a has s h o w n the m o l e c u l a r o x y g e n -
z e o l i t e i s o t o p i c exchange
k i n e t i c s to o b e y
first
o r d e r equations.
e x a m p l e , F i g u r e 1 presents some k i n e t i c d a t a o n the exchange 0
2
a n d s o d i u m forms of zeolites s t u d i e d at 620° a n d 7 0 0 ° C .
For
between T h e s e are
t r e a t e d a c c o r d i n g to the e q u a t i o n
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch041
516
MOLECULAR SIEVE ZEOLITES
40
80
120 %
160
180
1
220
[min]
Figure 1. Kinetics of exchange between 0 and sodium forms of zeolites studied at temperatures 620° C (1) and 700°C (2). Oxygen pressure was 5 mm Hg. 2
w h e r e R is the i s o t o p i c exchange rate constant, a t o m s / g r a m m i n ; N i is the n u m b e r of o x y g e n atoms i n the gas; N
2
is the n u m b e r of o x y g e n atoms
i n the z e o l i t e ; F is the degree of exchange; g is the zeolite ( g r a m s ) ; τ is the exchange t i m e ( m i n ) .
specimen
T h e linear dependence
shown
i n F i g u r e 1 p r o v i d e s e v i d e n c e that a l l o x y g e n of the zeolites s t u d i e d is e q u i v a l e n t as to its exchange w i t h the gas. T h e s e results w i l l b e discussed further. T a b l e I s u m m a r i z e s the m a i n k i n e t i c characteristics of the i s o t o p i c exchange b e t w e e n m o l e c u l a r o x y g e n a n d the zeolites s t u d i e d : R is the rate constant of exchange at 6 7 0 ° C a n d 5 - m m pressure, a t o m s / g r a m m i n ; Ε is the a p p a r e n t a c t i v a t i o n energy, k c a l / m o l e ; η is the r e a c t i o n o r d e r
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
41.
Oxygen Mobility
ANTOSHIN E T A L .
Table I.
in Synthetic
Kinetic Characteristics of O Exchange between Zeolites and Molecular Oxygen 1 8
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch041
R X 10Atoms Zeolite
Ratio
NaX NaY NaY Na-mordenite CuNaY CuNaY CuNaY AgNaY AgNaY
2.45 3.4 4.7 10 3.4 3.4 3.4 3.4 3.4
a
517
Zeolites
Gram
1 7
Min
8.40 5.70 2.35 2.88 37.5 121 433 12.7 21.0
— — — 0.14 0.26 0.42 0.14 0.26
E, Kcal Mole
η
47 45 49 45 38 33 23 38 39
1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.8
Ζ = degree of sodium replacement by the corresponding cation.
against o x y g e n pressure. A s seen f r o m the d a t a p r e s e n t e d i n T a b l e I , the o x y g e n m o b i l i t y k i n e t i c characteristics of the s o d i u m forms of the zeolites s t u d i e d are s i m i l a r . T h e r e p l a c e m e n t of s o d i u m b y c o p p e r causes a strong p r o m o t i n g effect.
F o r e x a m p l e , the exchange rate constant is 6 times as h i g h for a
N a Y sample w i t h Ζ =
0.14 as for the s t a r t i n g zeolite, the exchange a c t i
v a t i o n e n e r g y d e c r e a s i n g f r o m 45 to 38 k c a l / m o l e . W h e n the degree of c a t i o n i c exchange increases u p to 0.42, the rate constant increases f u r t h e r a n d the a c t i v a t i o n e n e r g y decreases
to 23 k c a l / m o l e .
The promoting
effect also is c a u s e d w h e n s o d i u m is r e p l a c e d b y s i l v e r , b u t i n this case the effect is less p r o n o u n c e d . O n e m a y observe
compensating
dependence
between
the
preex-
p o n e n t i a l f a c t o r i n the A r r h e n i u s e q u a t i o n a n d the a c t i v a t i o n energy. T h i s d e p e n d e n c e is s h o w n i n F i g u r e 2. A s the a c t i v a t i o n e n e r g y i n the s a m p l e w i t h the exchange degree 0.42 decreases
to 23 k c a l / m o l e , the
p r e e x p o n e n t i a l factor b e c o m e s 3 orders l o w e r . Some experiments w i t h v a r i o u s c a t i o n i c forms of z e o l i t e Y at the h i g h e s t temperatures h a v e b e e n
c a r r i e d out u s i n g the gas w i t h
O
1 8
c o n c e n t r a t i o n a b o u t 4 0 % a t m , the content of v a r i o u s i s o t o p i c m o l e c u l e s of o x y g e n ( 0
1 6
0
1 6
, 0
1 6
0
1 8
, and 0
1 8
0
1 8
) i n i t b e i n g close to e q u i l i b r i u m .
W i t h s o d i u m a n d s i l v e r f o r m s , the e q u i h b r i u m i n the gas phase
was
r e t a i n e d , whereas w i t h the c o p p e r forms a s h a r p d e v i a t i o n f r o m e q u i l i b r i u m w a s o b s e r v e d at the i n i t i a l stage of exchange. T h i s i n d i c a t e d ( 2 ) that i n the cases of silver a n d s o d i u m forms t h e exchange w i t h one i o n of zeolite o x y g e n w o u l d b e p r e d o m i n a n t , w h i l e i n the case of c o p p e r forms it w o u l d b e w i t h 2 ions.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
518
MOLECULAR SIEVE ZEOLITES—I
30 Η
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch041
29 h
30
40 E [
k c a l
/mole]
Figure 2. The compensatory dependence between parameters in the Arrhenius equation for the exchange between 0 and the copper forms of zeolite Y 2
T h u s , as f o l l o w s f r o m t h e analysis of t h e exchange k i n e t i c c h a r a c teristics, t h e s u b s t i t u t i o n o f c o p p e r
f o r s o d i u m causes a c o n s i d e r a b l e
c h a n g e i n t h e exchange m e c h a n i s m . T h e temperatures o f t h e p r e l i m i n a r y t r e a t m e n t a n d exchange ex p e r i m e n t s w e r e sufficiently h i g h that one m i g h t suggest that t h e s t r u c t u r e of the samples u n d e r s t u d y s h o u l d change. H o w e v e r , t h e d a t a o n n i t r o g e n a d s o r p t i o n p r o v i d e d e v i d e n c e i n f a v o r o f r e t a i n i n g t h e structure. N o w , w e a r e to c o n s i d e r t h e p r o b l e m of zeolite o x y g e n e q u i v a l e n c e w i t h respect to exchange.
S i n c e most of t h e experiments h a v e b e e n c a r
r i e d o u t w i t h t h e r a t i o N /N 2
x
= 200, t h a t is, i n a l a r g e excess o f o x y g e n
i n t h e s o l i d phase, t h e k i n e t i c s o b s e r v e d c o u l d b e c h a r a c t e r i s t i c o f the exchange o f a s m a l l p a r t o f z e o l i t e o x y g e n .
T h e n the conclusion about
the o x y g e n e q u i v a l e n c e c o u l d b e true o n l y f o r a s m a l l p a r t of t h e o x y g e n i n v o l v e d i n t h e exchange r a t h e r t h a n f o r t h e z e o l i t e o x y g e n as a w h o l e . However, i n the experiment w i t h N a Y ( S i 0 / A l 0 2
a n d a t o x y g e n pressure o f 5 m m , w i t h Ν /Νχ 2
2
3
=
3.4) at 670 ° C
r a t i o b e i n g 20.8, t h e rate
constant v a l u e p r a c t i c a l l y c o i n c i d e s w i t h t h e c o r r e s p o n d i n g v a l u e p r e sented i n T a b l e I. F u r t h e r m o r e , a series o f as m a n y as 1 0 - 1 5 experiments w i t h t h e same s a m p l e s h o w e d
that t h e e x p e r i m e n t a l values of e q u i
l i b r i u m concentrations o b t a i n e d d u r i n g t h e exchange b e t w e e n n e w p o r -
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
41.
Oxygen
ANTOSHIN E T A L .
Mobility
in Synthetic
519
Zeolites
tions o f gas a n d t h e same s a m p l e d i d n o t exceed 0 . 5 - 0 . 7 %
atm.
These
d a t a a l l o w one to assume that a l l the o x y g e n o f zeolites w o u l d b e i n v o l v e d a n d , hence, the c o n c l u s i o n a b o u t its e q u i v a l e n c e w i t h respect to exchange w o u l d b e true f o r t h e z e o l i t e o x y g e n as a w h o l e . T h e k i n e t i c dependences o b s e r v e d m i g h t b e c a u s e d b y the exchange d i f f u s i o n h i n d r a n c e . I t has b e e n s h o w n e x p e r i m e n t a l l y that the exchange is n o t l i m i t e d b y outer d i f f u s i o n ; t h e results o b t a i n e d f r o m t h e e x p e r i ments w i t h various rates o f gas c i r c u l a t i o n c o i n c i d e .
Exchange probably
is n o t l i m i t e d b y diffusion i n zeolite pores. I n fact, w i t h as little as 1 4 % Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch041
of s o d i u m r e p l a c e d b y c o p p e r , w h i c h does n o t p r a c t i c a l l y affect the porous s t r u c t u r e , t h e exchange rate constant o f z e o l i t e Y b e c o m e s m o r e t h a n 6 times as h i g h . T h e h i g h a c t i v a t i o n e n e r g y values f o r s o d i u m forms also p r o v i d e e v i d e n c e against diffusion h i n d r a n c e . T h u s , o n e cannot r e l y o n t h e as s u m p t i o n that exchange is l i m i t e d b y the d i f f u s i o n process to account f o r o x y g e n e q u i v a l e n c e w i t h respect to exchange.
I t is possible to e x p l a i n
i t b y m a k i n g t h e f o l l o w i n g assumptions. a ) T h e l i m i t i n g stage of exchange m a y b e one of t h e a d s o r p t i o n o r d e s o r p t i o n stages, w i t h a l l t h e a d s o r p t i o n - d e s o r p t i o n sites b e i n g e q u i v alent i n t h e i r p r o p e r t i e s . b ) A l l o x y g e n ions o f z e o l i t e m a y b e i d e n t i c a l , n o m a t t e r w h a t t h e i r close s u r r o u n d i n g is ( f o r e x a m p l e , o w i n g to t h e u n i f o r m d i s t r i b u t i o n o f the excess n e g a t i v e c h a r g e t h r o u g h o u t t h e f r a m e w o r k o f z e o l i t e ) . T h e d a t a a v a i l a b l e d o n o t a l l o w o n e to d e c i d e b e t w e e n
these 2
assumptions. S t u d y i n this d i r e c t i o n is u n d e r w a y . F i n a l l y , a f e w w o r d s s h o u l d b e s a i d a b o u t results that f e l l b e y o n d the
scope
o f this report.
T h e reduced
copper
forms
possess a h i g h c a t a l y t i c a c t i v i t y i n r e l a t i o n to the r e a c t i o n Q 2 0
1 6
0
1 8
at temperatures as l o w as 1 0 0 ° - 3 0 0 ° C .
o f zeolite Y 2
1 6
+ 0
2
1 8
=
T h u s , zeolites c o u l d b e
u s e d as o x i d i z i n g catalysts. T o c o n c l u d e , t h e zeolites s t u d i e d r a n k as a n i n t e r m e d i a t e b e t w e e n a l u m i n a a n d s i l i c a i n t h e i r o x y g e n m o b i l i t y ( 5 ) ; zeolites are less a c t i v e i n t h e exchange w i t h 0
2
t h a n a l u m i n a a n d m o r e active t h a n s i l i c a .
Literature Cited (1) Minachev, Kh. M., Garanin, V. I., Isakov, Ya. I., Usp. Khim. 1966, 35, 2151. (2) Muzykantov, V. S., Popovskii, V. V., Boreskow, G. K., Kinetics Catalysis 1964, 5, 624. (3) Saxena, S. C., Taylor, T. I., J. Inorg. Nucl. Chem. 1962, 25, 261. (4) Venuto, P. B., Landis, P. S., Advan. Catalysis 1968, 18, 259. (5) Winter, E. R. S., J. Chem. Soc. 1968, (A) 12, 2889. (6) Zhdanov, F. P., Egorova, Ε. M., "Chemistry of Zeolites," Nauka, Lenin grad, 1968. RECEIVED February 13, 1970.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.