Ion Exchange and Liquid Column Chromatography Harold F. Walton Department of Chemistry, University of Colorado, Boulder, Colo. 80302
This year the reviews of ion exchange and of liquid column chromatography are combined. It was logical to do this, for the techniques of high-performance liquid chromatography include the use of ion exchangers. For one reviewer to report on two years’ advances in liquid chromatography as well as in ion exchange is, however, a formidable task. It was made somewhat easier by the decision to include ion-exchanging thin-layer and paper chromatography in another review. “Liquid ion exchangers” are likewise omitted except for a few references to partition chromatography. To cite all the literature references in the two overlapping fields of ion exchange and liquid column chromatography is clearly impossible. Computer print-outs can be obtained from the abstract services, but a reviewer should do more than merely copy these lists. I preferred to peruse the twenty-odd original journals that carry most of the papers in these areas, together with Analytical Abstracts and Chemical Abstracts, and select what seemed to be the most important papers for inclusion here. One criterion for inclusion was the analytical interest; papers on the physical chemistry of ion exchange, on the structure of ion-exchanging materials, and on ion exchange in the process industries were not included. Many reports that seemed routine or of marginal interest were omitted. The words “marginal interest”, of course, reflect subjective judgment and the reviewer’s personal preference. References to ion exchange with a 1973 publication date were coordinated with the 1974 review to avoid duplication. Liquid chromatography references, with a few exceptions, start in 1974. Available journals were reviewed through December 31,1975.
BOOKS, REVIEWS The number of books that have appeared testifies to the current interest in practical liquid chromatography. Only one book cited ( A 7 ) deals exclusively with ion exchange, and this is a concise, up-to-date description of the state of the art. The third edition of Heftmann’s standard work ( A 6 ) treats all kinds of chromatography in chapters written by different authors. The most exhaustive coverage of liquid chromatography is found in the book by Deyl, Macek, and Janak ( A I ) . For much information in a small space, and a good balance between theory and current practice, the book by Rosset, Caude, and Jardy (A10)is enthusiastically recommended to those who read French. Practical presentations suited to the beginner are those of refs. ( A 2 ) , ( A 9 ) , and (A11). Ref. ( A 3 ) includes a chapter on applications to pharmacology, and ( A 5 ) and ( A 8 ) deal with other specialized aspects. The cooperative work edited by Grob ( A 4 ) presents environmental applications of several types of chromatography, a very active field today. In 1974, we cited reviews of the ion exchange chromatography of organic compounds by Jandera and Churacek. Two more reviews by the same authors (B13)cover organic nitrogen compounds, aldehydes, ketones, ethers, alcohols, and carbohydrates. Other review articles treat the liquid chromatography of the following classes of compounds: lipids (B2, B 6 ) ; DDT and its metabolites (B22);tranquilizer drugs (B11);drugs in general and their metabolites (B22); ribonucleic acids (B15, B16), and components of nucleic acids (B18). Trace analysis of organic compounds is reviewed by two authors (B3, B14) as is the use of nonionic polymers to collect drugs and steroids from urine (B5).The classic work at Oak Ridge on high-resolution ion exchange chromatography of body fluids is reviewed by Scott (B19). General reviews of technique, equipment, and applications of liquid chromatography have appeared (B7, B12, B17, B21), and one of these (B21) compares liquid column 52R
ANALYTICAL CHEMISTRY, VOL. 48,
NO. 5,
APRIL 1976
chromatography with thin-layer chromatography. A short historical review, “Tswett and the Nobel Prizes”, traces the influence of chromatography on modern biochemistry (B10). Open-pore polyurethane foams as absorbents in liquid chromatography are reviewed by two of the leading workers in this area ( B 4 ) . Separations of inorganic ions by ion exchange are the subject of a symposium on radiochemical methods ( B 1 ) , and also of a review by Strelow (B20) describing some of his extensive work on ion-exchange separations applied to accurate mineral analysis. One article is included as a “review” which is in a special category. This is a compilation of ultraviolet absorption spectra of 66 metal ions in 6 M hydrochloric acid, an indispensible “road map” for high-performance liquid chromatography of inorganic ions (B9). An international conference on ion exchange was held in Hungary in 1974. The papers there presented appear in Vol. 102 of J . Chromatogr. Only those dealing with analytical applications are cited here.
CHROMATOGRAPHIC ABSORBENTS Inorganic Ion Exchangers. Most of the possible combinations of hydrous oxides have now been made, but a few new ones are reported: the arsenate, antimonate, molybdate, tungstate, and selenite of tin(1V) (459), the tungstates of Ti, Zr, Th, V, and U (458),titanium antimonate (164) and titanium tellurate (561). Selectivity studies have been made of tin dioxide (469), thorium phosphate (95), cerium(1V) phosphate and arsenate (280,640). Phosphates and arsenates of Zr, Ti, and Ce were made in layered and fibrous forms (6). Crystalline and amorphous forms of zirconium phosphate were compared ( 7 ) and the nature of the solvent used to wash precipitated zirconium phosphate was found to affectthe properties (353).Zirconium phosphate (588) and other exchangers ( 2 4 ) were prepared in bead form by the slow hydrolysis of solution droplets suspended in mineral oil. Hydrous antimony pentoxide continues to be useful for removing sodium after activation (636) and as an absorbent for thallium(1) (152). To absorb cesium-137 from sea water, ammonium phosphomolybdate has been used (363), also a number of hexacyanoferrates (279, 300, 405). These compounds may be supported on silica gel (279).Silica gel itself is a good absorbent for zinc and palladium in ammoniacal solution; the metals can be stripped by hydrochloric acid (517). The theory of adsorption of rod-like molecules on crystalline hydroxyapatite has been discussed (256). Chelating and Special Ion-Exchange Resins. Macroporous (macroreticular) ion-exchange resins are being used for the liquid chromatography of inorganic ions (91, 243, 257, 623). Mass transfer is faster than with gel-type resins, and they give narrower bands, provided the loading is not too great. A difficulty in using these resins for high-performance liquid chromatography is that is is hard to get them in the small and uniform particle sizes required for this purpose. Commercial resins consist of large beads and, when these are ground, they fall apart to a fine powder. One way to hasten mass transfer is to support fine resin particles, 1-4 microns in diameter, on granules of PTFE (383).Another is to disperse finely-powdered resin in polyurethane foam (50, p 119). Another approach, revived after many years of neglect, in the surface sulfonation of polystyrene beads. Surface-sulfonated beads (185, 331) and partially-sulfonated macroporous polymers (143, 144) have been prepared and tested, and a theoretical optimization is offered (185). Ion-exchanging fibers and fabrics are made by graft po-
Harold F. Walton joined the staff of the University of Colorado in 1947. His research interests in ion exchange date from 1938 when he went to work for the Permutit Co. as a research chemist; from there he went to Northwestern University in 1940. He obtained the BA and DPhil degrees at Oxford University. He is the author of three textbooks on inorganic and analytical chemistry and coauthor with William Rieman 111 of “Ion Exchange in Analytical Chemistry’ published in 1970. He has contributed chapters on the physical and analytical chemistry of ion exchange to several cooperative works. In 1961 he was chairman of the Gordon Research Conference on Ion Exchange. Dr. Walton spent the 1966-67 academic year and half of 1970 as a Fulbright visiting professor at the University of Trujillo, Peru. He was a member of the Advisory Board of Analytical Chemistry.
lymerization (316, 577). Cellulose with sulfhydryl groups is selective for mercury (352), and ordinary DEAE-cellulose is highly selective for gold (309). Gold is more easily stripped from DEAE-cellulose than from the chelating resins mentioned below. Carboxy cellulose, treated with hydroxylamine, gives an absorbent with hydroxamic groups that binds iron (293).Resin polymers have been made with hydroxamic groups (577, 597), phosphonic (354, 355, 373, 560), salicylic (597),hydroxyquinoline (436, 437,527), aminoquinoline (402), aminoazo (403, 492) and dithiocarbamate groups (104).Polyamine-polyurea resins absorb trace heavy metals from sea water (330).Novel resins were made by condensing crown ethers with formaldehyde; they show high selectivity among alkali and alkaline-earth metal cations (40). There are many references to the familiar iminodiacetate chelating resin, Chelex-100, and its use in collecting trace metal ions from solutions (3, 18, 132, 190, 210, 227, 399, 530, 625);see also Table I. Another resin in commercial use is the guanidine resin, Srafion NMRR. This is used to absorb trace precious metals and silver (404, 558) and it also absorbs mercury and other heavy metals (399). A related polyisothiouronium resin is described, with the mechanism of its combination with PdC12 (168). Some chelating resins already mentioned have high affinity for platinum metals and gold (492). Chitosan, a selective absorbent for copper (398) and mercur.y (401), also absorbs vanadium (398) and other transition-metal ions (400). Unlike chelating resins, this material shows little volume change during ion exchange. The resin “Retardion”, which has intertwined polymer chains with fixed positive and negative charges, absorbs hydrochloric acid and, therefore, absorbs metals that form neutral ion-paired complexes with hydrochloric acid. It has been used for chromatography of Ga, In, T1, and the platinum metals (109). An approach to selectivity in polymer absorbents is to incorporate organic reagents of low-molecular weight within polymers that may be ionic (49) but more usually are not. Polyurethane foams (50, 345) and macroporous polystyrene (611) have been impregnated with selective reagents like 1,2-dioximes. A new macroporous resin was described that has bridging quaternary ammonium ions (189). Polystyrene resins cross-linked with bis(4-vinylpheny1)methane are said to be mechanically stronger than those cross-linked with divinylbenzene (497). A new sulfonic-acid resin with an aliphatic matrix based on starch was described (439). Mixed Resins. Experiments have been made with columns containing intimate mixtures of anion- and cationexchange resins of fine particle size. Lanthanides ( I % ) , alkaline earths (633),and transition metals (374) were separated, and optimum proportions of the two resins were proposed. On theoretical grounds, however, it was shown that a mixed resin should always give poorer separations than an anion- or cation-exchange resin alone (249). Nonionic Polymers. There is considerable interest in polyurethane foams as stationary phases in liquid chromatography and as absorbents for organic compounds dissolved in water. Blocks of the foam may be cut up and
packed into columns (B4,50,162, 395) or the foam may be produced in situ by pouring the mixed monomers into the column (186, 344, 482). The scanning electron microscope shows the foam to consist of irregular beads 5 to 10 microns across, joined in strings with empty spaces between them (186). The porous mass allows high flow rates. Moderately good recoveries of dissolved pesticides and chlorinated biphenyls are obtained by filtering the contaminated water through polyurethane foam (162, 3951, and gold, a metal that forms uncharged ion pairs in hydrochloric acid, is absorbed very efficiently at concentrations below one part per billion (556). The use of polyurethane as a carrier for organic chelating a ents and finely-dispersed ion-exchange resins was noted a ove. Spherical, porous beads of polymerized methyl methacrylate (155) and styrene-divinylbenzene (153) have been described, also polyamide absorbents (593). Silica Absorbents a n d Bonded Packings. Commercial absorbents are compared (5891, and descriptions are given of the preparation of “totally porous” silica beads by the slow hydrolysis and hydrolytic condensation of droplets of polyethoxysilane (115). Particles 5 nanometers in diameter are formed, and these aggregate to form spherical beads of the desired size (434). Bonded packings on a silica base have virtually displaced the pellicular packings that revolutionized liquid chromatography ten years ago. The most popular packings have Si-CIBH37 groups attached to the surface by Si-0-Si bonds. Some have benzyl groups bonded to silica, others have polar or ionic groups. The preparation of these materials is described in several papers. In one method, surface Si-OH is converted to Si-Cl and this is made to react with alkyllithium (457).More commonly, dry silica particles are refluxed with R3SiCl or R2SiClz in dry toluene. Small amounts of water added a t this point introduce Si-0-Si cross-links and modify the product (97, 348, 457). The reactions may be performed in situ. The column is first packed with silica, dry toluene is passed to remove as much water as possible, then a solution of chlorosilane is pumped into the column and allowed to react (165). Alkoxysilanes, (R0)3SiR’, condense with surface Si-OH. Thus polar bonded phases may be prepared (175). Alkylamino groups may be attached, to which nitroaromatic hydrocarbons may be grafted (338) to give a surface that absorbs aromatic ring systems. Cation exchangers may be made by attaching benzyl groups and then sulfonating them (25, 490); aliphatic chains may also be sulfonated (613). Trichlorovinylsilane can be attached to silica, after which other vinyl monomers are added (616). Alkylamino groups (329, 5031, alcoholic hydroxyls (590),and a variety of chelating groups may be attached (328), including 8hydroxyquinoline (554).The polyether Carbowax is bonded to silica by heating (246).
%
RESIN PROPERTIES: EQUILIBRIUM, KINETICS Resin Characterization. Pyrolysis gas chromatography and infrared spectrometry (41, 435) are used to identify anion- and cation-exchange resins, their counterions and degree of cross-linking. Water content of strong-base anion-exchange resins is found by an indirect Karl Fischer titration ( 2 )and traces of metallic impurities are measured by activation analysis (356) or emission spectrometry (463). The “internal” and “external” porosity of a resin packed in a column is measured by the retention of co-ions and counterions (53). Ninhydrin-positive impurities were leached by ammonia from highly-purified cation-exchange resins (173). Equilibrium Studies. When a resin is placed in a mixed solvent the composition of the imbibed solvent is not the same as that of the external, bulk solvent. The degree of swelling, or imbibing, varies with the solvent composition. If one knows the relation between internal and external composition, he can predict the movement of solvent fronts in liquid chromatography, but few data of this kind are available. Now the distribution of alcohols, acetone, and water in anion-exchange resins with different counterions has been measured (262, 263, 31 7 ) as well as the effect of solvent on the ion-exchange equilibrium (317). Solvent uptake in carboxylate exchangers is used as an indication of ion pairing between counterions and fixed ions (16). ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
53R
Table I. Inorganic Ions Elements Li Na Alkali metals Alkali metals Alkali metals
cs cs cs
cu cu Ag, Au Au Au Au Au Au Au Be Be Be Mg Mg, Ca Ca Ra Zn Zn Zn Zn Zn, P d Zn Zn Cd Cd Cd Cd Cd Hg Hg Hg B B B A1 Al, Fe sc sc Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides
ExchangerD
Eluent
Elution order
Notes In 80% MeOH
HCl HC1
Li first Na abs. Na-K-Rb-Cs
C
HCl-EtOH
Na-K-Rb-Cs
Alk. earths also
Chel.
Hz0
Varied
Crown ether resin
C
HNO3
I
Each other Each other Ba Sea water Other elts. Co, etc. co Other elts. Other elts. Ga, U, Co Ca, Mn, Cd, Zn Other elts.
cu cu cu cu cu cu cu
54R
Separated from Na, Be Zn, etc. Each other
C I(Sb205)
I I
"03
... ...
...
... ...
Plating baths
A A A C C C Chel.
Acetate LiCl Malonate Tartrate HBr HCl-DMSO HCl, etc.
Sea water Sea water Rocks Cu matte Zn Other elts. Other elts. Water Other elts. Mg, Ca, Zn Mg, Ca, Zn Cu, Fe, Zn Ca Sr, Ba Mo alloy Ca, P b Fe, etc. Sea water Pb, Cu, etc. Various Various Cd Cd Zn Others Sea water Water, etc. Water; Zn Others Others Organic Hg ions Glasses T i boride Mo boride Cr, Fe Others La, Y Lanthanides Rocks
Chel. A Chel. Liq. A Cell. Chel. Chel. A C C C C C C A, C A C C A I(SiO2) C A C A A Liq. A Chel. Cell. c, 1 Chel. C A I Chel. Chel. A A, c
"03,
Water
C
HC1
La lasi
...
Salts of U
A
MeOH-HCl
U absd.
...
Each other
C
EDTA
...
Displacement
Each other
C
HIBA
Lu first
High-eff. LC
Each other
C
Various
...
...
Each other
A
Various
...
...
Each other
Mixed
Lactate
...
...
Each other
I
...
...
HzS04
"03
...
"03
HCl HOAc Thiourea Acetone HBr-acetone HC1-acetone NaF NH4SCN HC1-dioxane Acetate NH4C1 HC1 HBr H2S04 CH3CN-HCl HCl HCl Glycine HBr EtOH-HCl "03
HzO Various HC1 Various HCi04 NaOH H20 HC1
...
Various HNOs Various
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
Cu abs.
Isotopic exch.
...
Cu abs. Cu-Zn-Ni-Pb Ga-Cu-Co
...
... ... ...
Au abs. Cu-Au-Pd
...
Au-Pd-Pt-Rh Zn-Be-Mg Be first Cu-Fe-Be Mg-Ca Mg-Ca-Sr-Ba Mo-Zr-Ca
...
Zn last
... ... ...
Zn-Pb-Cu
...
High-eff. LC Plus acetone Simplex opt. Trace coll. Abs'.'from HCl Also Pt metals Also Pt metals Activation
...
From EtOAc Polyurethane Many sepns
...
In DMSO
...
Tartrate also
... Sea water From water Cd, Cu also
...
Zn-Cd Zn-Cd Cd-Zn Cd last
Cd with HC1 Cd with "03 Foam resin Micro
Zn',Cd
...
Abs. from HBr Water also
...
Det. as BFI-
...
... ...
B first B first
... ...
Sc last La-Lu-Sc
...
... ... ...
... ... ... ...
Special resin Hg retained
...
On Sn selenite
Elements
Separated from
Exchanger" Eluent
Elution order
Snake-cage NzH4 for S n Thiourea for S b
In-Zn-Pb-Na
Absd. from "03
NazC03 HBr HC1 HCl-HC104 HC1 Tartrate HC1-acetone Various HCl-MeOH HN03 HC1-acetone HC1
U
HCl HC1 HC1
U-Zn-Cd
HBr-acetone
U absd.
U U U U
Soil Sea water Water Water Others
A A A Chel. C
...
... HCl HCl NTA HC1 HC1 Tartrate HBr "03
...
H20 HClO4 NaCl HNO3 Malonate HCl-MeOH H2S04 Acetate NH4F NaF-HC1 HC1 HBr HF Citrate Oxalate NaHC03 H202
,..
NaOH-NaCI 3"
HCl EtOH Acetate H2S04 Formate HC1-HOAc H20, HC1 NaOH
...
...
C1-SCN HC1 HC1-NaCl
...
"3
H3PO4-HCl
...
HC1 HC1 HC1 CH2C12-CHsCN HC1, "03 HCl HC1
...
HCl
...
...
Ga-In-Fe-Pb Ga-In-T1 In-Ga-T1 In-Sn In-Sb
In, Fe, P b A A In, T1 In, T1 Special Liq. Sn Liq. Sb A Others C Zn, Pb, Ga Others A, C Others Cell. Others I(Sbz05) A T h , Bi, P b P, Zr, Ti C, A A Fe, Al, etc. Others I A Others A U. Ti U' I(SiO2) C Fe, Zn, Cu Other elts. Sn, Sb, Mo C Water, rocks A I Others Others Chel. Sephadex H2S04 A NO3A P Water A V Divalent ions A V Te, Bi, Hg, etc. A V Mo, etc. V C Steel Organic cpds. A V, As Nb Ti I A Nb Ti, V, W Sb Bi, Fe C Bi Others C Pa A Nb, others Thionates Each other A Cr C Al, Fe Cr A Others Cr Dilute soln. C Cr NC1 WatrrA Mo A Sea water Mo, Se A Others C Se Others Se c-18 Water , NO*Se Sea water C Se Te, Bi A &(VI) Cell. Se(1V) Te(1V) TeiVI), Se Cell. Te(1V) Te(VI),I-, 103Carbon F A c1 Br, NO2A I Iodoproteins A Mn Fe, Cu, Zn C Mn Ta, Nb C Tc Re, etc. C Water. etc. Fe Chel. Fe Water'(as ferrocyanide) C Fe Ni C co Water Chel. co Water A co U, Zn, Cd A U, etc. C Ni Ni cu I(SiO2) Rh Ir A Rh Pd, Pt, Au Chel. Pd Pt, Ir C Others Chel. Pd, Pt Th Water A
Ga Ga Ga In In In In T1 T1 T1 Ac Si Ti, Zr Zr Zr, T h Th Th Sn Sn Pb Pb Pb Pb NosNO2-
Notes
... ... T1-Al-In-Ga ...
Ac iast Si passes Ti, Zr absd.
...
... ... ...
In silicates By chelation S n phosphate
Th-Zr-U
...
Th-U Sn passes Pb-Bi-Hg-Sn P b last Zn-Cu-Pb-Cd
~d ikt
HzS04-HN03 N02-NO3
...
V last V first V-Mo Cr-V-Mn As-V Ti-Nb Ti-V-W-Nb Sb-Bi, Fe Hg-Bi-Sb Si-Pa-Nb
Abs. from HNO3
... ...
Acrylate resin "03 elutes P b Bi also abs. Pb, Bi abs.
...
Nitration mixt. Electrochem. det. Anionic esters sep.
...
Fe retained
... ... Mo also sep. Abs. from HC104 UV det.
A~'C~(VI)
High-eff. LC Kinetic control Or NazS03 Reactive i.e. (433)
Se passes NOz, Se
In, U absd. For atomic abs. Derivatives made
(Al,'Fe)-Cr
...
... ...
...
Se-Te-Bi Se(1V) first Te(1V) retained
... ...
... Radiochemical
F first
I- abs. Zn-Cu-Mn-Fe Mn first Re-Tc Fe abs.
...
Fe-Ni
... ... ...
U. Ni Ni, Cu Rh-Ir Rh first P d first
High pressure
...
High-eff. LC
Reactive i.e.
... ...
Abs. from KCNS Abs. from KCNS Nonaq. solvents As chelates
... ...
... ...
Pt metals also Abs. from "03
... ...
Two-stage Abs. from KCNS Nonaq. solvents Batch method
...
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
55R
Table I. (Continued) Elements
Separated from
Exchanger" Eluent
Elution order
Notes
U U U Pu Pu Pu Pu Pu Am Am
Others Mo, W, La Pu, Am U, Nd, Am U, Am, others NP NP Am, Th, U Cm, P u Cm
A Chel. A A Liq.
Carbonate
Zn-Al-Th-U
For waters
"03
Am-U-Pu P u first
I Liq. A A
I
HC1
... ...
"03 "03 "03
P u first
...
HC1-HBr "03
NaOAc
... P u retained Am-Cm
...
... ... ... ... Oxidation states sep.
... In CH30H Zr phosphate
Ref. (122) (373) (32) (357) (205, 327) (426)
(84) (315) (181) (509)
Abbreviations: A = anion exchanger; C = cation exchanger; Cell. = cellulose exchanger; Chel. = chelating resin; I = inorganic exchanger; Liq. = liquid ion exchanger.
Anion-exchange equilibria over a range of resin compositions and temperatures were measured, and values of the entropy and enthalpy of exchange were determined (128, 223). The effect of mixed solvents on cation-exchange selectivity is noted (573). The affinity of fatty-acid anions for anion-exchange resins increases with chain length, each carbon atom adding the same amount to the free energy; this effect shows the hydrophobic attraction between the carbon chains and the resin matrix (508). Knowing the equilibrium constant for ion exchange, one can use measured resin concentrations to calculate ratios of ionic activities in solutions (440). One can also use distribution ratios to study complexes in solution (119). Rates of exchanges of organic (244) and inorganic ions (413) show that particle diffusion is the rate-controlling step. Distribution Ratios. Tables of distribution ratios for metal ions between resins and solutions are given in the following references: (a) Anion-exchange resins and aqueous phosphoric acid (451); hydrazoic acid (422); formic acid (219); formic, oxalic, citric, and tartaric acids and their salts (462); EDTA (452); (b) Cation-exchange resins and HC1 in aqueous acetone (443); HBr in aqueous acetone (543);phosphoric acid (86);pyridine-perchloric acid (124); inorganic acids in mixed solvents (575). NONCHROMATOGRAPHIC USES OF RESINS AND ABSORBENTS Single-Bead Techniques. Spot tests that use beads of ion-exchange resin to concentrate the reagent and the substance sought, thus making the color more visible, were devised for chloride, iodide, sulfide, and cyanide ions (4601, aldehydes (461), and fluoride ions (146). A group qualitative analysis scheme for 14 cations on an ultramicro scale was worked out (418), and the isotopic composition of uranium and plutonium in nuclear processing baths was measured by the mass spectrometry of single resin beads in equilibrium with the solution (606). Batch Techniques. Resins were used in two-phase potentiometric and photometric titrations to remove the product of a reaction and displace the equilibrium so as to make the end point more apparent (63). For example, a weak base can be titrated with acid in the presence of a cation-exchange resin, which absorbs the cations BH+. Of course, the resin may absorb the uncharged base, B, too, and all equilibria must be taken into account. Ions having the same charge sign as the fixed ions of the resin are not absorbed. Data obtained from such titrations may be used to evaluate distribution ratios. Silicate rock analyses with ion-exchange dissolution are now performed on a mass-production scale. The powdered rock is fused with lithium carbonate and boric acid, and the resulting borate glass is crushed and mixed with dilute nitric acid and an excess of cation-exchange resin. Metal ions are absorbed by the resin, which is dried and analyzed by emission spectrometry. The uniform matrix permits accurate measurement of major, minor, and trace elements (171).
Atomic-absorption spectrometry is susceptible to matrix effects, and these are particularly acute with anion-forming 56R
ANALYTICAL CHEMISTRY, VOL. 48,
NO. 5,
APRIL 1976
elements like selenium. Selenite ions are separated by ion exchange from all accompanying cations, except H+, before graphite-furnace atomic-absorption spectrometry (201). Ammonium ions (605) and thiamine (111) were separated from blood by batch absorption on ion exchangers. Waste waters were shaken with a cation-exchange resin to collect traces of heavy metals for analysis (393). Trace heavy-metal ions in river waters were collected by hanging strips of cation-exchanging membranes in the river, then removing them and measuring the accumulated metals by proton-induced x-ray emission (339). In interpreting the results, it must be noted that some membranes contain small proportions of metal-binding sites that exaggerate the absorption at low concentrations (39). Metal ions were concentrated from water on membranes of acrylic acid-grafted polypropylene in films thin enough for ESCA measurements (85). The method works in the parts-per-million range. Resin-impregnated papers continue to be used for preconcentration and x-ray fluorescence (212, 476). Chelating resins are shaken with dilute metal salt solutions, then pelletized for x-ray fluorescence determination (43). T r a c e Collection a n d Preconcentration. Metal Zons. Short resin columns are routinely used to collect trace metal ions from dilute solutions. Chelating resins are often used but high selectivity is possible with anion- and cationexchange resins if complexing agents are added. Inorganic exchangers are selective for certain ions. The following list of references are listed according to elements. They refer to the collection of the elements from water, including sea water, and should be supplemented by the citations under "Chelating resins," above: Cd (132, 204, 282, 284, 289, 580); Co (282, 284); Cr (433, 635); Cs (46, 300,363,405); Cu (132,210,287,289,330);Hg (22, 210, 352, 399, 401); Mn (207, 364, 530); Mo (287, 308, 399); Ni (330); P b (132,210,289,291);Sr (300);U (21,122, 190, 283, 284, 293); Zn (132, 284, 287, 330); lanthanides (414,485).
A word of caution: studies with anodic-stripping voltammetry show that chelating resins do not recover all the trace metals from sea water. It seems that the metals exist in part in colloidal, nonabsorbable form (132). Reactive Zon Exchange. A resin column is loaded with a counterion that reacts chemically with the substance sought and fixes it in the resin. Thus, a cation-exchange resin carrying copper ions binds ferro- and ferricyanide ions as a precipitate (466). Carrying ferrous ions, it reduces chromate, vanadate, and permanganate to cations that are held o n the resin (229, 332). Trace metals are recovered at the parts-per-billion level. Organic Compounds. Here ion-exchange resins have a limited use. Recovery of low concentrations of amino acids from surface waters by a combination of anion and cation exchange was studied (299) and found to be essentially quantitative for all except amino acids with aromatic structure, which were incompletely eluted from the resins. Nickel-loaded chelating resin absorbed most amino acids from waste water (199). Columns of macroporous anion-exchange resins (75, 487) and dextran-based anion exchanger (470) absorb acidic contaminants like phenols and chlorophenoxyacetic acids
from water, and neutral species as well. Acidic and neutral compounds were separated by selective stripping. The most popular absorbents are macroporous nonionic polymers, and XAD resins. Different resins, polystyrene and polyacrylic, polar and nonpolar, were compared as absorbents for chlorinated biphenyls and pesticides (396) and herbicides (416). The best recovery was obtained with the styrene-divinylbenzene resins XAD-2 and XAD-4. Water is filtered through short columns of the resins, then the absorbed compounds are stripped with such solvents as methanol, acetonitrile, ether, and acetone. Usually the extracts are concentrated by evaporation and analyzed by gas chromatography. A definitive account of XAD-2 resin as a collector for several classes of compounds, including polynuclear aromatic hydrocarbons, is given by Junk and nine other authors (239). The same resin was used to collect chlorinated pesticides from river water (472) and sea water (427). Recoveries over 80% are reported. Other absorbents used were Porapak Q, another styrene polymer (298) and Tenax, a polymer based on phenylene oxide (325). Another approach, and a simple one, is to use a C-18 bonded packing as the collector and to perform the analysis by liquid chromatography, either on the same column that was used for collection (336) or a separate one (366, 641). In the second method, the water to be analyzed, volume 100 ml to a liter or more, is pumped through a short column packed with a relatively coarse C-18 packing (50-micron particles), in which the dissolved organic compounds are retained. This column is then connected to an analytical column packed with 10-micron particles, and a water-acetonitrile mixture is passed, with the acetonitrile concentration increasing in a gradient mode. The absorbed compounds are separated, detected by ultraviolet absorption, and identified tentatively by their retention volumes. Finally we mention the common use of XAD-2 resin to absorb drugs from urine (304, 347) and tissue extracts (221, 486).
CHROMATOGRAPHY THEORY: COLUMN BEHAVIOR Adsorbent-Solute Interactions. The model proposed several years ago by L. R. Snyder for adsorption on the surface of homogeneous solids has served well, and has been reviewed by its author and compared with other models (533). Solvent characterization parameters are listed for 7 5 solvents (534). The interfacial energy between the absorbent and solvent, a key concept in the Snyder theory, has been related to experimentally determined wetting energies (118, 372). Solvent strengths and retention volumes were related to solvent composition for mixtures of polar and nonpolar solvents (5001, and useful charts of solvent strengths in binary mixtures of six solvents are presented (491). The effect of surface modification was described and a comparison of different absorbents was made (267). Commercial silica gel packings were compared and the effects of surface area and sample loading on plate heights were described (499,596). Bonded packings were compared with unbonded silica and alumina (273), using the relation between (dimensionless) reduced plate heights and reduced velocities proposed by one of these authors. The study was extended to a bonded ion-exchange packing, and the smaller plate heights of bonded packings, compared to those of pellicular and gel-type resins, were noted (274). Retention volumes of aromatic hydrocarbons on (2-18 bonded packings are inversely proportional to the solubilities of these hydrocarbons (340), and they are much affected by temperature (68). Retention volumes were related to molecular structure for groups of drugs (579). A theoretical interpretation of rare-earth elution volumes on ion-exchange columns was presented (250). A continuing series of papers deals experimentally and theoretically with gradient elution and uses the Snyder model for adsorption chromatography (231,232). Column Behavior. Methods of packing small particles were compared (14, 65, 602) and the importance of smooth column walls was stressed. The relation of particle size to permeability and resolution was shown (14, 67, 115); the advantage of 10-micron particles was demonstrated for different bonded phases (602).
An important series of papers (358, 360) discusses “the pertinency of pressure in liquid chromatography”. The authors consider a particular absorbent, a particular solvent, and a given pair of closely-eluting solutes, and go on to examine the relations between pressure, particle diameter, column length, elution time, and resolution (or plate number). Only three of these quantities are independent variables. T o get a certain number of plates in a certain time, it is best to choose a small particle diameter. Then the column length and the pressure can both be small. Lower pressure means less expensive pumps; high pressure, moreover, causes increased frictional heating of the column (184) and raises problems because the compression of the solvent is no longer negligible. When syringe-type pumps are used a t high pressures, the rate of piston travel is greater than the actual rate of solvent delivery because the solvent is being compressed. A steady-state is reached, but this may take up to an hour (359). The current practice in liquid chromatography is to use short columns, 25-30 cm long and 4-5 mm in diameter, packed with particles 10 microns or smaller. The improved resolution obtained with these columns is dramatic. In practice, resolution is often limited, not by the column, but by the method of sample injection and the detector design; see Ref. (360), p 229. A compromise may be necessary between high resolution and high sensitivity (251); again, short columns are advantageous. Theoretical approaches to band spreading were reviewed and peak asymmetry was evaluated (484). Preparative chromatography in high-efficiency columns is the subject of three papers (45, 314, 495), and the packing of large-diameter preparative columns was described (166). Liquid-liquid partition chromatography on heavily-loaded silica columns was studied (116, 483).
COLUMN TECHNIQUES Ion-Pair Partition Chromatography. This is a method for separating organic acids and bases that uses a porous silica support carrying a solution that contains a large, hydrophobic anion or cation. This solution may be aqueous, in which case the mobile phase is a polar organic solvent. For example, the anions of sulfa drugs were separated on a stationary phase which was an aqueous solution of tetrabutylammonium sulfate (252). Another possibility is to use a long-chain amine in the Stationary phase, the mobile phase being aqueous sodium perchlorate; aromatic sulfonic acids were thus seDarated (294). Other variations are Dossible (272, 311, 442).
Ion-Exclusion Chromatography, A gel-type or microporous ion-exchange resin is used as the- stationary phase, and the attraction of the resin matrix for the organic solute is opposed by the electrostatic repulsion between the fixed ions of the resin and the ions of the solute. Thus, organic acids are separated on a column of cation-exchange resin. Undissociated acid molecules are absorbed, particularly if they have aromatic character, while the acid anions are repelled. The balance between attraction and repulsion can be changed by changing the pH and the solvent. This method has been used for the chromatography of carboxylic acids (323, 324), phenols and xanthines (608), and with great success for nucleic acid derivatives (518). Ligand-Exchange Chromatography. Several examples are cited in Table I1 of this review, one of the more interesting being the separation of optical isomers. In one method, special resins were prepared having optically-active amino acid residues as their functional groups; loaded with copper ions, they preferentially retained the amino acid isomer with the opposite configuration to the fixed amino acid. Elution was done with aqueous ammonia (89, 90). In another approach, it was found that d - and 1- isomers of a compound having two asymmetric centers formed copper complexes with different stabilities; they were separated on a column of copper-loaded Dowex-50 resin (158). These authors separated the same isomers on a column of Dowex-1 d-tartrate (157). In Helfferich’s original 1961 paper on ligand-exchange chromatography, he proposed that the method be applied to gas chromatography. This has been done. Aliphatic amines were separated on copper-loaded zirconium phosphate, the eluent or carrier gas being nitrogen containing ANALYTICAL CHEMISTRY, VOL. 48, NO.
5. APRIL 1976
57R
Table 11. Organic Compounds Stationary phase
Compounds Acids, aliphatic: Fatty acids Fatty acids Fatty acids Fatty acids Fatty acids Acrylic, methacrylic Glycolic, malic Di-, polycarboxylic Di-, polycarboxylic Dicarboxylic Fruit acids Maleic, fumaric Acids, aromatic: Carboxylic Carboxylic Hydroxybenzoic Hydroxybenzoic Hydroxybenzoic Mandelic acids Nitrobenzoic Phenolic Salicylic Carboxylic Naphthalene dicarbox. Aminobenzoic Acids, sulfonic Acids, sulfonic and carboxylic Aflatoxins Alcohols, polyhydric Alcohols, polyhydric Alcohols, long-chain Alkaloids Alkaloids Alkaloids Alkaloids, drugs Nornicotine Alkylammonium salts Amines, aliphatic Monoamines Diamines Di-, polyamines
Moving phase
A C C Si02 '2-18 A A A C-18 Chel. Cell. A
Formic acid Methoxyethanol Water Hexane-CHCl3 Aq. MeOH, CH3CN NaF-borate Formate (NH4hC03 Hexane-BuOH Aq. NH3
Cell. C C A A C CB N, Si02 A Cell. A AB A Liq. Si02 Si02 Cell. Si02 Si02 CB C CB, Si02 C-18 Si02
Buffers Water Water H20-MeOH Various Citrate NaNO3-citrate Various FeCl3-EtOH Hexane-CH& KBr Formate Borate Aq. NaC104 CH2C12-CHC13 MEK-aq. acetone EtOAc-PrOH Hexane-acetone CHC13-MeOH Borate-CH3CN Aq. NH3 CHC13-MeOH Aq. CH3CN Pentanol-CHCl3
C C C
Citrate, HC1
Di-, polyamines Di-, polyamines Di-, polyamines Nitrosamines Thiodiamines Amines, aromatic Subst. anilines Subst. anilines Chloroanilines Heterocyclic Heterocyclic Diamines Amines, biogenic And drugs And drugs Phenylalanine Histamine Tryptamine, etc. Catecholamines Catecholamines Catecholamines Amino acids Basic General General
C Si02 (2-18 C-18 C
Aq. NH3
Group sepns. Group sepns. Optical isomers Derivatives Derivatives
C C Chel. Si02 C, N
58R
...
...
Notes
Ref.
... Ion exclusion Sterols, fats also Derivatized
...
Resins compared *.,
Carbohydrates too Ligand exc. In wine pH effect studied Ion exclusion
D values given D values given
...
Esters also Aminobenzoic also Phenols also Derivatives also Ion-pair chrom.
... ... Ion-pair chrom. ...
Metabolites also
Carbohydrates too Lower alcohols too Surfactants C-18 also Incl. heroin Ligand exc. Rauwolfia Nitroso derivatives Ion-pair partition Biochemical
...
Ciliate. HC1
(160,505) (33) (538) (407) (60, 230,265,598) (584) (233,394) (477) (196) (113) (44, 225) (392,415) (161,224, 362,563, 594) (410) (1) (489,555) (226) (475)
Borate; CH3CN Phosphate Citrate
Ligand exc. Dansyl Tosyl derivs. Isomers sep. Polyamines too
CdI2 N N SiOz, C Ag-Si02 Si02
MeOH-hexane Aq. alcohols PrOH-heptane
Silica support Incl. polyurethane Polyurethane
Hexane-CHaCN Hexane-EtOH
In air samples Correl. w. base strength
(307) (78,482,566) (344) (79,417) (139) (586, 637)
C Si02 C C C C CB CB
Aq. NH3 CH2ClpH20 Phosphate-MeOH
Ligand exc. Derivatized And phenethylamine And metabolites Serotonin, tyramine Incl. DOPA Electrochem. det. Boronic acid polymer
(608) (478,529) (532) (36) ( 73,392,446) (23,268,507,541) (473) (114)
C
Various
Specific sepns. given Recent advances
Aq. NH3 Aq. NH3 Aq. NH3 Hexane-MeOH Various
Ligand exc. Cleanup Ligand exc. Phenylthiohydantoin Dansyl
(28,100,112,343) (94) (30, 159, 237,342, 468, 535,575,638) (199,200) (240) (89,901 (182,365) (506,634)
...
...
Citiate, HC1 H~S04-Na2S04
...
...
C
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
Stationary phase
Compounds Iodoamino Pyrroline carboxylate Aminodiols Amino sugars And amino acids Meth ylglucamine Sialic acid Antibiotics Antibiotics Anthraquinones Carbohydrates Sugars Sugars Sugars Mono-, disaccharides Polysaccharides Oligosaccharides Chloramphenicol Coumarins Drugs Analgesic Analgesic Analgesic Barbiturates Cannabis Of abuse Phenothiazines (tranquilizers) Phenylbutazone Psychotropic Sulfa Tetracyclines Esters, benzoate Flavonoids Fungicides Glycerides Glycerides Herbicides Herbicides Heterocyclics Hydrocarbons Benzo[a]pyrene Classes sep. Polynuclear aromatics (PNA) PNA PNA PNA PNA PNA PNA fractionation Nitroaromatics Nitroaromatics Nitroglycerins Nucleic acid derivs. Bases Bases, nucleosides Bases, nucleosides Fluorouracil Nucleic acids Nucleotides Nucleotides Nucleotides RNA RNA Hydrolyzates Oils, essential Pepper extract Peptides Peptides, amino acids Proteins Pesticides, incl. chlorinated biphenyls Pesticides Pesticides Pesticides, phosphate Pesticides, carbamate
C C c-cu C C CB A C-18 A, AB Si02
Moving phase
EtOH-NH3
...
...
Acetate Aq. NH3
...
Phosphate HOAc MeOH, CH3CN Borate, acetate Cyclohexane, EtOAc
NM C A A A, N A, C CB N
CH~CN-HZO Aq. EtOH Borate Aq. EtOH HzO-NaCl EtOH-acetate Aq. Na2SO.i MeOH
C-18 CB AB Si02 C-18 Si02 A1203 Si02 Si02 (2-18 Si02 C-18 N Si02 C-18 Si02 CB Si02 C-18 N
Aq. MeOH Aq. salt Aq. MeOH, CH3CN CHC13-PrOH Aq. MeOH-HzS04 Dioxane-EtOH CHzClz-hexane
C-18 Si02 NB Si02 C-18 Si02 Special C-18 Si02 SiO2, NB C Si02
Aq. MeOH Hexane CHsCN Hexane Aq. MeOH Heptane Aq. MeOH Aq. MeOH
C A N N A, C A C AB C Apatite C (2-18 A1203 C C he1.-Cu C Si02 (2-18 AB Si02 Si02
Formate, borate Acetate Borate Phosphate Buffers Citrate
Incl. alcohols Intermediates sep. 34 compounds
...
Anilines, ethers too Carbohydrates too
...
... Argentation
...
Triazines Special resin And metabolites
...
Pi-bonding packing Supercritical In water On NR4 clay In tobacco smoke Also NB, A1203 Explosives Isomers sep. In waste water
...
...
...
... Hexane-CHCl3
Also'C-18 w. aq. MeOH Compared with GC Also C-18 w. aq. CHsCN Also ion-pair extr.
...
Cyclohexane Acetone-HZ0 CHzClz-hexane
Heptane MeOH, acetone
p H effect
And metabolites S-heterocyclics Ion-pair partition
CHzC12-PrOH Aq. MeOH
...
1,8-dihydroxy
...
...
Formate Aq. MeOH EtOAc-hexane Acetate Aq. NH3
High-molec. wt.
Anomers sepd.
...
Acetate, PO4 Acetate
Opt. isomers sep. Ligand exc. In urine In urine
Incl. oligosacch. Counter-ion effect
THF-hexane CHCl3-PrOH Hexane-BuOH Aq. CH3CN Aq. MeOH Hexane-THF Aq. CH3CN Hexane-Et20
...
Notes
..
... Group sepns.
...
Ion exclusion
...
Group sepns.
...
Al-loaded resin
...
Also fluoro derivs. Also on Si02 Stereoisomers Size sepn. Amino ac. retained Weak acid exgr. DDT sep. from PCB DDT, etc. Special packing
...
Naphthols too
Ref. (270,536) (195) (157,158) (409, 608) (48,178,312,377) (406) (296) (371, 582) (59, 382) (464) (333,336,431) (I70,318,432) (37,92,253,388,603) (465) (34,421 ( 191-1 93) (601)
(408)
(585) (474,591) (367,389,481,540) (15, 108, 273) (617 ) (69,581) (271,273) (67, 335, 397) (454,455) (346) (252) (272,273,583) (565) (609) (632) (519) (25) (169) (57) (154) (507~) (80, 453, 552, 553)
(338) ( 148,559) (167,366,618,641) (83, 106) (172) (607) ( 163,419,453) (105,126) (76, 77) (71) (51, 156, 430) (55) (259) (322) (518) (218,260,261) (27) (188,209) (510,511) (368) (2411 (278,512) (96) (136) (311 (11) (5,620) (20,97,504) (503) (467) (12)
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
59R
Table I1 (Continued) Stationary phase
Compounds Pesticides,carbamate Pesticides, general Pharmaceuticals Phenols Phenols Phenols, steroids Phenols, acids, aldehydes Phenols, amino Phenols, chloro Phenols, dansyl Phthalate esters Polymers Polymers Prostaglandins Prostaglandins Steroids Steroids,hormones Steroids,hormones Steroids,hydroxy Surfactants Surfactants Tartrazine Theophyllin, xanthines Theophyllin, xanthines Theophyllin, xanthines
Moving phase
NB
...
c-18 C-18 A
Si02 AB C
...
CH~CN-HZO MeOH-NaOH
Notes Dansyl derivs. Review Review From sea water Caffeic, coumaric, phenolic acids too Dynamic coating ... Nucleic bases too Phenoxy acids too In urine
CHzClz-formamide Acetate NaOAc-EtOH Acetate CHCl3-hexane CHzClz-octane CH2C12, EtOAc HoO-THF M~OH EtOAc
Oligomers sep. Epoxy resins From urine Stereoisomers sep.
CH2ClpMeOH MeOH Aq. MeOH
Prepn. of packing described Polymers described Derivatized
A, c
NaC1-MeOH
Salting-out
C NB
Phosphate Hexane-PrOH
A
Si02 Si02 Si02 C-18 C, A
Si02
c-18
Si02 N C-18
...
...
... ...
Various C-18
Ref.
...
..
...
...
Si02
Vitamins
Ascorbic acid Riboflavin Thiamine B vitamins D vitamins
AB Si02 I, CB C, A
Si02
Phosphate CHC13-MeOH
Brain tissue
Heptane-Et0 Ac
In gelatin matrix
... ...
Abbreviations: A = anion exchanger; C = cation exchanger; Cell. = cellulose exchanger; Chel. = chelating resin; I = inorganic exchanger; Liq. = liquid ion exchanger; N = nonionic; B = bonded; C-18 = bonded hydrocarbon, usually but not always octadecyl. ammonia and water vapor (147). In other applications of ligand exchange, isomeric lactams were separated on a silver-loaded silica column (562), a silver-loaded resin separated isomeric unsaturated alcohols (215) and heterocyclic sulfur compounds were separated from other petroleum constituents on a copper-loaded acrylic resin (604).
LC EQUIPMENT: EXPERIMENTAL DESIGN General. Commercial instruments are compared (370, 612). Centrifugal elution in columns (498) and resin layers (384), electroosmotic pumpin (456), multicolumn operation (600), a temperature grahent along the column (297) and a dual-column recycle technique (202) are among the novel developments described. Septumless sample injectors (131, 592) and an ultrasonic degasser for the solvent (98) were devised. The health hazards and explosion risks of common solvents were noted (133). Experimental problems of gradient elution in high-performance LC were discussed (117).
Data Processing. Computer processing and control is applied to amino-acid analysis (58, 313, 321, 375), to mass spectrometry in LC (64, 369), and to gradient formation (216).
Detectors. The need for more selective and sensitive detectors is great, and many new detectors have been described. Coulometric and amperometric detectors are well established, and new designs are described (52, 101, 130); ion-selective potentiometric sensors can be adapted to the needs of liquid chromatography (496); and a new approach to conductimetric detection in ion-exchange chromatography is to pass the effluent through a short “stripper column” that removes excess eluent but not the eluted ions. For example, alkali metal ions are eluted by hydrochloric acid from a cation-exchange resin. Excess hydrochloric acid is removed by an anion-exchange resin, while sodium chlo60R
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
ride is converted to sodium hydroxide, which conducts electricity (528). Capacitance detectors are used with nonpolar solvents (120, 183, 599). A novel electrochemical detector is the “spray-im act detector” (385), in which a fine spray of the eluate is flown against a metal electrode and builds up potentials of several hundred volts, due, apparently, to disruption of the electrical double layer. Another novel detector that has great possibilities is a photoionization detector. High-energy photons from a vacuum ultraviolet lamp strike the evaporated eluate and ionize the solutes (493). An ESR detector monitors stable free radicals (480); heat-of-absorption detectors are sometimes applicable (610); radioactivity flow detectors are compared (513). Gas-chromatography detectors, flame ionization (4, 524), and electron capture (624) are used with moving wires to transfer the solutes while removing the solvent. Work continues on the interfacing of mass spectrometers with liquid chromatographs. Atmospheric-pressure ionization systems (64, 213) like the plasma chromatograph (248) are promising, as are chemical ionization techniques (13, 369). Moving-wire (501) and membrane interfaces (236) are described. An infrared laser was used to detect C-H stretching vibrations in column effluents (138). Atomic absorption (235, 350) was used to detect particular metal ions, or chelating agents in column effluents that would remove copper ions from a copper-chelating resin. Flame emission was used to detect phosphorus and sulfur in effluents (238) as well as metal ions (137). Chemiluminescence has also been used (187, 420). The liquid chromatographer’s workhorse is still the ultraviolet absorption detector. The usefulness of this detector may be extended by making uv-absorbing derivatives of compounds before putting them into the column. Several examples of this technique are given in Table 11. Another
example is the conversion of fatty acids to their uv-absorbing phenacyl esters by a straightforward technique that uses crown ethers as catalysts (108a). Improved uv detectors ( 6 2 ) , commercial fixed-wavelength and multiwavelength absorbance detectors are evaluated (19). Fluorescence detectors find increasing use today. A combination absorbance-fluorescence detector was described (539).The fluorescence of many polynuclear aromatic hydrocarbons and heterocyclic analogues is intensified by adsorption on silica gel, and this fact has been put to use (337). Any organic compound that reduces cerium(1V) to cerium(II1) may be detected by fluorescence, since Ce(II1) fluoresces and Ce(1V) does not. This principle was applied in chromatography to phenols in environmental samples (631) and is used in high-resolution anion-exchange chromatography to complement ultraviolet detection (254, 448).The method is extremely sensitive. Where the separation of two or more components is incomplete, multiparameter monitoring may resolve a complex peak into individual components (387, 428). Derivative mode detection is also used (123).
APPLICATIONS Tables I and I1 summarize applications of ion exchange and liquid chromatography to specific elements and compounds. Some special applications that were not easily integrated into these tables are the following: Carboranes (264)and metallocarboranes (125) were analyzed by high-efficiency chromatography on bonded packings and on silica. Porphyrins and carbonyl porphyrins of Co, Ru, and Rh were separated on a polyamide packing (551). Metallocenes were separated on silica coated with Carbowax (110). Separation of boron isotopes on weakbase resins has been studied theoretically and experimentally (242).Ten elements in silicate rocks were eluted successively from a cation-exchange resin column and their amounts measured (545).Several trace elements, extracted from water by an organic reagent, were separated on an LITERATURE CITED Books
( A l ) Deyl, Z.,Macek, K., Janak, J., "Liquid Column Chromatography: A Survey of Modern Techniques and Applications", Elsevier, New York, 1975. (Journal of Chromatography Library, Vol. 3.) (A2) Done, J. N., Knox, J. H., Loheac, J., "Applications of High-speed Liquid Chromatography", Wiley-lnterscience, New York. 1974. (A3) Giddings, J. C.. Grushka, E., Keller. R . A,, Cazes. J.. Ed., "Advances in Chromatography". Vol. 12. Marcel Dekker, New York, 1975. (A4) Grob, R . L., Ed., "Chromatographic Analysis of the Environment", Marcel Dekker, New York, 1975. (As) Grushka, E;: "Bonded Stationary Phases in Chromatography , Ann Arbor Science Publications, Ann Arbor, Mich., 1974. (A6) Heftmann, E., Ed., "Chromatography: A Laboratory Handbook of Chromatographic and Electrophoretic Methods", 3rd ed., Van NostrandReinhold, New York, 1975. (A7) Khym, J. X., "Analytical Ion-Exchange Procedures in Chemistry and Biology", PrenticeHall, Englewood Cliffs, N.J., 1974. (As) Liteanu, C., Gocan. S.. "Gradient Liquid Chromatography", Wiley-lnterscience, New York, 1974. (As) Rajcsanyi, P., Rajcsanyi. E., "High-speed Liquid Chromatography", Marcel Dekker, New York, 1975. (A10) Rosset, R . , Caude, M., Jardy, A,, "Manuel Pratique de Chromatographie en Phase Liquide", Varian S.A., Orsay, France, 1975. (A1 1) Snyder, L. R., Kirkland. J. J., "lntroduction to Modern Liquid Chromatography", WileyInterscience. New York, 1974. Review Articles
( B l ) Symposium: Seventh Radiochemical Conf., Marianske Lazne. Czechoslovakia, J, Radioanal. Chem., 21, 167-271 (1974). (B2) Aitzetmuller. K.. J. Chromatogr., 113, 231 (1975).
anion-exchange column using hydrochloric acid and mixed solvents (290). An ion-exchange group separation of some 50 elements was devised for activation analysis of biological materials (595). Cobalt and copper were recovered from electroplating baths by anion exchange of aminocarboxylate complexes (99).A succession of alkali-metal and alkaline-earth cations were separated by displacement chromatography, with cobalt ethylenediamine cations as the displacing ions (88).The separation of Fe(II1) and Sc(II1) was studied in detail (514). Simplex optimization was applied to the chromatography of five metal ions on an ion-exchange resin with HC1-DMSO-water eluents (531). For organic ion exchange, the advantages of bicarbonates as easily-removed eluents are noted (341).Many examples of the separation of closely-related stereoisomers appear in Table 11; the cis-trans isomers found in pepper extracts, separated on alumina columns, are good examples (96),as are diastereoisomeric amides on silica gel (198). Cis-trans isomers of synthetic sex attractants were separated on a silver-loaded macroporous cation exchanger (215);cis-trans acetal alcohols were resolved by recycling (326). Ion-exchange resins have certain advantages in the chromatography of polar, nonionic organic compounds, as the high-resolution anion-exchange chromatography of body fluids and the organic constituents of contaminated water shows (B19, 448). A systematic study of resin-solvent-solute interactions was begun by a group a t Kyoto University (151).Several resins, solvents and solutes were studied, distribution ratios were evaluated, and the role of hydrogen bonding was discussed. These studies should be extended to mixed aqueous-nonaqueous solvents.
ACKNOWLEDGMENT I wish to dedicate this review to the memory of the late Wateru Funusaka, of Kyoto University, Japan, for his personal kindness and professional inspiration. As in previous years, I am indebted to the National Science Foundation for support.
(83) Beyermann, K., Angew. Chem., lnt. Ed. Engl., 13, 224 (1974). (84) Braun. T.. Farag, A. B., Talanta, 22, 699 (1975). (B5) Bruss, F. S.,Furst, R., van Bennekom. W. P., Pharm. Weekbl., 109, 921 (1974). (B6) Cooper, M. J., Anders, M. W., J. Chromatogr. Sci.. 13, 407 (1975). (87) Ettre, L. S., Horvath, C., Anal. Chem., 47, 422A (1975). (B8) Fishbein, L., J. Chromatogr., 98, 177 (1974). (B9) Goodkin, L., Seymour, M. D., Fritz, J. S.. Talanta, 22, 245 (1975). (B10) Hais, I. M., J. Chromatogr., 86, 283 (1973). ( B l l ) Hailey, D. M., ibid., 98, 527 (1974). (812) Inczedy, J., Magy. Kem. Lapja, 29, 180 (1974). (B13) Jandera, P., Churacek, J., J. Chromafogr., 98, 1, 55 (1974). (B14) Kirkland, J. J., Analyst(London), 99, 859 (1974). (815) Kothari, R . M., Taylor, M. W., J. Chromatogr., 86, 289 (1973). (B16) Kothari, R. M., Shankar, V., ibid., 98, 449 (1974). (817) Rajcsanyi, P. M., Oetvos, L., Sep. Purific. Methods, 2, 361 (1973). (B18) Rajcsanyi, P. M., Czillag, M., Kriskovics, E., ibid., 3, 167 (1974). (B19) Scott, C. D., ibid., 3, 263 (1974). (820) Strelow, F. W. E., /on Exch. Membr., 2, 37 (1974). (821) Viricel, M., Lamotte, A,, Bull. SOC.Chim. Fr., 1974, 1346. (822) Wragg. J. S.. Johnson, G. W., Pharm. J., 213, 601 (1974). Journals (1) AbdeCMonem, M. M., Ohno, K., J. Chromafogr., 107, 416 (1975). (2) van Acker, P., de Corte, F., Hoste. J., Anal. Chim. Acta, 73, 198 (1974). (3) Agarwal, M., Bennett, R. E., Stump, I. G., D'Auria, J. M., Anal. Chem., 47, 924 (1975). (4) Aitzetmuller, K., J. Chromatogr. Sci., 13,
454 (1975). (5) Aitzetmuller, K., J. Chromatogr.. 107, 41 1 (1975). (6) Alberti. G., Constantino, U., ibid., 102, 5 (1974). (7) Alberti. G., Constantino, U., Gupta, J. P., J. lnorg. Nucl. Chem., 36, 2103 (1974). (8) Alimarin, I. P., Bol'shova, T. A,, Bakhareva. G. A,, Zh. Anal. Khim., 28, 1300 (1973). (9) Allen, C. F., Rice, L. I., J. Chromatogr., 110, 151 (1975). (10) Anderson, N. H., Leovey, E., Prostaglandins, 6, 361 (1974). (1 1) Aranyi, P., Boross, L.. J. Chromafogr., 89, 239 (1974). (12) Argauer, R. J., Warthen, J. D., Jr., Anal. Chem., 47, 2471 (1975). (13) Arpino. P. J., Dawkins. E. F., McLafferty. F. W., J. Chromafogr. Sci., 12, 574 (1975). (14) Asshauer, J., Halasz. I., ibid., 12, 139 (1974). (15) Atwell, S. H., Green, V. A,. Haney, W. G., J. Pharm. Sci., 64, 806 (1975). (16) Auclair, B., Chappey, B., Kergreis. A,, Guillou, M., Bull. SOC. Chim. Fr., 1975, 1905, 1911. (17) Babayan, G. G., Kapantsyan. E. E., Oganesyan, E. N., Ref. Zn. Khim., 19GD. 1973, Abstract No. 20G49. (18) Baetz, R. A,. Kenner, C. T., J. Agric. Fd. Chem., 23, 41 (1975). (19) Baker, D. R., Williams, R . C., Steichen, J. C., J. Chromatogr. Sci., 12, 499 (1974). (20) Balayannis, P. G., J. Chromatogr., 90, 198 (1974). (21) Baltakmens, T., Anal. Chem., 47, 1147 (1975). (22) Baltisberger, R . J., Knudson, C. L., ibid., 47, 1402 (1975). (23) Banda, P. W., Sherry, A. E., Blois. M. S., ibid., 46, 1172 (1974). (24) Baran, V., Caletka, R., Tympl, M., Urbanek, V., J. Radioanal. Chem., 24, 353 (1975). (25) Barford. R . A,, Olszewski. L. T., Saunders. D. H., Magidman, P., Rothbart, H. L.. J. Chromatogr. Sci., 12, 555 (1974). (26) Barkovskii. V. F.. Velikanova. T. V., Charcenko, L. P., Seincuk, N. V., Zh. Anal. Khim., 29,
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
61 R
1014 (1974). (27) Bates, M., Avdalovic, N., Anal. Biochem., 61, 508 (1974). (28) Beckerton, A,. Buttery, P. J.. Bailey, F. J., Bolton, N., J. Chromatogr., 104, 170 (1975). (29) Bedetti, R., Carunchio. V.. Marino. A,. ibid., 95, 127 (1974). (30) Belen'kii, E. G., Mal'tsev. V. G., Zh. Anal. Khim.. 27, 227 (1972). (31) Bellinger, J. F., Buist, N. R. M., J. Chromatogr., 87, 513 (1973). (32) Belov, L. M., Krivokhatskii, A. S., Lazarev, K. F., Nechai, G. N., Nikolaef, D. S., Radiokhimiya, 15, 624 (1973). (33) Belue, G. P., J. Chromatogr., 100, 233 (1974). (34) Belue, G. P., McGinnis. G. D., ibid., 97, 25 (1974). (35) Belyavskaya, T. A,, Nemirovskaya, I. A,, Zh. Anal. Khim., 28, 2337 (1973). (36) Bergmark, J., Granerus, G., Scand. J. Ciin. Lab. invest., 34, 365 (1974). (37) Besle, J. M., Ann. Bioi. Anim. Biochim. Biophys., 14, 545 (1974); Anal. Abstr., 28, 2G10 (1975). (38) Bilba, D., Fisel, S., Mikrochim. Acta, 1974.985 .. . (39) Blaedel, W. J., Niemann, R. A., Anal. Chem., 47, 1455 (1975). (40) Blasius, E., Adrian, W.. Janzen, K.-P., Klantke. G., J. Chromatogr.. 96, 89 (1974). (41) Blasius, E., Hausler, H., Fresenius' 2. Anal. Chem., 276, 11; 277, 9 (1975). (42) Blau, K., Dodge, C. S., Anal. Biochem., 58, 650 (1974). (43) Blount, C. W., Leyden, D. E., Thomas, T. L., Guill, S.M., Anal. Cem., 45, 1045 (1973). (44) Bohlen, P.. Stein, S., Stone, J.. Udenfriend, S., Anal. Biochem., 67, 438 (1975). (45) Bombaugh, K. J., Almquist. P. W.. Chromatographia, 8, 109 (1975). (46) Bondarenko. G. N.. Kalashnikova. Y. S.. Radiokhimiya. 15, 680 (1973). (47) Borch, R. F., Anal. Chem., 47, 2437 (1975). (48) Bouhours, J. F.. J. Chromatogr., 94, 307 (1974). (49) Brajter, K., ibid., 102, 385 (1974). (50) Braun, T., Farag, A. E., Anal. Ghim. Acta, 68, 119 (1974): 69, 85 (1974); 71, 133 (1974): 76, 107 (1975). (51) Breter. H. J., Weinblum, D., Zahn, R. K., Anal. Biochem., 61, 382 (1974). (52) Brilmyer. G. H., Lamey, S. C.. Maloy, J. T., Anal. Chem., 47, 2304 (1975). (53) Broquaire, M., Eon, C., Guiochon, G., J. Chromatogr., 109, 11 (1975). (54) Brown, N. D., Lofberg, R. T., Gibson. T. P., ibid., 99, 635 (1974). (55) Brown, P. R., Bobick. S., Hanley, F. L., ibid., 99, 587 (1974). (56) Brunisholz, G., Collet, P., Klipfel, L., Roulet, R.. Rev. Chim. Miner., 10, 131 (1973). (57) Byast, T. H.. Cotterill, E. G., J. Chromatogr., 104, 211 (1975). (58) Buchan. N., ibid., 103, 33 (1975). (59) Buhs, R . P., Maxim, T. E., Allen, N., Jacob, T. A,, Wolf, F. J., ibid., 99, 609 (1974). (60) Bushway, R. J.. Cramer, C. W., Hanks, A. R., Colvin. E. M., J. Assoc. Off. Anal. Chem., 58, 157, 965 (1975). (61) Callmer, K., Davies, L.. Chromatographia, 7, 644 (1974). (62) Callmer, K., Nilsson, O., ibid., 6 , 517 (1973). 63) Cantwell, F. F., Pietrzyk. D. J., Anal. Chem., 46, 344, 1450 (1974). (64) Carroll, D. I., Dzldic, I., Stillwell, R . N., Haegele, K . D., Horning, E. C., ;bid.. 47, 2369 (1975). (65) Cassidy, R . M., Le Gay, D. S., Frei. R . W., ibid., 46, 340 (1974). (66) Cassidy, R . M., Le Gay, D. S., Frei. R. W., J. Chromatogr. Sci., 12, 85 (1974). (67) Caude, M., Lefevre, J. P., Rosset, R.. Chromatographia, 8, 217 (1975). (68) Chamberlain, W. J., Walters. D. B., Chortyk, 0. T.. Anal. Chim. Acta, 76, 213 (1975). (69) Chan, M. L., Whetseil, C., McChesney. J. D., J. Chromatogr. Sci., 12, 512(1974). (70) Chandler, C. D., Bolleter, W. T., J. Chromatogr., 108, 365 (1975). (71) Chandler, C. D., Gibson, G. R., Bolleter, W. T., ibid., 100, 185 (1974). (72) Chashchina. 0. V., Otmakhova, Z. I.,
-.
62R
Slezko, N. I., Kataev, G. A,. Trudy Tomsk. Gos. Univ., 237, 81 (1973): Anal. Abstr., 27, 1893 (1974). (73) Chilcote. D. D.. Clin. Chem., 20, 421 (1974). (74) Christ, W.. Arndt, G., Schulze, G., J. Chromatogr., 106, 417 (1975). (75) Chriswell, C. D.. Chang, R. C., Fritz, J. S., Anal. Chem., 47, 1325 (1975). (76) Chmielowiec, J., Kemula, W.. Chromatographia, 8, 577 (1975). (77) Chmielowiec. J., Kemula. W., J. Chromatogr., 102, 197 (1974). (78) Chu, Chi-Hong, Pietrzyk, D. J., Anal. Chem., 46, 330 (1974). (79) Chumakov, Y. I., Alyabyeva, M. S., Kaboulov, E. D., Chromatographia,8, 242 (1975). (80) Chumakov, Y. I., Lopatenko, S. K., ibid., 8, 240 (1975). (81) Colombetti, L. G., Pinsky, S..Moerlien, S., Radiochem. Radioanai. Lett., 20, 77 (1975). (82) Cooper, M. J., Anders, M. W., Anal. Chem., 48, 1849 (1974). (83) Coq, E., Gonnet, C.. Rocca, J. L., J. Chromatogr., 106, 249 (1975). (84) Cvjeticanin, D. N., Vucetic, M. M., ibid., 103, 305 (1975). (85) Czuha, M., Jr., Riggs, W. M., Anal. Chem., 47, 1836 (1975). (86) Dadone, A., Frache. F., Baffi, F.. Chromatographia, 7, 258 (1974). (87) Dark, W. A., Conrad, E. C., Crossman, L. W., J. Chromatogr., 91, 247 (1974). (88) Das Kanungo, J. L., Chakravarti, S. K., J. lndian Chem. Soc., 1973, 299. (89) Davankov. V. A., Rogozhin, S. V.. Smechkin, A. V., J. Chromatogr., 91, 493 (1974). (90) Davankov, V. A., Rogozhin, S. V., Semechkin, A. F., Varanov, V. A,, Sannikova, G. S., ibid., 93, 363 (1974). (91) Davenport, R. J., Johnson, D. C., Anal. Chem., 46, 1971 (1974). (92) Davies, A. M. C. M., Robinson, D. S., Couchman, R., J. Chromatogr., 101, 307 (1974). (93) Davies. C., Fuel, 54, 185 (1975). (94) Davies, M. G.. Thomas, A. J.. Blaushard, K. C., Process Biochem., 9, 9 (1974). (95) De, A. K., Chowdbury, K.. J. Chromatogr., 101, 63, 73 (1974). (96) De Cleyn, R., Verzeie, M., Chromatographia, 8, 342 (1975). (97) Delder, R . S., Claassen, P. J. W. M., Hendricks, P. J., J. Chromatogr., 91, 201 (1974). (98) Dell'Ova, V. E., Denton. M. E., Burke, M. F., Anal. Chem., 46, 1365 (1974). (99) Delmas. D., Caude, M., Rosset, R., Analusis, 3, 39 (1975). (100) DeMarco. C., Rinaldi. A,, Dernini, S., Cossu, P., Cavaliini, D., J. Chromatogr., 114, 291 (1975). (101) Devynck, J., Pique, A,, Delarue, G., Analusis, 3, 417 (1975). (102) Dimitrova, M., Fresenius' Z. Anal. Chem., 274, 384 (1975). (103) Dimitrova, N., Christova, R., ibid., 268, 207 (1974). (104) Dingman. J. F., Gloss, K. M., Milano, E. A,. Siggia, S., Anal. Chem., 46, 774 (1974). (105) Doali. J. O., Juhasz, A. A,, J. Chromatogr. Sci., 12, 51 (1974). (106) Doran, T., McTaggart, N. G., ibid., 12, 715 (1974). (107) Dore, M., Riffaud, M., Lumbroso, R., ion Exch. Membr., 2, 51 (1974). (108) Dunges, W., Naundorf. G., Seiler, N.. J. Chromatogr. Sci., 12, 655 (1974). (108a) Durst, H. D.. Milano, M., Kikta, E. J., Connelly, S. A,. Grushka, E., Anal. Chem., 47, 1797 (1975). (109) Dybczynski, R.. Sterlinska, E., J. Chromatogr., 102, 263 (1974). (110) Eberhardt, R., Lehner, H., Schioege, K., Monatsh. Chem., 104, 1409 (1973). (111) Edwin, E. E., Jackman. R., Hebert, N.. Analyst(London, 100, 689 (1975). (112) Eick, H. E., Ward, P. H.,Kassell, E., Anal. Biochem., 59, 482 (1974). (113) Eksborg, S., Acta Pharm. Suec., 12, 243 (1975). (114) Elliger, C. A,. Chan, B. G.. Stanley, W. L., J. Chromatogr., 104, 57 (1975). (1 15) Endele, R., Halasz. I., Unger, K., ibid., 99, 377 (1974). (116) Engelhardt, H., Asshauer, J., Neue, U., Weigand, N.. Anal. Chem., 46, 336 (1974).
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
(117) Engelhardt, H.. Elgass, H., J. Chromatogr., 112, 415 (1975). (118) Eon, C. H., Anal. Chem., 47, 1871 (1975). (1 19) Eon, C., Gulochon, G., ibid., 48, 1393 (1974). (120) Erbelding, W. F.. ibid., 47, 1983 (1975). (121) Eristavi, V. D., Ref. Zh. Khim., IgGD, 2G50, (1974); Anal. Abstr., 28, 5868. (122) Eristavi, V. D.. Kutsiava, N. A,, Kekeliya, R. A,, Zh. Anal. Khim., 29, 158 (1974). (123) Essigmann, J. M., Catsimpoolas, N., J. Chromatogr., 103, 7 (1975). (124) Eusebius, L. C. T., Mahan, A,, Ghose, A. K., Dey A. K., Chromatographia,8, 587 (1975). (125) Evans, W. J., Hawthorne, M. F., J. Chromatogr., 88, 187 (1974). (126) Farey, M. G., Wilson, S. E., ibid., 114, 261 (1975). (127) Fedorov, P. P., Andrew, V. K., Lide. T. V., Slotvinskii-Sidak, N. P., Zh. Anal. Khim., 30, 379 (1975). (128) Fekete, E., Inczedy, J., Acta Chim. Hung., 84, 121 (1975). (129) Fitzpatrick, F. A,, Siggia, S.. Anal. Chem., 45, 2310 (1973). (130) Fleet, E., Little, C. J., J. Chromatogr. Sci., 12, 747 (1974). (131) Fleischer, J., Chromatographia, 7 , 80 (1974). (132) Florence, T. M., Batley, G. M., Taianta, 22, 201 (1975). (133) Forestier, H., Truffert, L., Analusis, 3, 271 (1975). (134) Fracke, R., Dadone, A,. Baffi, F., Ann. Chim. (Rome),64, 387 (1974). (135) Franek, M., Hruska, K. J., J. Chromatogr., 93, 471 (1974). (136) Frank, H., Hagenmaier, J., ibid., 106, 461 (1975). (137) Freed, D. J., Anal. Chem., 47, 186 (1975). (138) Freeman, N. K., Upharn. F. T., Windsor, A. A,. Anal. Lett., 6, 943 (1973). (139) Frei. R. W., Beall, K., Cassidy, R. M.. Mikrochim. Acta, 1974, 859. (140) Frei, R . W.. Lawrence, J. F.. Hope, J., Cassidy, R . M., J. Chromatogr. Sci., 12, 40 (1974). (141) Fretland, D. J., Prostaglandins, 6, 421 (1974). (142) Fritz, J. S., Goodkin, L., Anal. Chem., 46, 959 (1974). (143) Fritz, J. S., Story, J. N., Anal. Chem., 46, 825 (1974). (144) Fritz. J. S..Story, J. N., J. Chromatogr., 90, 267 (1974). (145) Fudano, S . , Konishi, K.. J. Chromatogr., 87, 117 (1973). (146) Fujimoto, M., Nakayama, H., Ito, M., Yanai. H., Suga. T., Mikrochim. Acta, 1974, 151. (147) Fujimura, K.. Ando, T., J. Chromatogr., 114, 15 (1975). (148) Fujita, K.. Shimokobe, I., Nakazima. F., Nippon Kagaku Kaishi, 1975, 1348. (149) Fukasawa, T., Yamane. T., Bunseki Kagaku, 24, 120 (1975). (150) Funasaka, W.. Hanai, T.. Fujimura, K., J. Chromatogr. Sci.. 12, 517 (1974). (151) Funasaka, W., Hanai, T., Matsumoto, T., Fukimura, K., Ando, T., J. Chromatogr., 88, 87 (1974). (152) Furler, R., Licht, I., van Heijst. J. P. M., Radiochem. Radioanai. Lett., 16, 323 (1974). (153) Fuzita, K., Nippon Kagaku Kaishi, 1975, 846. (154) Fuzita, K.. Arikawa, Y., Ganno, S..ibid., 467. (155) Fuzita, K.. Shimokobe, I., Arikawa, Y., Ganno, S., ibid., 999. (156) Fuzita. K., Takeuchi, S.. Arikawa. Y., ibid., 1974, 1494. (157) Gaal. J., Inczedy, J., Acta Chim. Hung., 81, 439 (1974). (158) Gaal. J., Inczedy, J., J. Chromatogr., 102, 375 (1974). (159) Gaitonde, M. K.. Blochem. J., 139, 625 (1974). (160) Garner, R . C., J. Chromatogr., 103, 186 (1975). (161) Gehrke, C. W., Kuo, K. C., Zumwalt, R. W., Waalkes, T. P., ibid., 89, 231 (1974). (162) Gesser, H. D., Sparling. A. E., Chow, A., Turner, C. W., J. Am. Water Works Assoc., 65, 220 (1973).
(163)Giger, W.. Biumer, M., Anal. Chem., 46, 1663 (1974). (164)Gill, J. S.,Tandon, S. N., J. Radioanal. Chem., 20, 5 (1974). (165)Giipin, R. K., Korpi, J. A,, Janicki, C. A,, Anal. Chem., 46, 1314 (1974);47, 1498 (1975). (166)Godbille, E., Devaux, P., J. Chromatogr. Sci., 12, 564 (1974). (167)Gold, A,, Anal. Chem., 47, 1469 (1975). (168)Goldstein, S.,Silberg, M., Schmuckler, G.. lon Exch. Membr., 1, 225 (1974). (169)Gonnet, C., Rocca, J. L., J. Chromatogr., 109, 297 (1975). (170)Goulding, R. W., ibid., 103, 229 (1975). (171)Govindaraju, K., Analusis, 3, 116(1975). (172)Grant, D. W., Meiris, R. B., Hollis, M. G., J. Chromatogr., 99, 721 (1974). (173)Greenland, R. D., Roth, W., Gieske. T., Michaelson, i. A,. Anal. Biochem., 62, 305 (1974). (174)Grushka, E., Durst, H. D.. Kikta, E. J., J. Chromatogr., 112, 673 (1975). (175)Grushka. E., Kikta, E. J., Anal. Chem., 46, 1370 (1974). (1 76) Grushka, E., Snyder, L. R., Knox, J. H., J. Chromatogr. Sci., 13, 25 (1975). (177)Gudushauri, T. N., Brouchek, F. I., Ref. Zh, Khim., IgGD, Abstract 1G50 (1974);Anal. Abstr., 28, 38103. (178)Guire, P., Riquetti, P., Hudson, B. G., J. Chromatogr., 90, 350 (1974). (179)Gureev, E. S.. Usachenko, V. S.,Brodskaya, G. A,. Radiokhimiya, 16, 286 (1974). (180)Gurovich. V. V., Kachur, L. D., Zh. Anal. Khim., 30, 615 (1975). (181)Guseva, L. I., Tikhomirova, G. S., Grigor'eva, S. I., Radiokhimiya, 15, 397 (1973). (182)Haag, A,, Langer, K., Chromatographia, 7, 659 (1974). (183)Haderka, S.,J. Chromatogr., 91, 167 (1974). (184)Haiasz, I., Endeie, R., Asshauier. J., ibid., 112, 37 (1975). (185)Hansen, L. C., Gilbert, T. W., J. Chromatogr. Sci., 12, 458,464 (1974). (186)Hansen, L. C., Sievers, R. E., J. Chromatogr., 99, 123 (1974). (187)Hartkopf, A., Deiumyea, R., Anal. Lett., 7, 79 (1974). (188)Hartwick, R. A.. Brown, P. R.. J. Chromatogr., 112, 651 (1975). (189)Hashida, I., Tanizawa, O., Nishimura, M., Nippon Kagaku Kaishi, 1974, 1987. (190)Hathaway. L. R., James, G. W., Anal. Chem., 47, 2035 (1975). (191)Havlicek, J.. Samuelson, O., Chromatographia, 7, 361 (1974). (192)Havlicek, J., Samueison. O., Anal. Chem., 47, 1854 (1975). (193)Havlicek. J.. Samuelson, O., J. Chromatogr., 114, 383 (1975). (194)Hayashi, T.. Yamabe, T., ibid., 87, 227 (1973). (195)Heacock, A. M., Williams, I. H., Frank, L. H.. Adams, E., Anal. Biochem., 64, 593 (1975). (196)Hecht, S. S.,Ornaf, R. M., Hoffmann. D.. Anal. Chem., 47, 2046 (1975). (197)Hefley, A. J.. Jaseiskis, B., Anal. Chem., 46, 2036 (1974). (198)Heimchen, G., Strubert, W.. Chromatographia, 7, 713 (1974). (199)Hemmasi, B., J. Chromatogr., 104, 367 (19751. ' (200)Hemmasi, B., Bayer, E., ibid., 109, 43 (1975). (20'1)Henn. E. L., Anal. Chem., 47, 428 (1975). (202)Henry, R. A.. Byrne, S. H., Hudson, D. R., J. Chromatogr. Sci., 12, 197 (1974). (203)Hermann, A., Huebner, S., Dreyer, R., lsotopenproxis, 10, 62 (1974). (204)Hiiro, K., Kawahara, A,, Tanaka, T., BunsekiKagaku, 22, 1210 (1973). (205)Hiraki, K., Yoshii, O., Hirayama, H., Nishikawa, Y., Shiqematsu. T.. ibid.. 712 (1973). (206)Hirose, A,. ishii. D., Nippon Kagaku Kaishi, 1974, 235 1. (207)Hirose. A., Kobori, K., Ishii. D., ibid., 900. (208)Hofer, H. W., Anal. Biochem., 61, 54 (1974). (209)Holton. R. A,. Spatz, D. M., Von Tam'
elen, E. E., Wierenga. W.. Biochem. Biophys. Res. Commun., 58, 605 (1974). (210)Holynska, B.. Radiochem. Radioanal.
Left., 17, 313 (1974). (211)Honigberg, I. L.. Stewart, J. T., Smith, A. P.. Hester, D. W.. J. Pharm. Sci., 63, 766, 1762 (1974); 64, 1204,1389 (1975). (212)Hooton. K. A. H., Parsons, M. L., Appl. Spectrosc., 27, 480 (1973). (213) Homing. E. C., Carroll, D. I., Dzidic. I., Haegele, K. D., Homing, M. G., Stillwell, R. N.,J. Chromatogr. Sci., 12, 725 (1974). (214)Horwitz, E. P.. Bloomquist, C. A. A,, ibid., 11, 200 (1974). (215)Houx, N. W. H., Voerman, S.,Jongen, W. M. F.. J. Chromatogr., 96, 25 (1974). (216)Huang, M. del R., Fogerson, i. S.. J. Chromatogr. Sci., 13, 347 (1975). (217)Huettemann, R. E., Shroff, A. P.. J. Chromatogr. Sci., 13, 357 (1975). (218)Hunger, H. D., Reinbothe. H., J. Chromatogr., 97, 273 (1974). (219)Husain, S. W., Charandabi, M . D.. Talanta, 22, 601 (1975). (220)Hyakutake, H., Hanai, T., J. Chromatogr., 108, 385 (1975). (221)Ibrahim, G., Andryauskas, S.,Bastos, M. L., ibid., 107 (1975). (222)ikeda, N.. Tanaka, K., ibid., 114, 389
(256) Kawasaki, T., ibid., 93, 257, 275, 313, 337 (1975). (257)Kawazu. K., Matsueda, T., Kakiyama, H., BunsekiKagaku, 22, 1301 (1973). (258)Keen, A. R., Walker, N. J., J. Dairy Res., 41, 397 (1974). (259) Khym, J. X., Anal. Biochem., 58, 638 (1974). (260)Khym. J. X.. J. Chromatogr., 97, 277 (1974). (261)Khvm. J. X.. Clin. Chem., 21. 1245 (1975).' . (262)Kim, J. I., J. lnorg. Nucl. Chem., 37, 239 (1975). (263)Kim, J. I., Born, H. J., Lagally, H., ibid., 37, 1259 (1975). (264)Kindsvater, J. H., Weiner, P. H., Kiingen, T. J., Anal. Chem., 46, 982 (1974). (265)Kingston, D. G. I., Li, 8. T., J. Chromatogr., 104, 431 (1975). (266)Kiriyama, T.. Kuroda, R., Anal. Chim. Acta, 71, 375 (1974). 267) Kiselev, A. V.. Nikitin, Y. S.,Frolov, I. i., Yashin, Y. I., J. Chromatogr., 91, 187 (1974). (266)Kissinger, P. T., Felice, L. J., Riggin, R.
(1975). (223)Inczedy, J., ibid., 102, 41 (1974). (224)Inoue, H.. Mizutani. A,, Anal. Biochem., 56, 408 (1973). (225)ishitoya, Y., Baba, S.,Hashimoto, I., Clin. Chim. Acta, 46, 55 (1973). (226) Iwaoka, W. T., Hansen, T., Hsieh. S.-T.. Archer, M. C., J. Chromatogr.. 103, 349 (1975). (227)Jaehnig. W., Z.Chemie, Leipzig, 14, 315 11974) , (228)Janauer, G. E.,Madrid, E. O., Mikrochim. Acta. 1974. 769. (229)Janauer, G. E., Ramseyer, G. 0.. Lin, J. W., Anal. Chim. Acta, 73, 311 (1974). (230)Jane, I., Taylor, J. F., J. Chromatogr., 109, 37 (1975). (231)Jandera. P., Churacek, J., ibid., 91, 207, 223 (1974). (232)Jandera. P., Churacek, J., ibid., 93, 17 (1974);104, 9.23,257 (1975);115, 9 (1975). (233)Jarzebinski, J.. Zakrewski, Z.,Antoniak. W., Acta Pol. Pharm., 31, 481 (1974);Anal. Abstr., 28, 4E13 (1975). (234)Jenkins, i. L., Scargill, D., Wain, A. G.. J. lnorg. Nucl. Chem., 37, 257 (1975). (235)Jones, D. R., Manahan, S. E.. Anal. Left., 8, 569 (1975). (236)Jones, P. R., Yang, S. K.. Anal. Chem., 47, 1000 (1975). (237)Jost, U., Biochem. Med., 11, 295 (1974). (238)Julin, E. G.. Vandenborn. H. W., Kirkland, J. J., J. Chromatogr., 112, 443 (1975). (239)Junk, G. A., Richard, J. J., Grieser, M. CI., Witiak. D., Witiak, J. L.. Arguello, M. D., Vick, R.,
992 (1974). (269)Kiuchi, K., Ohta, T.. Ebine, H., J. Chromatogr. Sci., 13, 461 (1975). (270)Knapp, G., Clin. Chim. Acta, 46, 261 (1973). (271)Knox, J. H., Jurand, J., J. Chromatogr., 103, 311 (1975). (272)Knox, J. H., Jurand, J., ibld., 110, 103 (1975). (273)Knox, J. H., Pryde, A , ibid., 112, 171 119751 (274)Knox, J. H., Vasvari, G., J. Chromatogr. Sci., 12, 449 (1974). (275)Kochen, R. L., Anal Chim. Acta, 71, 451 (1974). ' (276)Kocheva, L. L., Tabakova, E., Acta Chim. Hung., 83, 229 (1974). (277)Koide. M., Bruland, K. W.. Anal. Chim. Acta, 75, l(1975). (278)Komae. H., Hayashi, N., J. Chromatogr., 114, 258 (1975). (279)Konecny, C., Caietka. R., J. Radioanal. Chem., 14, 255 (1973). (280)Konig. K. H., J. Chromatogr., 102, 99 (1974);103, 193 (1975). (281)Korkisch, J.. Dimitriadis, D., Mikrochim. Acta, 1974, 25,449,549. (282)Korkisch. J., Dimitriadis, D., Talanta, 20, 1199,1287,1295,1303 (1973). (283)Korkisch, J.. Goedl, L.. Anal. Chim. Acta, 71, 113 (1974). (284)Korkisch, J., Goedl, L., Talanta, 21, 1035 (1974). (285)Korkisch, J., Gross, H., ibid., 20, 1153 (1973). (286)Korkisch. J.. Gross, H., ibid., 21, 1025 (1974). (287)Korkisch, J., Goedi, L., Gross, H., ibid., 22, 281,289,669 (1975). (288)Korkisch, J., Hubner, H., Mikrochim. Acta, 1975, Ii, 219. (289)Korkisch, J., Sorio, A,, Anal. Chim. Acta, 76, 393 (1975). (290)Korkisch, J., Sorio, A,, ibid., 79, 207 (1975). (291)Korkisch, J.. Sorio, A,, Talanta, 22, 273 (1975). (292)Korkisch, J., Steffan, I., Anal. Chim. Acta, 77, 312 (1975). (293)Kotsuji, K., Hayashi, S., Bunseki Kagaku, 23, 802 (1974). (294)Kraak, J. C.,Huber, J. F. K., J. Chromatogr., 102, 333 (1974). (295)Kramer, U., Bhatia, K., ibid., 89, 348 (1974). (296)Krantz, M. J., Lee, Y. C., Anal. Biochem., 63, 464 (1975). (297)Krejci, M., Kourilova, D., J. Chromatogr., 91, 151 (1974). (298)Krejci, M . , Roudna. M . , Vavrouch, Z.. J. Chromatogr., 91, 549 (1974). (299)Krutz, M.. Fresenius' Z. Anal. Chem., 273, 123 (1975). (300)Krylov, V. N., Gedeonov, L. I., Rakov, N. A., Trofimov, A. M., Radiokhimiya, 15, 654 (1973). (301)Krylov, V. N.,Pitalev, V. G., Pospelov. A. A,, Trofimov. A. M . , ibid., 650 (1973). (302)Kubota, M., J. Nucl. Sci. Techno/., 11,
\
-
Svec, H. J., Fritz, J.
S.,Calder, G. V., ibid., 99,
745 (1974). (240)Kaiser, F. E., Gehrke. C. W., Zumwait, R. W., Kuo. K. C., ibid., 94, 113 (1974). (241)Kaiser, I. I., Yong, P. A,, ibid., 111, 242 (1975). (242)Kakihana, H., ibid., 102, 47 (1974). (243)Kakihana, H., Kurokawa, K., Bunseki Kagaku, 23, 1315, 1321 (1974). (244)Kamata, S., Nippon Kagaku Kaishi, 1974, 1342. (245)Kanert. G A., Chow, A,, Anal. Chim. Acta, 78, 375 (1975). (246)Kapila, S , Aue, W. A,, Augl, J. M., J. Chromatogr., 87, 35 (1973). (247)Karalova, Z. K., Myasoedov, E. F., Rodionova, L. M , Pyzhova, Z. I., Zh. Anal. Khim., 29, 1332 (1974). (248) Karasek, F. W., Denney, D. W., Anal. Lett., 6, 993 (1973). (249)Karol, P J., J. Chromatogr.. 69, 346 (19741. (250)Karol, P., J. Radioanal. Chem., 24, 17 (1975). (251)Karger, B. L., Martin, M., Guiochon, G., Anal. Chem., 46, 1640 (1974). (252)Karger. E. L., Su, S. C.. Marchese, S., Persson. B . 4 . J. Chromatogr. Sci., 12, 678 (1974). (253)Katz, S.,Pitt, W. W., Mrochek, J. E.. Dinsmore, S.,J. Chromatogr., 101, 193 (1974). (254)Katz, S.,Pitt, W. W., Mrochek. J. E., ibid., 104, 303 (1975). (255)Kawabuchi, K.. Kuroda, R.. ibid., 114, 143 (1975). ~
M.. Pachia, L. A., Wenke, D. C., Clin. Chem., 20,
\
-
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
0
63R
334 (1974). (303) Kubota, M., J. Radloanal. Cbem., 23, 73 119741. -. (304) Kullberg. M. P., Gorodetzky, C. W., Clln. Chem., 20, 177 (1974). (305) Kunbazarov, A., Rudomino, M. V., Sorovhan, A. M., Dyaltova, N. M., Senyavin, M. M., Zb. Prlkl. Kbim., Leningrad, 47, 2452 (1974). (306) Kunihiro, K.. Nakal, A,, Muto, G., Bunseki Kagaku, 24, 188 (1975). (307) Kunzru, D.. Frei. R. W., J. Cbromatogr. Sci., 12, 191 (1974). (308) Kuroda, R., Tarui, T., Fresenius' Z.Anal. Chem., 269, 22 (1974). (309) Kuroda, R., Yoshikuni, N.. Mikrochim. Acta, 1974, 653. (310) Kuroda, R., Yoshikuni, N., Talanta, 22, 81 (1975). (311) Lagerstrom, P. O., Acta Pbarm. Suec., 12, 215 (1975). (312) Lakatos, M., DiFerrante. N., Biocbem. Med., 9, 256 (1974). (313) Lamaziere, J., Migiierina, R.. J. Cbromatogr., 106, 191 (1975). (314) Larmann, J. P., Williams, R. C., Baker, D. R., Chromatograpbia, 8, 92 (1975). (315) Larsen, R. P., Oldham, R. D.. Talanta, 22, 577 (1975). (316) Laskornin, B. N., Yuzhina, A. D.. Smirnova, N. M., Sadovnikova, G. I., Novikov, Y. P.. Vitkovskaya. A. A,, Radlokhimlya, 15, 236 (1973). (317) Lasztity, A.. Belyavskaya, T. A,, J. Cbromatogr., 102, 203 (1974). (318) Lawrence, J. G., Chimla, 29, 367 (1975). (319) Lee, K. S., Lee, D. W.. Anal. Cbem.. 46, 1903 (1974). (320) Lee, K. S., Lee, D. W., Lee, W., Anal. Cbem., 47, 2270 (1975). (321) Lee, P. L. Y., Biocbem. Med., 10, 107 (1974). (322) de Leenheer, A. P., Rigs, S. S.. Gelijkens. C. F., van Vaerenbergh, P. M., J. Chromatogr., 92, 339 (1974). (323) Lehotay. J., Traiter. M., ibid., 91, 261 (1974). (324) Lehotay. J., Traiter, M., Cbem. Zvesti, 28, 57 (1974). (325) Leoni. V., Puccetti, G., Grella, A,, J. Cbromatogr., 106, 119 (1975). (326) Lesec, J., Lafuma, F., Quivoron, C., J. Cbromatogr. Sci., 12, 683 (1974). (327) Levakov, B. I., Timofeev, G. A,, Zh. Anal. Kbim., 29, 1023 (1974). (328) Leyden, D. E., Luttrell, G. H.. Anal. Cbem., 47, 1612 (1975). (329) Leyden, D. E., Luttrell. G. H., Patterson, T. A., Anal. Lett., 8, 51 (1975). (330) Leyden, D. E.. Patterson, T. A.. Alberts, J. J.. Anal. Chem., 47, 733 (1975). (331) Lieser, K. H., Radiochem. Radioanal. Lett., 18, 323 (1974). (332) Lin, J. W., Janauer, G. E., Anal. Cbim. Acta, 79, 219 (1975). (333) Linden, J. C., Lawhead, C. L., J. Cbromatogr., 105, 125 (1975). (334) Linder, D. E., Anal. Cblm. Acta, 75, 355 (1975). (335) Lindner, W., Frei, R. W., Santi. W.. J. Cbromatogr., 106, 299 (1975). (336) Little, J. N., Fallick. G. J., lbid., 112, 389 (1975). (337) Lloyd, J. B. F., Analyst (London), 100, 529 (1975). (338) Lochmuiler, C. H., Amoss, C. W., J. Chromatogr., 108, 85 (1975). (339) Lochmuller, C. H.,Galbraith, J. W.. Walter, R. L., Anal. Cbem., 46, 440 (1974). (340) Locke, D. C., J. Chromatogr. Sci., 12, 433 (1974). (341) Loesche, W., Bublitz, R.. Horn, A., Koehler, W.. Petermann, H., Till, U.. J. Cbromatogr., 92, 166 (1974). (342) Long, C. L.. Geiger, J. W., Biochem. Med., 12, 267 (1975). (343) Longton, R. W., Berzinkas, V. J.. Balekjian, A. Y., Needleman, S.B., Anal. Biocbem., 57, 343 (1974). (344) Lynn, T. R., Rushnek. D. R., Cooper, A. R., J. Chromatogr. Sci., 12, 76 (1974). (345) Lypka, G. N., Gesser, H. D., Chow, A,, Anal. Chim. Acta, 78, 367 (1975). (346) Macek. K.. Rehak. V.. J. Cbromatoar., 105, 182 (1975). (347) Mchata. G., Vycudilik, W., Arch. Toxicol., 33, 115 (1975). \
64R
(348) Majors, R . E., Hopper, M. J., J Cbromatogr. Sci., 12, 767 (1974). (349) Maldacker. T. A,, Rogers, L. B., Sep. Sci., 9, 27 (1974). (350) Manahan, S.E., Jones, D. R., Anal. Lett., 6, 745 (1973). (351) Manion, C. V., Shoeman. D. W., Azarnoff. D. L., J. Chromatogr., 101, 169 (1974). (352) Marchout, W. N., Environ. Sci. Technol., 8, 993 (1974). (353) Marei, S. A,, Shakshooki, S. K., Aly, H. F., Radiocbem. Radioanal. Lett., 20, 137 (1975). (354) Marhol, M., Cheng, K. L., Talanta, 21, 751 (1974). (355) Marhol, M.. Chmelicek. J., Aiovitdinov, A. B., Kockarova. C. U., J. Cbromatogr., 102, 89 (1974). (356) Marichkova, L. M., Donev, I. I., Balushev, B., C. R. Acad. Bulg. Sci., 28, 367 (1975). (357) Marsh, S.F., Ortiz. M. R., Abernathy, R. M.. Rein, J. E., Rep. USAEC, LA-5568 (1974). (358) Martin, M., Blu, G.. Eon, C., Guiochon, G., J. Chromatogr. Sci., 12, 438 (1974). (359) Martin, M., Blu, G., Eon, C., Guiochon, G., J. Cbromatogr., 112, 399 (1975). (360) Martin, M., Eon, C., Guiochon, G.. ibld., 99, 357 (1974); 108, 229; 110, 213 (1975). (361) Marton, A,, Inczedy, J., ibid., 102, 165 (1974). (362) Marton, L. J., Lee, P. L. Y . , Clin. Cbem., 21, 1721 (1975). (363) Mason, W. J.. Radiocbem. Radioanal. Lett.. 16, 237 (1974). (364) Matsui, H., Anal. Cbim. Acta, 69, 216 (1974). (365) Matthews, E. W., Byfield, P. G. H.. MacIntyre, I., J. Cbromatogr., 110, 369 (1975). (366) May, W. E., Chesler, S. N., Cram, S. P., Gump, B. H., Hertz, H. S., Enagonio, D. P., Dyszel, S. M., J. Cbromatogr. Sci., 13, 535 (1975). (367) Mayell. J. S..Hiskey, C. F., Lachman, L., Anal. Chem., 46, 449 (1974). (368) Mazin, A. L., Sulimova, G. E., Vanyushin, 6.F., Anal. Biocbem., 61, 62 (1974). (369) McLafferty, F. W., Knutti, R., Venkataraghavan, R.. Arpino, P. J., Dawkins, B. G., Anal. Cbem., 47, 1503 (1975). (370) McNair, H. M., Chandler, C. D., J. Chromatogr. Sci., 12, 425 (1974). (371) Mechlinski W., Scheffner, C. P., J. Chromatogr., 99, 619 (1974). (372) Menheere, P., Devillez, C., Eon, C.. Guiochon, G., Anal. Chem., 46, 1375 (1974). (373) Miklishanskii. A. Z., Leikin, Y. A,, Yakovlev, Y. V.. Savei'ev, B. V.. Zb. Anal. Khim., 29, 1284 (1974). (374) Miwa, Y., Hayashi, T., Yamabe, T., J. Chromatogr., 108, 323 (1975). (375) Moeiler, S. E., ibid., 104, 63 (1975). (376) Molnar, F., Horvath, A,, Khalkin. V. A,. Magy. Kem. Foly., 80, 474 (1974). (377) Morisi, G., Accardi, N.. Ann. lnst. Super. Sanita, 9, 171 (1973). (378) Morot-Gaudry, J. F., Nicol, M. Z., Jolivet, E., J. Chromatogr., 87, 4 (1973). (379) Morot-Gaudry, J. F., Nicol, M. 2.. Jolivet, E., ibid., 100, 206 (1974). (380) Morozowich, W., J. Pbarm. Sci., 63, 800 (1974). (381) Morozowich, W., J. Chromatogr. Sci., 12, 453 (1974). (382) Morozowich, W., Williams, R. G., J. Pbarm. Sci., 64, 313 (1975). (383) Moskvin, L. N., Miroshnikov, V. S., Radiokbimlya, 15, 882 (1973). (384) Moskvin, L. N., Mozzhukhin, A. V., Tsaritsyna, L. G., Zb. Anal. Kbim., 30, 39 (1975). 13851 Mowerv. R.. Juvet. R. S..J. Cbromatoar. Sci., 12, 687 (1974) (386) Moye, H. A,, lbid., 13, 268 (1975). (387) Mozersky, S. M., Connelly, J. A,, Anal. Chem 47. 370 119751. . . (388) Mkochek. J.' E.. Dinsmore, S. R., Waalkes, T. P., Clin. Chem., 21, 1314(1975). (389) Mrochek, J. E., Katz, S.,Christie, W. H., Dinsmore, S. R., Clin. Chem., 20, 1086 (1974). (390) Mulukozi, A. M., Talanta, 20, 1341 (1973). (391) Mulukozi, A. M.. Mosha, D. M. S., Taianta, 22, 239 (1975). (392) Murakami. F., Anal. Cbem., 47, 390 119751 I . _ . _,.
(393) Murata, M., Noguchi, M., Anal. Chim. Acta. 71. 295 (1974). (394) 'Murgia, E., Walton, H. F., J. Cbromatogr.,
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
104, 417 (1975). (395) Musty, P. R., Nickless, G.. J. Cbromatogr., 100, 83 (1974). (396) Musty, P. R., Nickless, G., ibid., 89, 185 (1974). (397) Muusze, R. G., J. Cbromafogr. Sci., 12, 779 (1974). (398) Muzzareili, R. A. A,, Rocchetti, R., Anal. Cbim. Acta, 69, 35, 70, 283 (1974). (399) Muzzareili, R. A. A,, Rocchetti, R., ibid., 70, 465 (1974). (400) Muzzareili, R. A. A., Rocchetti. R., Talanta, 21, 1137 (1974). (401) Muzzarelli, R. A. A,, Rocchetti, R.. J. Cbromatogr., 96, 115 (1974). (402) Myasoedova, G. V., Antokolskaya, I. i., Boi'shakova, L. I., Shvoeva, 0. P., Savvin, S. B., Zb. Anal. Kbim., 29, 2104 (1974). (403) Myasoedova, G. V., Bol'shakova, L. I., Savvin, S. B.. ibld., 28, 2324 (1973). (404) Nadkarni, R. A., Morrison, G. H., Anal. Chem., 46, 232 (1974); 47, 2285 (1975). (405) Nagy, J., lzotoptechnika, 16, 674 (1973). (406) Nahlovsky, B. D., Lang, J. H., J. Cbromatogr., 101, 225 (1974). (407) Nakamura, K., Matsumoto, I., Nippon Kagaku Kaisbi, 1975, 1347. (408) Nakayama, M.. Hiraoka, M., Matsuo, A,, Hayashi. S.,Ganno, S.,ibid., 96. (409) Navratil, J. D., Murgia, E., Walton, H. F., Anal. Cbem., 47, 122 (1975). (410) Navratil. J. D., Waiton, H. F., Anal. Chem., 47, 2443 (1975). (411) Neary, M. P., Seitz, R., Hercules, D. M., Anal. Lett., 7, 583 (1974). (412) Nemirovskaya, I. A,, Beiyavskaya. T. A,, Paskevich, I. B., Zb. Anal. Kbim., 26, 61 (1973). (413) Nativ, M., Goldstein, S., Schmuckler, G., J. lnorg. Nucl. Chem., 37, 1951 (1975). (414) Nevorai, V.. Fresenius' Z. Anal. Cbem., 268, 189 (1974). (415) Newsome, W. H., J. Agric. Fd Chem., 22, 886 (1974). (416) Niederschulte, U.. Ballschmiter. K.. Fresenius' Z. Anal. Chem., 269, 360 (1974). (417) Niedzielska. K.. Slowik, A,, Chem. Anal. (Warsaw), 19, 787 (1974). (418) Noe, M., Mikrochim. Acta, 1975 I, 663 (1975). (419) Novotny. M., Lee, M. L., Bartle, K. D., J. Chromatogr. Sci., 12, 606 (1975). (420) Oettinger, P. E. Huffman, F., Fine, D. H., Lieb. D., Anal. Lett., 8, 411 (1975). (421) Oguma, K., Kuroda. R., Fresenius' Z. Anal. Cbem., 277, 111 (1975). (422) Oguma, K., Maruyama, T., Kuroda, R., Anal. Cbim. Acta, 74, 339 (1975). (423) Ohlweiler, 0. A,, de Oliveira, J., Oderich, J. A., ibid., 69, 224 (1974). (424) Olsson, L., Samuelson, O., J. Cbromatogr., 93, 189 (1974). (425) Olsson, L., Samuelson, O., ibid., 106, 139 (1975). (426) Ooms, R.. Shonken, P., D'Olieslager, W.. Baetsle, L., D'Hovt, M., J. lnorg. Nucl. Cbem., 36, 665 (1974). (427) Osterroht, C.. J. Chromatogr., 101, 289 (1974). (428) Ostojic, N., Anal. Chem., 46, 1653 (1974). (429) Pakhoiov, V. S., Zelenkov, B. N., Zb. Prikl. Khim., Leningrad, 47, 2213 (1974). (430) Pal, B. C., Regan. J. D., Hamilton, F. D., Anal. Biocbem., 67, 825 (1975). (431) Palmer, J. K., Anal. Lett., 8, 215 (1975). (432) Palmer, J. K., Brandes, W. B., J. Agric. Fd Cbem., 22, 709 (1974). (433) Pankow, J., Janauer. G. E., Anal. Cbim. Acta, 69, 97 (1974). (434) Parris, N. A,, J. Cbromatogr. Sci., 12, 753 (1974). (435) Parrish, J. R., Anal. Chem., 47, 1999 (1975). (436) Parrish, J. R., Lab. Pract., 24, 399 (1975). (437) Parrish, J. R., Stevenson, R., Anal. Cbim. Acta, 70, 189 (1974). (438) Passarelli, R. J., Jacobs, E. S., J. Cbromatogr. Sci., 13, 153 (1975). (439) Pastyr, J., Kuniak, L., Cellui. Cbem. Technol., 7, 715 (1973). (440) Pearce, K. N., Creamer, L. K., Anal. Chem., 46, 457 (1974). (441) Persiani, C., Cukor, P., J. Cbromafogr., 109, 413 (1975).
(442)Persson, 8. A., Karger. B. L., J. Chromatogr. Sci., 12, 521 (1974). (443)Peters, J. M., Del Fiore, G., J. Chromatogr., 108, 415 (1975). (444) Peters. J. M., Del Fiore, G., Radiochem. Radioanal. Lett., 16, 109 (1974):21, 1 1 (1975). (445)Pfrepper, G., J. Chromatogr., 110, 133 (1975). (446)Philips, S.R., Durden, D. A,, Boulton, A . A.. Can. J. Biochem., 52, 447 (1974). (447)Pifferi, P. G.. Baldassari, L., Gandolfi, 0.. J. Chromatogr., 88, 381 (1974). (448)Pitt, W. W.. Jolley. R. L., Scott, C. D.. Environ. Sci. Technol., 9, 1068 (1975). (449) Pohlandt, C., Steele, T. W., Talanta, 21, 919 (1974). (450)Poirer, M., ibid., 22, 607 (1975). (451)Polkowska-Motrenko, H.. Dybczynski, R., J. Chromatogr.. 88, 387 (1974). (452)Polyak, N. A,, Zimina, I. F., Ref. Zh. Khim., 19GD, Abstract 19G60 (1973); Anal. Abstr., 27, 2428 (1974). (453)Popl. M., Stejskal, M., Mostecky, Jiri, Anal. Chem., 47, 1947 (1975). (454) Pound, N. J.. McGilveray, I. J., Sears, R. W., J. Chromatogr., 89, 23 (1974). (455)Pound, N. J., Sears, R. W.. J. Pharm. Sci.. 64, 284 (1975). (456)Pretorius, V.. Jopkins, B. J.. Schieke, J. D., J. Chromatogr., 99, 23 (1974). (457)Pryde, A., J. Chromatogr. Sci., 12, 486 (1974). (458)Qureshi, M.. Gupta, J. P.. Sharma, V., Talanta, 21, 102 (1974). (459) Qureshi. M., Kumar. R., Sharma. V., Anal. Chem., 46, 1855 (1974). (460)Qureshi, S.Z.,Rathi, M. S., Anal. Chem., 47, 1424 (1975). (461)Qureshi, S. 2.. Rathi, M. S..Bano. S., ibid., 46, 1139 (1974). (462)Qureshi, M., Rathore, H. S., Kaushik. R. C., ibid., 47, 1710 (1975). (463)Raginskaya, L. K.. Manova, T. G., Efremova, V. I., Zh. Anal. Khim., 28, 1843 (1973). (464) Rai, P. P. Turner, T. D., Matlin, S. A,, J. Chromatogr., 110, 401 (1975). (465)Ramnas, O.,Samuelson. O., Acta Chem. Scand., Ser. E , 28, 955 (1974). (466)Ramseyer, G. O.,Janauer. G. E., Anal. Chim. Acta, 77, 133 (1975). (467)Ramsteiner. K. A,, Hormann, W. D., J. Chromatogr., 104, 438 (1975). (468)Redman, D. G.,J. Chromatogr., 104, 178 (1975). (469)Renault, N., Anal. Chim. Acta, 70, 469 (1974). (470) Renberg. L., Anal. Chem., 46, 459 (1974). (471)Rexfelt, J., Samuelson, O., Anal. Chim. Acta, 70, 375 (1975). (472)Richard, J. J., Fritz, J. S..Talanta, 21, 91 (1974.. (473)Riggin, R. M., Rau, Leh-daw, Alcorn, R. L., Kissinger. P. T., Anal. Lett., 7, 791 (1974). (474)Riggin, R. M., Schmidt, A. L., Kissinger. P. T., J. Pharm. Sci., 64, 680 (1975). (475)Rinaidi, A,, Dernini, S., De Marco, C., J. Chromatogr., 108, 391 (1975). (476)Robert, A., Valles, R., Radiochem. Radioanai. Lett., 15, 279 (1973). (477)Rodgers, D. H., J. Chromatogr. Sci., 12, 742 (1974). (478)Roeder, E., Merzhaeuser, J., Fresenius' Z. Anal. Chem., 272, 34 (1974). (479)Roelandts, I.,Duyckaerts. G., Brunfelt. A. O., Anal. Chim. Acta, 73, 141 (1974). (480)Rokushika, S., Taniguchi, H., Hatano, H.. Anal. Lett., 8, 205 (1975). (481)Rosenbaum, D., Anal. Chem., 46, 2226 (1974). (482)Ross, W. D., Sep. Purif. Methods, 3, 1 1 1 (1974). (483)Rossler, G., Halasz, I., J. Chromatogr., 92, 33 (1974). (484)Rumeau, M.,Anaiusis, 3, 396 (1975). (485)Ryabukhin, V. A., Stroganova, N. S., Gatinskaya. N. G., Ermakov, A. N., Zh. Anal. Khim., 28, 2166 (1973). (486)Ryan, J. J., Dupont, J. A,, J. Assoc. Off. Anal. Chem., 57, 828 (1974). (487)van Ryswyk, W., J. Chromatogr., 103,
259 (1975). (488)Samadi, A. A., Ailloud, P., Fedoroff, M.. Anal. Chem.. 47. 1847 (1975). (489)Samejima, K . , ~J. Chromatogr., 96, 250
(1974). (490)Saunders, D. H., Barford, R. A,, Magidman, P., Olszewski, L. T., Rothbart, H. L., Anal. Chem., 46, 834 (1974). (491) Saunders. D. L., ibid.. 48, 470 (1974). (492)Savvin, S. B., Antokolskaja, I. I., Myasoedova, G. V., Bolshakova, L. I., Shvoeva, 0. P.. J. Chromatogr., 102, 287 (1974). (493)Schmermund, J. T., Locke, D. C., Anal. Lett., 8, 611 (1975). (494) Schmitt, B. F., Segebade, C., Fresenius' 2.Anal. Chem., 270, 193 (1974). (495)Scholfield, C. R., Anal. Chem., 47, 1417
(1975). (496) Schultz. F. A,, Mathis, D. E., ibid., 46, 2253 (1974). (497)Schwachula, C., Lukas, D., J. Chromatogr., 102, 123 (1974). (498)Scott, C. D., Pitt, W. W., Johnson, W. F., ibid., 99, 35 (1974). (499)Scott, R. P. W.. Kucera, P., J. Chromatogr. Sci., 12, 473 (1974). (500)Scott, R. P. W., Kucera, P., J. Chromatogr., 112, 425 (1975). (501)Scott, R. P. W.. Scott, C. G., Monroe, M., Hess, J., J. Chromatogr., 99,395 (1974). (502)Sebenik, A,, Lapanje, S., ibid., 106, 454 (1975). (503)Sebestian, I., Haiasz, I., Chromatographia, 7, 371 (1974). (504)Seiber, J. N., J. Chromatogr., 94, 151 (1974). (505)Seitz, L. M., ibid., 104, 81 (1975). (506)Seki, T.. Wada, H., ibid., 102, 251 (1974). (507)Seki, T., Wada, H., ibid., 114, 227 (1975). (507a)Selkirk, J. K., Croy, R. G., Gelboin, H. V.. Science, 184, (1974). (508)Semmens, M., Gregory, J., Environ. Sci. Technol., 8, 834 (1974). (509)Shafiev. A. I., Efremov, Y. V.. Andreev. V. P., Radiokhimiya, 15, 265 (1973). (510)Shankar. V., Joshi, P. N., J. Chromatogr., 90, 99;95,65 (1974). (511)Shankar, V., Joshi, P. N.. ibid., 104, 443, 449 (1975). (512)Shu, C. K. Walradt, J. P., Taylor, W. I., ibid., 106, 271 (1975). (513)Sieswerda, G. B., Poppe, H., Huber, J. F. K., Anal. Chim. Acta. 78, 343 (1975). (514)Simek, M., Collect. Czech. Chem. Commun.. 39, 3287 (1974). (515)Simek, M., Chem. Zvesti, 28, 349 (1974). (516)Singh, M., J. Ass. Off. Anal. Chem., 57, 219 (1974). (517)Singh. S.,J. Radioanal. Chem., 24, 5 (1975). (518)Singhal. R. P., Sep. Purif. Methods, 3, 339 (1974). (519)Sinsel, J. A., LaRue, B. M., McGraw, L. D., Anal. Chem., 47, 1987 (1975). (520)Sitar, D. S.,Piafsky, K. M., Rangno, R. E.,Ogiivie, R. I., Clin. Chem., 21, 1774 (1975). (521)Sitaram, R.. Khopkar. S. M., Sep. Sci., 8, 701 (1973). (522)Sitaram, R., Khopkar, S. M., Anal. Chim. Acta, 71, 472 (1974). (523)Sitaram, R., Khopkar, S. M., Fresenius' Z.Anal. Chem., 268, 286 (1974). (524)Slais, K., Krejci, M., J. Chromatogr., 91, 181 (1974). (5251 Sliepcevic, Z.,Siroki, M., Stefanac, Z., Mikrochim. Acta, 1973, 945. (526)Slocum, S. A., Studebaker, J. F.. Anal. Biochem., 68, 242 (1975). (527)Slovak, Z.,Slovakova, S., Smrz, M., Anal. Chim. Acta, 75, 127 (1975). (528)Small. H.. Stevens, T. S., Bauman, W. C., Anal. Chem.. 47, 1801 (1975). (529)Smith, D. J., J. Assoc. Off. Anal. Chem., 57, 741 (1974). (530)Smith, R. G., Anal. Chem., 46, 607 (1974). (531)Smits. R., Vanroelen, C., Massart, D. L.. Fresenlus'Z. Anal. Chem., 273, l(1975). (532) Snodgrass, S.R., J. Pharm. Pharmacol., 26, 931 (1974). (533)Snyder, L. R.. Anal. Chem., 46, 1384 (1974). (534)Snyder, L. R.. J. Chromatogr., 92, 223 (1974). (535)Solem, E., Agarwal, D. P., Goedde, H. W., Clin. Chim. Acta, 59,203 (1975).
(536)Sorimachi, K., Ul, N., Anal. Biochem., 87. 157 119751. i537)'Stahl: E., Laub, E., Woller, R.. 2. Le6ensm.-Unters. Forsch., 156, 321 (1974). (538) Stahl. E., Laub, E., Woller, R., Fresenius' 2.Anal. Chem.. 275, 257 (1975). (539)Steichen, J. C.,J. Chromatogr., 104, 39 (1975). (540)Stillman, R., Ma, T. S., Mikrochim. Acta, 1974,641. (541) Stone, E. A,, Mendlinger, S., Anal. Biochem.. 62, 592 (1974). (542)Story, J. N., Fritz, J. S., Talanta, 21, 892 (1974). (543)Strelow, F. W. E., Hanekom. M. D., Victor, A. H., Eloff. C., Anal. Chim. Acta, 76, 377 (1975). (544)Strelow, F. W. E., Jackson, P. F. S., Anal. Chem., 46, 1481 (1974). (545) Strelow, F. W. E., Liebenberg, C. J., Victor, A. H., ibid., 48, 1409 (1974). (546)Strelow, F. W. E., Victor, A. H., Weinert. C. H. S. W., Anal. Chim. Acta, 69, 105 (1974). (547)Strelow, F. W. E., van der Walt, T. N.. Anal. Chem., 47, 2272 (1975). (548)Strelow, F. W. E.,Weinert. C. H. S. W., Talanta, 20, 1127 (1973). (549)Strelow, F. W. E.. Weinert, C. H. S. W., van der Walt, T. N.. ibid., 21, 1183 (1974). (550)Strelow, F. W. E., Weinert, C. H. S. W., van der Walt, T. N., Anal. Chim. Acta, 71, 123 (1974). (551)Srivastava, T. S.,Yonetani. T., Chromatographia, 8, 124 (1975). (552) Suatoni, J. C., Garber, H. R., Davis, 6. E., J. Chromatogr. Sci., 13, 367 (1975). (553)Suatoni, J. C.,Swab, R. E.,ibid., 13, 361 (1975). (554)Sugawara, K. F., Weetall, H. H., Schucker. G. D., Anal. Chem., 46, 489 (1974). (555) Sugiura, T.. Hayashi, T., Kawai, S.. Ohno, T., J. Chromatogr., 110, 385 (1975). (556)Sukiman, S., Radiochem. Radioanal. Lett., 18, 129 (1974). (557) Sulcek, Z., Sixta, V., Collect. Czech. Chem. Commun., 40,2295,2303 (1975). (558)Sundberg, L. L., Anal. Chem., 47, 2037 (1975). (559)Szakasits, J. J., Robinson, R. E., ibid., 46, 1648 (1974). (560)Szczepaniak, W., Siepak, J., Chem. Anal. (Warsaw), 18, 1019 (1973);19, 869 (1974). (561)Szirtes, L., Zsinka, L., J. Chromatogr., 102, 105 (1974). (562)Tabak. D., dos Santos, M. N., J. Chromatogr., 106, 471 (1975). (563)Tabor, H., Tabor, C. W., Irreverre. F., Anal. Biochem., 55, 457 (1973). (564)Tadera, K.. Yasumoto. K.. Tsuji, H., Mitsuda. H., Bitamins, 48, 69 (1974). (565)Takahagi. H., Seno, S.,J. Chromatogr. Sci., 12, 507 (1974). (566)Takahagi, H., Seno, S., J. Chromatogr., 108, 354 (1975). (567)Takata, Y., Arikawa, Y., Eunseki Kagaku, 22, 312 (1973). (568)Takata, Y., Arikawa, Y., ibid., 23, 1522 (1974). (569)Takata, Y., Fujita, K., J. Chromatogr., 108, 255 (1975). (570)Tanaka, K., Ishihara, Y., Sunahara, H., Mikami, E., Bunseki Kagaku, 23, 380 (1974);24, 235 (1975). (571)Taylor, L. R., Johnson, D. C., Anal. Chem., 46, 262 (1974). (572)Thomas, H.. Ponnath. H., Muller-Enoch, D.. J. Chromatogr., 103, 197 (1975). (573)Thomas, J. D. R., ibid., 102, 209 (1974). (574)Thompson, R. D., Nagasawa, H. T., J. Lab. Clin. Med., 84, 584 (1974). (575)Thornhili, D. P., J. Chromatogr.. 90, 354 (1974). (576)Thrivikraman, K. V., Refshauge, C., Adams, R. N., Life Sci., 15, 1335 (1974). (577)Tolmachev, V. N., Miroshnik, L. V., Zh. Anal. Khim.. 30, 895 (1975). (578)Tomkins, D. F., Tscherne, R . J.. Anal. Chem., 46, 1602 (1974). (579)Tomlinson, E., J. Chromatogr., 113, 1 (1975). (580)Topping, J. J., MacCrehan, W. A., Talanta, 21. 1281 (1974). (581)Trinier, W. A,, Reuland, D. J., J. Forensic Sci. Soc., 15, 153 (1975). (582)Tsuji, K., Robertson, J. H., Bach, J. A,, J.
ANALYTICAL CHEMISTRY, VOL. 48, NO. 5, APRIL 1976
65R
Chromatogr.. 99, 597 (1974). (583) Tsuji, K., Robertson, J. H., Beyer, W. F., Anal. Chem., 48, 539 (1974). (584) Twitchett, P. J., J. Chromatogr., 104, 205 (1975). (585) Twitchett. P. J., Moffat, A. C., ibid., I l l , 149 (1975). (586) Uchytil, E., J. Chromatogr., 93, 447 (1974). (587) Uden, P. C., Walters, F. H., Anal. Chim. Acta. 79, 175 (1975). (588) Ullrich, J., Tyrnpl, M., Pekarek, V., Vesely, V., J. Radioanal. Cham., 24, 361 (1975). (589) Unger, K., Chimia. 28, 679 (1974). (590) Unger, K., Becker, N., Kramer, E., Chromatographia. 8, 283 (1975). (591) Unger, K., Nyamah, D., ibid., 7, 63 (1974). (592) Usher, D. A,. McHale, A. H., Yee. D., Anal. Chem., 47, 783 (1975). (593) Uskert, A,, Mag. Kem. Lapja, 29, 219 (1974). (594) Veening. H.. Pitt, W. W.. Jones, G., J. Chromatogr., 90, 129 (1974). (595) Veiandia, J. A.. Perkons, A . K., J. Radioanal. Chem., 20, 473 (1974). (596) Vermont, J.. Deleuil, M., de Vries, A. J., Guillernin. C. L., Anal. Chem., 47, 1329 (1975). (597) Vernon, F., Eccles, H., Anal. Chim. Acta, 72, 331 (1974); 77, 145; 79, 229 (1975). (598) Verpoorte, R., Svendsen, A. B., J. Chromatogr., 100, 227, 231 (1974); 109, 441 (1975). (599) Vespaiec, R., ibid., 108, 243 (1975). (600) Vestergaard, P., ibid., Ill, 57, 63, 69, 75 (1975). (601) Vigh, G., Inczedy, J., ibid., 102, 381 (1974). (602) Vivilecchia, R. V., Cotter, R. L. Lirnpert. R. J., Thirnot, N. Z.,Little, J. N., bid., 99, 404 (1974).
(603) Voetter, W., Chem.-Ztg., 98, 493 (1974). (604) Vogh, J. W., Dooley. J. E., Anal. Chem., 47, 816 (1975). (605) Vujovic, A.. Rass. lnt. Clin. Ter., 54, 940 (1974); Anal. Abstr., 29, 1D10. (606) Walker, R. L., Eby. R. E., Pritchard, C. A,, Carter, J. A., Anal. Len., 7, 563 (1974). (607) Walters, D. B., Chamberlain, W. J., Snook, M. E., Chortyk. 0.T., Anal. Chim. Acta, 73, 194 (1974). (608) Walton, H. F., J. Chromatogr., 102, 57 (1974). (609) Ward, R S., Pelter. A,. J. Chromatogr. Sci 12. 570 11974). .~ (610)’Warren, H: D., McKay, D. P., ibid., 13, 117 (1975). (611) Warshawsky, A,, Talanta, 21, 624 (1974). (612) Wehrli, A,, Chimia, 28, 690 (1974). (613) Weigand. N., Sebastian, I., Halasz. I., J. Chromatogr., 102, 325 (1974). (614) Weinberger, M., Chidsey, C., Clin. Chem., 21, 834 (1975). (615) Westland, A . D., Boisciair, I., Water Res., 8, 467 (1974). (616) Wheals, B. B., J. Chromatogr., 107, 402 (1975). (617) Wheals, B. B., Smith, R. N., ibid., 105, 396 (1975). (618) Wheals, 8. B.. Vaughan. C. G., Whitehouse, M. J., ibid., 108, 109 (1975). (619) Wheeler, G. L., Lott. P. F., Microchem. J., 19, 390 (1974). (620) Wiedemann, H., Engeihardt, H., Halasz, I., J. Chromatogr., 91, 141 (1974). (621) Wildanger, W., J. Chromatogr., 114, 480 (1975). (622) Williams, R. C., Baker, D. R., Schmidt, J. A,, J. Chromatogr. Sci.. 11, 6 18 (1973). (623) Willis, R. B., Fritz, J. S., Talanta, 21, 347
(1974). (624) Willrnott, F. W., Dolphin, R. J., J. Chromatogr. Sci., 12, 295 (1974). (625) Wilp. A,. Jahnig, W., Z. Chem. (Leipzig), 15, 111 (1975). (626) Wittrner, D., Haney, W. G., J. Pharm. Sci., 63, 588 (1974). (627) Wittmer, D. P., Nuessle, N. O., Haney, W. G., Anal. Chem., 47, 1422 (1975). (628) Wodkiewicz, L., Dybczynski, R., Chem. Anal. (Warsaw), 19, 175 (1974). (629) Wodkiewicz, L., Dybczynski, R., J. Chromatogr., 102, 277 (1974). (630) Wolkoff, A. W., Larose, R. H., Anal. Chem.. 47, 1003 (1975). . (631) Wolkoff, A. W., Larose, R. H., J. Chromatogr., 99, 731 (1974). (632) Wolkoff, A. W.. Onuska, F. I., Cornba, M. E., Larose, R. H., Anal. Chem., 47, 754 (1975). (633) Yarnabe. T., Hayashi, T., J. Chromatogr., 102, 273 (1974). (634) Yarnabe, T., Takai, N., Nakarnura. H., ibid., 104, 359 (1975). (635) Yarnashige. T., Izawa. H.. Shigetorni, Y.. Bull. Cham. SOC.Jpn, 48, 7 15 ( 1975). (636) Yoshida, H.. Yonezawa, C., Bunseki Kagaku, 22, 929 (1973). (637) Young, P. R., McNair, H. M., Anal. Chem., 47, 756 (1975). (638) Zech, K.. Voelter, W., Chromatographia, 8, 350 (1975). (639) Zhukova, M. P. Shernyakin, F. M., Yakoviev, P. Y., Zh. Anal. Khlm., 28, 1705 (1973). (640) Zsinka, L., Szirtes. L., Radiochem. Radioanal. Lett.. 18, 271; 17, 257 (1974). (641) Zsolnay, A., U.S. Natl. Bur. Stand., Spec. Pub/., 409, 119 (1974). (642) Zvereva, M. N., Gornovskaya. N. K.. Kochurina, L. T., Vest. Lenlngr. Gos. Univ., 1974, Fiz. Khim., 153; Anal. Abstr., 27, 2464 (1974).
Paper and Thin-Layer Chromatography Gunter Zweig” Office of Pesticide Programs, U.S.Environmental Protection Agency, Washington, D.C. 20024
Joseph Sherma Department of Chemistry, Lafayette College, Easton, Pa. 78042
Since our last Chromatography review appeared in April 1974, the authors and editors of ANALYTICALCHEMISTRY have decided that the 1976 review should be subdivided into Column Chromatography (H. Walton) and the present section on Paper and Thin-Layer Chromatography. The decision for subdividing the topic of Chromatography was reached on the basis that this field was ever-expanding, and it was difficult for one set of authors to keep up with two years of progress in all phases of liquid chromatography. The literature in the present review covers work reported in Chemical Abstracts from December 10, 1973, to December 1, 1975, and therefore no gap exists between the 1974 and this review. In addition, a number of original sources have been reviewed as well as the bibliography sections published in the Journal of Chromatography during this period. An attempt has been made to limit the number of references (there were roughly 3200 articles scanned) to those with the more significant advances in the field and, although the review stresses the most recent advances in theory, techniques, and equipment, important applications are included. The advances in paper chromatography have not materialized as significantly as had been predicted by the authors in 1973 (Zweig and Sherma, J . Chromatogr. Sci., 11, 279, 1973) through the development of new types of high-efficiency paper grades. However, paper chromatography is 66R
ANALYTICAL CHEMISTRY, VOL. 48,
NO. 5,
APRIL 1976
still widely used in biological research and separation of inorganic ions, especially outside the U S . and Canada; many publications are now reporting work on both paper and thin-layer chromatography and may be covered in either section of this review. The most significant advances in thin-layer chromatography appear to be the increasing use of direct densitometry for quantitation, probably due to the availability of instrumentation, a number of short courses and the appearance of the first book on densitometry of TLC (Touchstone, 1973) (484B). The authors note with satisfaction that the 1975 American Chemical Society-Supelco Award in Chromatography was given to Professor Egon Stahl of the University of the Saarland, Germany. The third edition of Erich Heftmann’s “Chromatography”, Van Nostrand-Reinhold Co., New York was published during 1975 and contains chapters on techniques and application of paper and thin-layer chromatography authored by experts in the respective fields. PAPER CHROMATOGRAPHY General Considerations Books and Reviews. No books specifically devoted to the subject of paper chromatography have been published during this period. However, a number of review articles on the general subject of paper chromatography and its specif-