(597) van Swaay, AT., ed.; “Gas Chromatography, 1962,” 41 1 pp., Butterworths, Washington, 1962. (598) VAradi, P. F., Elttre, K., AXAL. CHEM.34, 1417 (1962). (599) Ihid., 35, 410 (1963). (600) Vasil’eva, V. S.,:Drogaleva, I. V., Kiselev, A. V., Korolov, 4 . Ya., Shcherbakova, K. D., Proc. h a d . Scz. U S S R , Phys. Chem. Sect. English Transl. 136, 109 (1961). (601) Vasil’eva, V. S., Kiselev, A. V., Nikitin, Yu. S., Petroia, R. S., Shcherbakova, K. D., Zh. Fiz. Khim. 35, 1889 (1961). (602) Verzele, ll., J . (’hromatog. 9, 116 (1962). (603) Vyakhirev, I). A,, Komissarov, P. F., Proc. Acad. S c i . C S S R , Phys. Chem. Sect. English Transl. 129, 901 (1959). (604) I4’aksmudzki, A,, Suprynowicz, Z., Xlanko, R., Chem. A n d . Warsaw 7, 1051 ( 1962). (605) Walker, T. R., Karmen, .4.,J . Gas Chromatog. 1 (7), 24 ( 1963). (606) Washbrooke, P. ?., Chemiker Ztg. 86, 377 (1962). (607) Watson, E. S.,Bresky, D. R. ( t o Perkin-Elmer Corp.) U. S. Patent 2,757,541 (ilug. 7, 1956). (608) Watts, J. O., Symp. on Recent Develop in Res. l k t h o d s and Instr. (Xat. Inst. of Health:, Bethesda, Md., Oct. 8-12, 1962. (609) Watts, J. O., Klein, A. K., Assoc. Ofic. dgri. Chern. 45, 102 (1962).
(610) Weber. 0..Z . ilnal. Chem. 194, 334 ( 1963). (611) Weber, T. B., “Lectures in Aerospace LIedicine,” pp. 327-346, Rept. No. PB 163 414, OTS, Washington, D. C., 1962. (612) Wentworth, W. E., Becker, R. S., J . A m . Chem. SOC.84. 4263 11962). (613) West, W. W., Abstr., p: 12B, 145th lleeting, A.C.S., New York, S . Y., Sept. 9-13, 1963. (614) Westlake, W. E., ASAL. CHEM. 35 (5), 105R (1963). (615) Wett, T. W., Chem. Process. Chicago 25 (18), 34 (1962). (616) Wharton, D. R. -4., Black, E. D., Merritt, C., Jr., Wharton, 11. L., Bazinet, AI., Walsh, J. T., Science 137, 1062 (1962). (617) Widmark, K., Widmark, G., Acta Chem. Scand. 16, 575 (1962). (618) Wiegleb, H., Prinzler, H., Chem. Tech. Berlin 15 (21, 98 (1963). (619) Wiesner, L., Schmidt-Kuster, W. J., Internat. Symp. on Microchem. LIethods of .4nal., Pennsylvania State University, University Park, Pa., Aug. 13-18, 1961. (620) Rilhite, W. F., Burnell, M. R., I S A J . 10 (9), 53 (1963). (621) Wilkinson, J., Hall, D., J . Chromatog. 10, 239 (1963). 1622) Williams. D . D.. Miller.’ R. R.. ‘ AXAL. CHEM.’~~ 657 , (1962). (623) Williams, D. D., Miller, R. R., C . S . Govt. Res. Rept. 37 ( I ) , 21 (1962). 1624) Winkelman, J.,. Karmen. A,. ANAL. CHEY.34, 1067 (1962).
(625) Wiseman, W. A,, AVature 192, 964 (1961). (626) Wright, J. L., J . Gas Chromatog. 1 ( l l ) ,10 (1963). (627) Yamane, >I., J . Chromatog. 9, 162 ( 1962). (628) Ibid., 11, 158 (1963); (629) Yanko, A,, Beriac, L., Adasek, $., Hankus, A., “Gas-Chromatographie, 1963,” H . P. Angele and H. G. Struppe, eds., pp. 214-224, Akademie-Verlag G.m.b.H., Berlin, 1963. (630) Yonezawa, Y., Murtz, G. W., Food Technol. 17 (4), 134 (1963). (631) Yoshimoto, Toshio, Nippon Kagaku Zasshi 83, 966 ( 1962). 1632) Zhukhovitskii. A. A,., U S.D . Khim. 28, 1201 (1959). ’ (633) Zhukhovitskii. A. A,. Selenkina. M. S., Turkel’taub, N. 9,,Russ. J’, Phys. Chem. English Transl. 36, 519 ( 1962). (634) Zhukhovitskii, A. A,, Turkel’taub, N. M.. R u s ~ Chem. . Rev. Enalish Transl. 30 (7); 377 (1961). (635) Zlatkis, Albert, 10th Detroit Anachem. Conf., Detroit, Mich., Oct. 22-24, 1962. (636) Zlatkis, Albert, Walker, J. Q., ANAL.CHEM.35, 1359 (1963). (637) Zlatkis, Albert, Walker, J. Q., J . Gas Chromatog. 1 (5), 9 (1963). (638) Zomzely, C., Marco, G., Emery, E., ANAL.CHEM.34, 1414 (1962). (639) Zulaica, Javier, Guiochon, Georges, Ibid., 35, 1724 (1963).
Ion Exchange Chromatography Harold F. Walton, University of Colorado, Boulder,
T
HIS review reports applications of ion-exchanging materials to chemical separations in columns. The criterion for inclusion in this review is the ion-exchanging nature of the adsorbent, not necessarily the ion-exchanging character of the xocess; ion exchangers bind certain substances by forces other than elclctrostatic ones. Studies of the ion-exchange process itself, such as measurements of equilibrium distributions, are not cited unless they have an immediate bearing upon analytical separations in columns. A feiv references tire included to “liquid ion exchanger:;” and to chromatography on paper impregnated with ion-exchanging materials. The principal analytical journals have been covered through December 1963, and some publications have been cited from 1961 and earlier that were not included in the 1962 review. The period 1962-63 has seen no radically new developments in ionexchange chromatogral)hy, but rather a steady exploitation of existing methods, such as the use of arion exchange in complexinp media to separate metals. Some inorganic excha igers have been studied systematically, and nea ones have been prepared 155, 86); mixed
Colo.
solvents have been put to good use in metal separations (20, 26, 33, 78, 128, 135) ; techniques have been developed for monitoring column effluents automatically (18, 47, 90, 131, 151), especially techniques in which reagents are fed continuously into effluent streams for color development. Advances have been made in the theory of column performance (49, 100) and of isotope separation (13, 39, 123). The new technique of “ligand exchange” has interesting possibilities (50, 141, 146). REVIEWS
The book by Samuelson, “Ion Exchange Separations in Analytical Chemistry” (112), will be welcomed by every worker in the field. It is not a revision of his earlier book, but a completely new one. It includes a very comprehensive discussion of ion-exchanging materials, principles, experimental techniques, and specific applications. .\pplwations to organic and biochemistry are not included. The literature is covered to 1960, with a feiv 1961 references. The cooperative work “Chromatography,” edited by Heftmann (48), has three chapters
specifically devoted to ion exchange, with many references to ion exchange throughout the book. The general emphasis is a biological one. The growing field of liquid ion exchangers is surveyed in a review paper by Coleman, Blake, and Brown (14). THEORY
A comprehensive discussion of displacement chromatography and the shape of boundaries obtained under various conditions is given by Helfferich (49), who also describes an elegant “tracer pulse method” for determining adsorption isotherms a t all degrees of loading ( 5 1 ) . This is applicable to all kinds of chromatography, not merely ion exchange. The theory of gradient elution is discussed by Reiner and Reiner (109) with experimental data, .A symposium on stable isotope separation, with theoretical and experimental studies, appears in ,the Journal de Chimie Physique for 1963 (IS, 39, 59, 123); Glueckauf emphasizes the importance of isotopic effects in the solution equilibria, such as the proton exchange between I4SH3and I4NH4+. Kakihana et al. (60) separated “i and ’Li by combining ion exchange with electromigration. VOL. 36, NO. 5, APRIL 1964
51
R
MATERIALS
Inorganic Exchangers. I n a comprehensive paper Maeck, Kussy, a n d Rein (86) do for four inorganic exchangers in nitrate solutions the same kind of thing that Kraus and Xelson did in 1955 for anion-exchange resins in chloride solutions: they supply graphs of log D us. pH for nearly all the metals in the periodic table. The exchangers are zirconium oxide, molybdate, phosphate, and tungstate. S e w analytical uses are suggested for these materials. Another very important study is that of Inoue (55) on stannic phosphate; equilibrium, kinetic, and structural studies are reported as well as the separation of long-lived fission products by this exchanger. Thallous phosphotungstate is proposed as a selective exchanger for cesium (9) and so is ammonium phosphomolybdotungstate (80). Special Resins. The use of chelating resins for isolating traces of divalent ions from concentrated solutions of sodium chloride is reported (54), and the synthesis of new and selective resins is described (7, 85, 152, 139). An interesting development is the use of partially sulfonated polystyrenes for their nonionic adsorption of metal chloride complexes (138). Ion retardation resins are used in protein analysis (11I). AIacroreticular resins, resins which combine the advantages of high crosslinking and high porosity, are being used with nonaqueous and mixed solvents where the reactions would otherwise be very slow (34). Ion Exchange Papers. Uses for papers impregnated with ion exchange resins have not developed as fast as might be expected, b u t a n interesting study by Lederer and Rallo (82) shows that the cellulose, as well as the resin, affects the movement of metal ions on these papers and that the mechanism involves partition and nonionic adsorption as well as ion exchange. Alberti et al. ( 2 ) have used paper impregnated with cation-exchange resin as a base for electrophoretic separations, and have studied the migration of cations in paper impregnated with zirconium phosphate (sa). Tests and Cerrai (10, 137) describe the use of the "liquid anion exchanger" trioctylamine, supported on paper, to separate lanthanides and actinides. Cellulose phosphate paper and resin-impregnated paper separate strontium and yttrium (125). APPARATUS, TECHNIQUES
There are many references to the AutoAnalyzer, an instrument that feeds reagents into column effluents at predetermined rates and monitors the light absorption of the reaction products-for example, (3, 4, 115, 114, 115) Most
52 R
e
ANALYTICAL CHEMISTRY
applications of continuous monitoring are biochemical, as for amino acids (27,47,151)and sugars (231). Gradient elution is frequently used (151), and it
finds use in separating phosphates (f 01) and rare earths (26). One paper describes a conductivity bridge for monitoring column effluents (18), and
Table I. Inorganic Ion Separated from
Element
Exchanger
Eluent
Ag
A1
2M HCl
HCI, H F
Am '48 Au B Be Bi
Ca
Cm Sb Many elements Many elements Si Many elements Zr
A
2M LirSOI
x
HC1
4
Thiourea SaOH XaOH 2M HCl
Fe, A1 All other Many elements Many elements U, Th Mg, )!In Mg
A Chelating C C
A A
12h' HCl
A
C
x
C .4
Mg, Sr
Chelating
u
A
C C A A A C
Cr
Zn Many elements Eu Rare earths Rare earths Rare earths Sr, Y Other anions Xi Fe, Mo Mn, Zn, Cu Fe, Xij Sc Mn, V
cs
Many elements
cu
Many elements Rb Many elements Mg, Ba U
Cd Ce
c104
co
F
Fe Ga Ge Hg I In K
sc
Zn, Co, Ni Fe, P Fe. P Many anions Water Mo, etc. Many elements Many elements Many elements Cs, Sr, Cu Fe, As Bi, P b Te Al, Fe Sn Zn Li, Ka
A A A A A A
Oxalate 1;M HC1 HC1, HBr XaZSzOs HXOI, HCI Complexan HS08-alcohol HNO3 NaZS203 HBr, HC1 HXO,
+ PbOz
C A T1 phosphotungstate Inorganic Inorganic Chelating C Cellulose phosphate C A C A C A Chelating C A Sn phosphate Chelating C Inorganic
Acetate HC1-acetone HC1 Tartrate KCNS Tiron KCNS TlSO3-HNOs
.4s ads.
HF also used
Zr eluted by 4N HC1 Be not ads. Bi ads. Bi eluted EGTA Macroreticular resin Trace detn. Cd eluted Aq. alcohol Aq. alcohol Ce ads. Sea water Co ads.
Cr ads.
Cu eluted Cu eluted
NazSZO3 HC1
Cu eluted In apatite In apatite
NaOH HC1 HC1 HC1 HCl HBr Alcohol
Nonionic ads.
I eluted; for I131
In eluted
A A
0.5Jf THpCl
Ref.
Clays Impurities detn.
Aretate EDTA HCl
C C
Xotes Iron meteorites Trace detn.
(83) (29, 30, 33)
another, automatic remote-control equipment for handling a succession of eluents (90) in analyzing radioactive wastes.
I N O R G A N I C ANALYSIS
Metals. T h e great majority of papers cited in this review concern the
Exchange Separations Separated Element from Mg Ca Mn Satd. NaCl Co, Zn, Cu Mo Cu, Ti, Zr Fe, Co, Xi Nb Ti, Fe Ta, Fe, Ti Ni Fe, Cu P Rock
Pb Pd Pu Rare earths
Rb Rh S Sb
sc
Eluent
Exchanger Chelating A A A
1-u&SO4 Tartrate HCl HCl Tartrate NHAC1-HF HC1-methanol
Notes See Ca
(54) (106) (911 (92)
S b , Ta ads. N In oil
C A A C A
HC1, KC1
A A Bi, Cu, Cd C Many elements C Many elements A Each other C
KC1 KC1 HBr NaCl 7 M HNOa Various
Pu ads. See also Ce
A
Various
See also Ce
A (liquid, on paper) C A
LiNO3
Lu moves fastest See also Cs Rh eluted
cs
u, Pu
Many elements C Many elements C Many elements A
Se Si Sn Sr
Many elements Te Pu Fe, Zn, Cu Y Ce,. Cs,. Y
Th
Many elements C
HC1 8M HCl
(116) ~
Many elements A U C U, Bi A
Tartrate HN03-CH3OH
Sb eluted Gradient elution
KCNS HC1 HIS03 Oxalate Citrate HSO3-SH4Cl
Te ads. Si eluted Sn eluted Y moves
HC1
Resin ashed; for low grade ores
"03
HNOs-alcohols HSOi solvents
+
+
Ti
Many elements C Many elements A
HzS?~ HF Various
Hz02added Traces sep.
U
Many elements A
HzS04, HC1
See also Th
v
Th, rare earths A (liquid, on paper) Many elements Chelating Many elements C
HC1, HzSOI
H30z fixes V
Methanol-HC1
lreluted
NaZS203
Cd eluted In meteorites Zr eluted
Zn Zr
Many elements Cd Ni, etc. Many elements
A
C A
C
Many elements A
HC1 Sulfosalicylic acid 0.1M HzSOd
(5) (62) (57)
Ortho, pyro, (101 148) triphosphates sep. Polyphosphates ( 4 4 ) Phosphites (10 6 )
+ Ah03
A C C A C (paper) Stannic phosphate
Ref.
on resin
Zr ads.
separation and analytical determination of metal ions. Table I summarizes separations of metal and nonmetal ions reported in the review period. Of course, it is impractical t o t r y to list every single metal mentioned in every paper. Anion-exchange separations of metal ions as their negatively charged complexes with C1-, Br-, F-, SCN-, NOI-, SO4-2, and other anions dominate the table. Of the many references cited, one must be specially noted: the 23page paper on silicate rock analysis by Ahrens, Edge, and Brooks (1). This summarizes several years' work by the South African group, and presents a comprehensive analytical scheme using anion exchange, cation exchange, and solvent extraction. The final determination of trace elements is made spectrographically, but the authors emphasize that the average crustal abundance of many elements is below the limit for spectrographic detection. Hence the need for chemical separation and concentration. Quantitative spectrographic determinations are made in a sodium chloride matrix Neutron activation is a powerful technique for determining trace elements, and here, too, its usefulness is greatly enhanced by chemical separations. Ion exchange has been used to separate the activated trace elements from irradiated reactor-grade aluminum (37, 81) and from silica (61). Applications of ion exchange to atomic energy continue to excite interest, and several papers describe the separation of uranium and thorium from each other, from spent nuclear fuel elements, and as traces from rocks and soils (see Table I) A notable trend is to the use of mixed solvents which give greater selectivity than water. In general, the admixture of a nonaqueous solvent with water stabilizes anionic complexes and promotes the adsorption of metals on anion-exchange resins. Thus Subrahmanyam and Sastri (128) noted that one could adsorb cobalt from much lower hydrochloric acid concentrations if one used 7501, acetone as a solvent instead of water. Porkisch et al. found that adding acetone or dioxane u p to a concentration of 90% increased enormously the adsorption of thorium on an anion exchanger from hydrochloric acid solutions, but, by contrast, it decreased the adsorption of uranium (143, 144) Alcohols increase the adsorption of both thorium and uranium from chloride and nitrate solutions (74, 76, 77, 135, 136) By varying the solvent composition one may increase the effectiveness of separations, and Korkisch, Hazan, and Arrhenius (73) put this to use in separating rare earths from nitric arid Polutions by anion exchange; mixed alcohol-water solvents were used. VOL. 36, NO. 5, APRIL 1964
53 R
Similar separations were made by Edge (21, 22) and Faris and Warton (26). Calcium and magnesium were separated by anion exchange in 0.5M nitric acid in 90% 2-propanol (34). Turning to cation exchange, Fritz and Rettig (33) found that differential complexing with hydrochloric acid in water-acetone mixtures would remove metals selectively from a cation-exchange resin. Good separations were achieved by varying the concentrations of acetone and hydrochloric acid. I n purely aqueous solutions selective removal from cation exchanger is not nearly so effective. Another trend that should be noted is the use of a wider variety of complexing agents for both cation and anionexchange separations. Hydrobromic acid has been used by Fritz and Garralda (29), sulfosalicylic acid by Fritz and Palmer (32), carbonate by Taketatsu (133), thiocyanate by Hamaguchi (45, 46) and Turner, Philip, and Day (142), and thiosulfate by Katsura (63-66). Nikitin (99a) describes group separations of complex mixtures of elements produced in cyclotron targets, using cation and anion exchange in hydrofluoric acid solutions. Nonmetals. For separating fluoride ions prior to photometric determination with alizarin complexone, two papers describe cation-exchange methods, one for phosphate rock (116), the other for water ( 5 8 ) . This will be a welcome alternative to the cumbersome distillation. Selective anion exchange was used, with 10M hydrochloric acid as the eluent, to separate fluoride from iron ores and apatites (38). -4general separation of a number of anions by elution with sodium hydroxide and sodium nitrate is described by Takiura and Takino (134). Other separations of nonmetals will be noted in Table I. O R G A N I C ANALYSIS
Organic Acids. T h e anion-exchange separation of malic, tartaric, and citric acids from fruit juice is described by Goudie and Rieman ( 4 2 ) . I n general monobasic acids are eluted first, then dibasic, then tribasic (24). Hydroxy acids have been separated using acetate (3) and borate (4) eluents; so have aldonic acids (113, 115). Separations of carbonyl compounds on bisulfite-form anion-exchange resins are described (88). Hydroxybenzoic acids and brominated salicylanilides, used as germicides, have been separated by gradient elution, using acetic acid methanol eluents ( 1 2 2 ) . Sugars have been separated by anion exchange as their borate complexes (131) or by simply using their nonionic adsorption from aqueous alcohol (114). The pheophytins obtained by removing magnesium ions from chlorophyll by ion 54 R
ANALYTICAL CHEMISTRY
exchange can be further separated by differential nonionic adsorption on the resin (147). T o follow the elution of sugars and organic acids the reduction of chromic acid in hot concentrated sulfuric acid is frequently used ( 4 2 ) . Nitrogen Determination. An interesting modification of the Kjeldahl procedure is described by Shah and Qadri (119). The sample is simply digested in a sealed tube with sulfuric acid, no catalyst or salt being used; then the product, containing ammonium sulfate, is passed through a column of strong-base anion exchanger which absorbs all the excess sulfuric acid and converts ammonium ions to ammonia. This is then determined by a novel procedure which also involves ion exchange.
Proteins, Peptides, Amino Acids, Amines. -4s examples of the work in this field we report the separation of human hemoglobins on anionexchange cellulose (53), and the isolation of thyroid hormones from blood serum (95), of toxins from venoms ( 9 4 ) , and of peptides from enzymatic hydrolyzates (117 ) . For amino acid separations advances have been made in instrumentation (47) and the ionexchange technique has been extended to uncommon acids (27, 251). More than 20 amines have been isolated from urine by column chromatography on carboxylic and sulfonic cation-exchange resins (103). The method of “ligand exchange,” mentioned briefly in the 1962 review, has been used to separate amino compounds. Tsuji (141) adsorbed nicotinic acid hydrazide (isoniazide) on columns of cation-exchange resins loaded with various transition-metal ions such as Cu+* and complex ions were formed which remained absorbed on the resin, but the base could be washed out by water. Helfferich ( 5 0 ) showed that diamines could replace ammonia in a cation-exchange resin loaded with nickel-ammonia and copper-ammonia complex ions. He called this process “ligand exchange” and used it to remove a diamine from a dilute solution containing ammonia; the diamine was then displaced from the column by concentrated ammonia solution. Walton and Latterell (146) have shown that mixtures of amines can be separated by elution chromatography on columns of cation-exchange resins loaded with transition-metal ions, using ammonia solutions as eluents. LITERATURE CITED
( 1 ) Ahrens, L. H., Edge, R. A., Brooks,
R. R., Anal. Chim. Acta 28, 551 (1963). ( 2 ) Alberti, G., Conte, A., Grassini, G.. Lederer, SI., J . Electround. Chem. 4, 301 (1962). (2a) Alberti, G., Dobici, F., Grassini, G., J . Chromatog. 8, 103 (1962).
(3) Alfredsson, B., Bergdahl, S., Samuelson, O., Anal. Chim. Acta 28,371 (1963). ( 4 ) Alfredsson, B., Gedda, L., Samuelson, O., Ibid., 27,.63 (1962). ( 5 ) Blimarin, I. ,P., Gibalo, I. AT., Tsin, H.-2.. Tzu. Vysshikh. lichebn. Zaaedenii, Khim. i Khim. Tekhnol. 5, 374 (1962). ( 6 ) Belyavskaya, . T. A., Alimarin, I. P., Mu, P.-W., Vestn. Mosk. Univ., Ser. 11, K h i m . 1962. 41. ( 7 ) Rlasius, E:, Brazio, B., Z . Anal. Chem. 192,364 (1963). ( 8 ) Burriel-Marti, F., Herrero, C. A , , Inf o r m . Quim. Anal. 16, 121 (1962). (9) Caron, H. L., Sugihara, T. T., ANAL. CHEM.34, 1082 (1962). (10) Cerrai, E., Testa, C., J . Chromatog. 5, 442 (1961). ( 1 1 ) Chakravarty, T. N., Scz. Cult. (Calcutta) 28, 392 (1962). (12) Chung, K. S.,Riley, J . P., Anal. Chzm. Acta 28, 1 (1963). (13) Ciric, M. M., Pupezin, J. D., J . Chzm. Phys. 60, 100 (1963). 14) Coleman, C . F., Blake, C. A . , Brown, K. B., Talanta 9,297 (1962). 15) De, A. IC., Majumdar, S. K., Ibzd., 10, 201 (1963). 16) De, A. K.. WIaiumdar. S.K.. Z.Ana1. Chem.’ 191, 40 (1962). ’ 17) De Geisio, R. C., Donaruma, L. G., Tomic, E. A., ANAL. CHEM.34, 845 (lQfi21. .j - _
18) Duhne, C., de Ita, 0. S., Zbid., 34, 1074 (1962). (19) Edge, R. A., Anal. Chim. Acta 28, 278 11963). (20) Ibid., 29, 321 (1963). (21) Edge, R. A,, J . Chromatog. 6, 452 ilQfil)
(22) Ibld., 8, 419 (1962). (23) Edge, R. A,, Ahrens, L. H., Ibid., 26, 355 11962). (24) Egashira, S., Bunseki Kagaku 10, 1225 (1961). (25) Evans, H. B., Bloomquist, C. A. A,, Hughes, J. P., ANAL.CHEM.34, 1692 (1962). (26) Faris, J. P., Warton, J. W., Ibid., 34, 1077 (1962). (27) Frimpter, G. W., Bass, A., J . ChTOmUtOg. 7,427 (1962). (28) Fritz, J. S., Abbink, J. E., ANAL. CHEM.34, 1080 (1962). (29) Fritz J. S., Garralda, B. B., Ibid., 34, 102 (1962). (30) Ibid., p. 1387. (31) Fritz, J. S., Greene, R. G., Ibid., 35, 811 (19631. (32) F;ita,-J. S., Palmer, T. A,, Talanta 9, 393 (1962). (33) Fritz, J. S., Rettig, T. .4., ANAL. CHEM.34, 1562 (1962). (34) Fritz, J. S., Waki, H., Ibid., 35, 1079 11963). (3g) Gerdes, W. H., Rieman, W.,111, Anal. Chim. Acta 27, 113 (1962). (36) Getoff, N.,Parker, W., ’Yature 197, 278 (1963). (37) Girardi, F., Pietra, R., ANAL.CHEM. 35, 173 (19G3). (38) Glaso, 0. S., Anal. Chim. Acta 28,543 (1963). (39) Glueckauf, E.,J . Chim. Phys. 60,73 (lQfi3’I. \---.-,. (40) Golovatyi,
R. N., OshchapovskiI,
V.V., Ukr. Khim. Zh. 28, 518 (1962).
(41) Goode, G. C., Campbell, M. C., Anal. Chim. Acta 27, 422 ( 1962). (42) Goudie, A. J., Rieman, W., 111,Ibid., 26, 419 (1962). (43) Gregory, E. E., Jeffrey, P. G., Talanta 9. 800 11962). (44) Grundelius, R., Samuelson, O., Anal. Chim. Acta 27, 67 (1962). (45) Hamaguchi, H., Kuroda, R., Aoki, K., Sugisita, R., Onuma, N., Talanta 10, 153 (1963). (46) Hamaguchi, H., Kuroda, R., Onuma, X., Ibid., 10, 120 (1963).
(47)Hamilton, P. B., ANAL. CHEM.35, 2055 (1963). (48) Heftmann, E.,ed., “Chrornatographv,” Reinhold, 3 e w York, 1961. (49)Hklfferich, F., ,4ngvw. Chem., Intern. Ed. 1, 440 (1962). ( 5 0 ) Helfferich, F., J . A m . Chem. Soc. 84, 3237,3242 (1962). (51) Helfferich, F., Pettmon, D . L., Science 142, 661 (1963). (52)Holzapfel, H., Ehr’iardt, H., Tischo, W., J . Prakt. Chem. 19, 62 (1962). (53)Huisman, T. J H . Dozy, A. &I., J . Chromatog. 7, 180 (1962). (54)Inioto. H.; Bunsekz Kaoaku 10, 124 ‘ (is61). (55)Inoue, Y., Bull. Ch8sm.Soc. Japan 36, 1316,1324 (1963). (56)Ishibashi. M., Fujiiiaga, T., Koyama, SI.,Xaito, T., Bunseki Kagaku 10, 116 (1961). (57)Janauer, G. E., Ko-*kisch,J., 2. Anal. Chem. 179. 241 (1961I. (58) Jeffery,’P. G:, Williams, D., Analyst 86, 590 (1961). (59)Kakihana, H., J . (‘him. Phys. 60, 81 (1963). (60)Kakihana, H., AIori, Y., Hoshino, T., Bull. Chem. SOC.Japan 35, 2055 (1962). f61) Kalinin. A. I . Kuznetsov. R. A.. LIoiseev, ?. Y.: ‘Murin, A. A., Dokl: Akad. .Vu& S S S R 141, 98 (1961). (62)Kallman, S.,Oberthin, H., Liu, R., ANAL.CHEM.34, 609 (1962). Bunsekz Kaoaku 10.366, (63)Katsura. T.. . 370 i1961).’ (64)Zbid., p. 1207. (65)Zbid., p. 1211. (66)Zbid., 11, 34 (1962). (67)Kenna, B.T., Co:irad, F. J., ANAL. CHEM.35, 1255 (1962,). (68)Khorasani, S. S. M . A,, Khundkar, >I, H., Anal. Chim. Acta 25, 292 (1961). (69)Kirsten, W.J., Hansson, K. A., Nilsson, S. K., Zbid., 28, 101 (1963). (70)KO, R., Appl. Speztr. 16, 157 (1962). (71)Korkisch, J., Mik,wchim. Acta 1961, ,
\ - - ,
I
~~
(85) McNutt, N. S., Maier, R. H., ANAL. CHEM.34, 276 (1962). (86)Naeck, W.J.,Kussy, 11.E.: Rein, J. E., Zbid., 35, 2086 (1963). (87)llarcus, Y., Givon, M., Choppin, G. R., J . Znorg. Nucl. Chem. 25, 1457 (1963). (88)Maruta, S., Suzuki, Y ., K w y o Kaoaku Zasshi 64.176 (1961). (89)XIassart, I>. L.,Hoste, J., Bnal. Chzni. Acta 28, 378 (1963). (90)Mathers, W.G., Hoelke, C. W. K., ANAL.CHEM.35, 2064 (1963). (91)Michaelis, C., Eveslage, S., Coulter, P., Fortman, J., Ibtd., 34, 1764 (1962). (92)Michaelis, C., Tarlano, N. S., Clune, J.. Yolles. R. Zbid.. 34. 1425 11962). (93)’Minczewski, J., ’Dybczynski, R:, J . Chromatog. 7, 98 (1962). (94) hliranda, F.,Rochet, H., Lissitzky, S.,Ibid., 7, 142 (1962). (95)Muller, K., Skrube, H., Spitzy, H., Mikrochim. Acta 1962. 1144. (96)Muithy, V. R., Geochim. Cosmochim. Acta 26, 481 (1962). (97)Nabivaneto, €3. I., Zh. Analit. Khim. 17,385 (1962). (98)Sadezhina, L. S., Zbid.,, 17.. 383 (1962). (99)Kakashima, F., Anal. Chim. Acta 28, 54 f1963’). ~~
(99a)‘Nikih,!VI. K., Dokl. Akad. Nauk SSSR 148, 595 (1963). (100)Nishimura, &I.,Sandell, E. B., Zbid., 26, 242 (1962). (101)Ohashi. S..Takada. S.. Bull. Chem. . SOC.Ja~an‘34:1516 Cl96li. (102) Osljorn, W. o., j. AWL’.Ceram. SOC. 44. ). 44, 527 527 (1961 (1961). (103)Perry, T.’L., T. L., Schroeder, W. A., J . Chromatog. 12, 358 (1963). (104)Pietri, C. E., Wenzel, A. W., ANAL. CHEH.35, 209 (1963). ’ CHEM. (105)Pitstick. Pitstick, G. F.. F., Sweet. Sweet, T. R.. R.,‘ Morie. Morie, G.. R., G R., Zbid.; Zbid., 35, 995 (1963). (106)Pollard, F. H., Rogers, D. E., RothChromatog. well, hl. T., Nickless, G., J . Chromatou. 9, 227 (1962). LVL. (72)Korkisch, J., Arrhihius, G., Kharkar, (107)Povondra. P.. Pribil. R.. Talanta 10. I). P.. Anal. Chim. Acta 28. 270 (1963’1. 713 119631. (108)Raby,’ B. A,, Banks, C. V., Anal. Chim. Acta 29, 532 (1963). :orkisch, J., Janaier, G. E., I t 1109) Reiner, J. M., Reiner, B., Anal. Rionco\ chem. 4, 1 (1962). ) Korkisch, J., ‘rera, F., ANAL.CHEM. (75‘ (110)Roberts, F. P., U. S. At. Energy 33, 1264 (1961). Comm.. R e d HW-69737 (1961). (76)Korkisch. J.. Tera., F.., J . Chromatoo. (111) Rollins,’ C., Jensen, L., Schwartz, 6: 530 (1961). A. N., ANAL.CHEM.34, 711 (1962). (77)Ibzd:, 8,510,516 (1962). (112)Samuelson, O., “Ion Exchange Separations in Analytical Chemistry,” (78)Korkisch, J., Tera, F., 2. Anal. Chem. 186, 290 (1962). Wiley, S e w York, 1963. (79) Kressin, I. K., Waterbury, G. R., (113)Samuelson, O., Sinionson, R., Svensk ANAL.CHEM.34, 1598 (1962): Papperstzd. 65, 363 (1962). (80)Krtil, J., Krivy, [., J . Znorg. N d . (114)Samuelson, O., Swenson, B., Anal. Chem. 25, 1191 (1963). Chim. Acta 28, 426 (1963). (81)Laverlochbre, J., (‘him. Anal. 44, 388 (115)Samuelson, O.,Wallenius, L. O., J . Chromatog. 12, 236 (1963). (1962). (82)Lederer, AI., Rallr, F., J . Chromatog. (116)Schafer, H. S . S., ANAL.CHEM.35, 7, 552 (1962). 53 (1963). (83)Lewandowski, A., Szczepaniak, W., (117)Schroeder, W. A., Jones, R. T., Chem. Anal. Warsaw 7, 593 (1962). Cormick, J., IlcCalla, K., Ibid., 34, 1570 (84)Loach, K. W., Nathre 196,744 (1962). (1962). - - 7
\ - - - -
“00
I
,1
I
,
,
I
,
(118)Seidl, J., Stamberg, J., Hrbkova, E., J . Appl. Chem. 12,500 (1962). (119)Shah, R.A., Qadri, A. A,, Talanh, 10, 1083 (1963). (1201 Shchekochikhima. R.L.. Motokima. R.’K., Zn.Analyt. Khzm. 17;604(1962): (121) Sherrna, J., Talanta 9, 775 (1962). (122)Skelley, N. E.,Crummett, W. B., ANAL.CHEM.35, 1680 (1963). (123)Spedding, F.H., J . Chim. Phys. 60, 89 (1963). (124) Stancheva, S.? Alimarin, I. P., Tsintsevich, E. P., Zavodsk. Lab. 28, 156 (1962). (125)Stein, P. C., ANAL.CHEM.34, 352 (1962). (126)Strelow, F.W. E.: Ibid., 33, 1648 (1961). (127)Ibid., 35, 1279 (1963). (128)Subrahmanyam, J., Sastri, M. N., 2. Anal. Chem. 189, 175 (1962). (129)Suvorovskaya, N. A., Lopatina, G. I., Ref.Zh. Khim. 1961, 12D42. (130)Suzuki, T., Nippon Kagaku Zasshi 82,696 (1961). (131)Syamananda, R., Staples, R. C., Block, R . J., Contrib. Boyce Thompson Inst. 21, 363 (1962). (132)Sykora, V., Dubsky, F., Collection Czech. Chem. Commun. 28, 2149 (1963). (133)Taketatm, T.,Talunta 10, 1077 (1963). (134)Takiura, K., Takino, Y., Bunseki Kagaku 10,483,488,493 (1961). (135)Tera, F.,Korkisch, J., Anal. Chim. Acta 25, 222 (1961). (136)Tera, F.,Korkisch, J., Hecht, F., J . Znorg. N t d . Chem. 16, 345 (1961). (137)Testa, C., ANAL.CHEM.34, 1556 (1962). (138)Titze, H., Samuelson, O., ActaChem. Scand. 16, 678 (1962). (139)Trostyanskaya E B., Nefedora, G. Z., Zh. Analit. K h i m . 17, 411 (1962). (140)Tsitovich, I. K., Ref.Zh. Khim., 11, 1962, 24D62. (141)Tsuji, A., Nippon Nagaku Zasshi 81,847,1090 (1960). (142)Turner, J. B., Philip, R. H., Day, R. A., Anal. Chim. Acta 26, 94 (1962). (143)Urubay, S.,Janauer, G. E., Korkisch, J., 2. Anal. Chem. 193, 165 (1963). (144)Urubay, S.,Korkisch, J., Janauer, G. E.. Talanta 10. 673 (1963). 145) Varand, V. L:, Ref:Zh. ‘Khim., 11, 1962, 18D124. 146) Walton, H. F., Latterell, J. J., “Analytical Chemistry 1962.” p. 356, Elsevier, Sew York, 1963. 147) Wilson, J . R., Nutting, M. D., ANAL.CHEM.35. 144 (1963). 148) Winand, L.>’J . Chromatog. 7, 400 (1962). ANAL.CHEM.34,518 (149)Wolfsberg, K., (1962). (150)Zachariasen, H., Bearnish, F. E., Ibid.. 34.964 (1962). (151) Zacharius,‘ R. hl., Talley, E. A,, Ibzd., 34, 1551 (1962). (152)Zagrai, V. I)., Vlasov, V. A,, Z h . Analit. Khim. 17,254 (1962). ~
VOL. 36,
NO. 5 , APRIL 1964
55 R