ION EXCHANGE - Industrial & Engineering Chemistry (ACS

Kunin, Richard L. Gustafson. Ind. Eng. Chem. , 1968, 60 (11), pp 57–62. DOI: 10.1021/ie50707a012. Publication Date: November 1968. Note: In lieu of ...
12 downloads 0 Views 813KB Size
ROBERT KUNlN RICHARD L. GUSTAFSON

ANNUAL REVIEW

Ion Exchange Though availability of continuous countercurrent systems represents a step forward for ion exchange, relating properties of resins t o performance remains difficult

Conlinuous countcrcurrenl confactor for ion exchange

past year, ion exchange, as a unit nperaDuring . ’ the tion, has witnessed several noteworthy develop-

ments. From an engineering viewpoint, one notes that continuous, counterciirrent (CC) ion exchange systems arc now available to industry, and sufiicieiit experience has been accumulated demonstrating the practical nature and advantages of such syStelKls under various cnnditions. Although continuous connterciirrent tcchniques have been used for many years i n the fields of adsorption, catalysis, and extraction, snch techniques were slow in developing in the field of ion excliange, largely because suitable ion exchange materials were not available niitil recently. The low density and physical streqgth of most ion exchange resins have posed insurrnountahle problems for thc design of suitable eqniprnent for CC systems. Recent developrnents in inn exchange engineering and in ion exchange resin technology, hnwever, now pennit one to design and operate continuons countercurrent ion exchange systenis successfully from both iechnical and economic points of view. T h e interest in continuous conntercurrcnt systems for inn exchange operations requires snme reflection in assessing the advantages of such techniques ovcs fixed bed systems. Each c.ontinunus and countercurrent aspect must he considered separately. T h e former concerns itself with capital investirient and the latter with effluent quality and operating costs. One Innst keep these two factors separate in comparing the two basic techniques since one can also design fixed bed systems which can be operaied conntercnrrently and which can achicvc the operating economics of the coniinuous systems. In other words, the selection of one systcm over the other requires a most careful analysis since flow rates and other considerations Cali tip the scales in either direction. Anoihes area of interest has been the increased demand for the so-called “ultra-pure” water demanded by the power and electronic manufacturing industries. Ion exchange continues to play a most important role in these areas of technology and several new ion exchange materials have added to the prestige of ion exchange in enabling these irrdustries to obtain water qualities having hut a few pasts per billion of impurities. VOL. 6 0

NO. 1 1

NOVEMBER 1 9 6 8

57

The enactment and enforcement of legislation for minimizing water pollution have resulted in a marked interest in the application of ion exchange technology for treating both municipal and industrial waste effluents. Reviews

Stamberg (IOA) has taken great pains in preparing a review of current trends in ion exchange resins and related gel systems. Egorov ( 4 A ) has written a literature survey on the synthesis of various ion exchange materials including conventional particles and membranes, fibers, papers, and fabrics. hlethods for measuring the capacity of ion exchange resins were reviewed by Gros and Knall (SA). Of considerable interest is the monograph by Egorov and Kovikov (52) on the effect of ionizing radiation on ion exchange resins. The principles and methods for separating amino acids, peptides, and proteins by means of ion exchange resins were reviewed and analyzed by Dixon (3A). Several reviews giving discussions on the use of ion exchange and electrodialysis in the desalination of brackish and sea waters were presented by Gillam and hlcCoy (7A), Cejnar ( I A ) ,Cohan and Kennedy ( Z A ) , and Howe (9A) at recent international symposia. A comparison of liquid extraction and ion exchange was made in a review of Frolov ( 6 A ) I

Theory

Progress in relating the basic properties of ion exchange materials to actual performance continues to be slow. Our progress in understanding ion exchange and applying this knowledge appears to be primarily qualitative rather than quantitative. In spite of the mass of thermodynamic and kinetic data that are available on ion exchange resins, much experimentation is still essential in designing ion exchange systems for new applications. A more rational approach is still required. Extensive studies on the swelling of ion exchange resins and methods for measuring swelling phenomena were reported by Shamritskaya and Meleshko (38B), Starobinets and Sovitskaya (42B), and Laskorin et al. (23B). Detailed studies of pore structure of macroreticular ion exchange rcsins werc described by Polak and Bortel (34ll), K u n and Kunin (ZZB), and Krska and Pelzbauer (20B). Tl'hittington and Millar (57B), Peryshkina et al. (33B), Sikolaev et al. (30B), Mukherji (29B), Alovitdinov ( I l l ) , Jullien (73B), and Kiseleva et al. (77B) have reported on the chemical structure and stability of various ion exchange resins. Gustafson et al. ( I I B ) , Dusek (IOB), and Cantow and Johnson (7B) have studied the properties of macroreticular styrene-divinylbenzene copolymers and their properties for the sorption and separation of various organic species. Studies on the prediction of ion exchange selectivity 58

INDUSTRIAL A N D E N G l N E f R l N G CHEMISTRY

by Marinsky (25B, 26B) are of considerable interest. The relationships between the structure of ion exchange resins and their selectivity for organic anions and cations were studied in detail by Linbinson and Vagina (24B) and Gustafson and Lirio (7223). The latter study is of extreme importance since it pertains to the problem of organic fouling of ion exchange resins. Of related importance is the study of Small (39B) in which he demonstrated that low concentrations of large cations reduce the rate of Na+-H+ exchange in cation exchange resins. Water and Waste Treatment

As noted in the introduction to this review, the use of both countercurrent and continuous countercurrent ion exchange resins is now accepted practice in ion exchange and will undoubtedly extend the limits of ion exchange in water treatment and in other areas of application. Several recent papers by Newman (24C), Rizaev et al. (29C),Hunter et al. (IOC), Solt (33C),Yankovskii (doc), and Sanks (3OC) describe several systems now being employed in water treatment. Recent papers on the progress of ion exchange in the field of the desalination of brackish and sea waters have been reported by Kunin ( 1 8 3 , 'I'assiliou and Sturla (37C), Smagin (32C), Sturla ( 3 4 3 , Weiss et al. (39C), Vajna (36C), McIlhenny (23C), Kunz ( I % ) , and Klein e t a l . (74C). The use of ammonia as an effective regenerant for weak base anion exchange resins has been studied by Klump (75C). Mixed bed deionization filter systems based upon finely divided ion exchange resins have been described by Capecci (5C). Problems associated with the effect of organic matter in raw supplies on the capacity and quality of deionization systems have been studied by Prochazka et al. (ZSC), Arden (7C), Horembala and Feldt (9C), and Kas'yanenko et al. (12C). Several studies on the treatment of water for boiler house operations have been summarized by Kennedy et al. ( 7 3 C ) , Crits (6C),and Lockley et al. (2UC).

A flurry of papers on the use of ion exchange for treating plating wastes includes those of Bahensky ( Z C ) , Marquardt (ZZC), Emel'yanenko et al. (8C),Novochikhina and hIeleshko (ZX),Kos and Sourek (17C), Bucksteeg (4C),von Krusenstjern and Nusser (38C), Schlegel ( 3 I C ) , Inczedy and Frankow ( I I C ) , Tallmadge (35C), and Blake and Randle (3C). Procedures for the use of ion exchange resins in the management of radioactive wastes are described by

L. Gustajson are w i t h the R o h m and H a a s Co. in Philadelphia, P a . T h e authors gratefully acknowledge assistance in the preparation of this review jrom Dr. Erich Meitzner, M i s s Dolores Sosnowska, and the library staff of the R o h m and Haas Co. AUTHORS Robert Kunin and Richard

TABLE I. MISCELLANEOUS REFERENCES PERTAINING TO ION EXCHANGE THEORY Reference

Equilibrium Cation Exchange Alkalies Alkaline earths Iron Organic ions Anion Exchange Halides Oxygenated inorganic Organic acids Kinetics General studies Chrome complexes Fine particles Large ions

(68, 9 8 , 798, 288, 3 7 8 , 4 0 8 , 4 7 8 ,448) (38,218) (498) (48,5B,3 5 8 , 4 5 8 )

biologically important materials. interest are reported in Table 111.

Specific areas of

Food Processing

(QB,438)

Kolychev and Sedov (76C), Malasek (27C), and Emelity (7C). Zvegintseva et al. (47C) describe the use of ion exchange resins for the removal and recovery of phenol from waste liquors. Ion exchange processes for the renovation and reclamation of acid mine waters and secondary sewage effluents are described by Pollio and Kunin (26C, 27C).

Various liquid streams in the food processing industry are currently treated by ion exchange for the purpose of obtaining greater purities, improved stability toward storage, and for by-product recovery. Most ion exchange resins are now approved by the Federal Drug Administration and may be used for processing food and water under the Federal Food, Drug, and Cosmetic Act (3F, 4F). The processing of sugar by means of ion exchange resins is now widely practiced for cane, beet, and corn sugar juices and syrups. A description of two Japanese ion exchange installations in which beet sugar thin juice is deionized and decolorized has been given by Sano and Yamaha (76F). More emphasis, however, has been given to the use of anion exchange resins for the decolorization of sugar syrups and thick juices. Such studies have been made by Perschak (73F), Runenkova et al. (75F), Zelikman and Leibovich (79F), Schneider et al. (77F), Andrus (7F), and Schultz et al. (78F). Ionescu et al. (6F) have described a study in which diluted beet molasses were deionized and decolorized for the recovery of the sugar values. Of considerable importance is the work of Lifshutz and Dranoff (9F) and Murakami and Mori (77F) on the catalytic inversion of sucrose by sulfonic acid cation exchange resins. A description (8F) has been given of a moving bed system for contacting sugar solutions with ion exchange resins. Procedures for stabilizing and improving milk and milk products have been described by Longin and Ermolenko (70F), Bogolyubova (ZF), and Murthy (72F). Processes for improving the quality of wines and other alcoholic products have been presented by Peterson and Caputi (74F),Ganeva et al. (5F),and Ionescu et al. (7F).

Hydrometallurgy

Catalysis

There are several areas of hydrometallurgy in which ion exchange plays an important role. The increased use of atomic energy for power production has stimulated further interest in the use of ion exchange for the hydrometallurgical recovery of uranium from various sources. Several papers by Dement’ev (40, SO), Jickling et al. (80), Corder0 et al. ( 2 0 ) , Faure et ai. ( 7 0 ) , and Tataru (730) described the activity in this field throughout the world. Other areas involving the use of ion exchange in hydrometallurgy are summarized in Table 11.

Although the use of ion exchange resins as catalysts is developing at only a modest pace, the availability of macroreticular ion exchange materials has developed further interest. Most recent work in the use of ion exchange resins centers about the use of the cation exchange resins as acid catalysts. Starkov and Glushkova (70G) and Kuz’michev et al. (8G) have reported on the use of sulfonic acid cation exchange resins as alkylation catalysts. Karpov and Bystrova (4G) and Darlington and Guenther (1G) have studied in detail the activity of similar ion exchangers as esterification catalysts. The dehydration catalytic behavior of cation exchange resins was investigated by Wolf and Schaaf (73G), and similar studies on hydration catalysis were reported by Plouin and Glenat (9G) and Gupta and Douglas (3G). Other catalytic studies of a similar nature include those of Vysotskii et al. (72G) and Frohwein (2G) on ester hy-

TABLE I I .

(ZB) (528)

(74B-768, 278, 378,328,508, 518, 538) (8B) (368) (188, 468-488)

HYDROMETALLURGICAL APPLICATIONS

Subject Thorium Plutonium Gold Silver Rare earths Columbium and tantalum Germanium Rhenium General

TABLE 111.

BIOCHEMICAL AND PHARMACEUTICAL CHEMISTRY

Application Antibiotics Amino acids Enzymes Proteins Alkaloids Miscellaneous

Reference (lOE, 79E) (4EE,6E-8E, IlE, 16E)

(1.W

(14E) @E, 9E, 15E) (3E, 13E, 2OE)

Biochemistry and Pharmaceutical Chemistry

Several excellent summaries by Dixon (5E),Armasescu and Armasescu ( I E ) , Thompson and Kember (78E), and Thompson (77E) describe recent progress in the use of ion exchange for the recovery and purification of

VOL. 6 0

NO. 1 1

NOVEMBER 1 9 6 8

59

TABLE IV.

drolysis, Keikin et al. (5G) on oxidation, Verkhovskaya et al. ( I I G ) on condensation, Khaibullina (6G) on the Cannizzaro reaction, and Khaibullina et al. (7G) on the use of ion exchange resins as carriers for catalysis.

NEW ION EXCHANGE MATERIALS AND SYNTH ESlS PROCEDURES

Subject Copolymerization studies Sulfonic acid cation exchangers Phosphonic acid cation exchangers Carboxylic acid cation exchangers Anion exchangers Amphoteric exchangers Chelating exchangers Redox exchangers Cellulosic exchangers Inorganic exchangers

Reference (7H, I l H , lSH, 42H) ( l Z H , 14H, 2 0 H , 2 4 H , 33H, 40H, 4 1 H ) (27H, 2ZH) (16H, 4 6 H ) ( 7 3 H , 25H, 29H, 3 7 H ) ( 7 7 H , 18H, 23H, 3 6 H , 43H, 4 5 H ) ( 4 H , 28H, 30H, 3 5 H , 38H, 4 4 H ) (26H) (QH, 75H, 27H, 34H, 3 0 H ) (7H-3H, SH, 10H)

N e w Ion Exchange Materials

Of special interest in the development of new ion exchange resins is the exhaustive review and critical analysis by Seidl et al. (32H) of the formation and properties of macroreticular cross-linked copolymers based upon styrene-divinylbenzene systems. Further studies of a similar nature were reported by Bortel (6H), Saldadze and Bel‘fer (37H), and Breitenbach et al. (8H).Many other studies on the synthesis of ion exchange materials possessing new structures or improved properties are summarized in Table IV. liquid Ion Exchangers

The basic strengths of a series of liquid weak base amine anion exchangers were studied in detail by Grinstead and Davis ( 2 J ) , and a similar study was made by Prasilova (6.4of dinonylnaphthalenesulfonic acid as a liquid cation exchanger. Application studies of liquid exchangers include those of Sat0 (7J, 8.7) and Jickling et al. ( 3 4 on uranium, Awwal and Carswell ( I J ) on thorium, Tedesco et al. ( 9 J ) on cerium, McDowell ( 4 4 on strontium, and Pollio et al. (54on phenol. Equipment

Although some aspects of ion exchange equipment were noted in the foregoing sections, the discussions were limited to specific applications. During the past year, there have been other studies and developments pertaining to ion exchange equipment that are of a more general nature. Most of these pertain to continuous countercurrent systems and include those described by Houser Gilwood (4K), Newman (7K), Gorshand Olejar (6K), kov et al. (5K), Uchiyama ( 9 K ) , Olsen (BK),Cloete and Streat (ZK), Adams ( I K ) ,and D’Elia ( 3 K ) . Ion Exchange Membrane Processes

The use of ion exchange membranes continues to develop at a slow but steady pace. At present, brackish waters are now desalinated by means of ion exchange membranes in electrodialysis units having a cumulative daily production rate of several millions of gallons. Fuel cells are another major outlet for ion exchange membranes. Table V summarizes the major developments that occurred during the past year in the field of ion exchange membranes. Gas Phase Applications The availability of macroreticular anion and cation exchange resins possessing high surface areas has sparked considerable interest in the use of such materials for the 60

INDUSTRIAL AND ENGINEERING C H E M I S T R Y

TABLE V. Subject Preparation Basic properties Desalination

ION EXCHANGE MEMBRANES Reference ( 8 L , 18L, 27L, ZBL, 3 0 L ) ( 1 L , 3 L , 7 L , 7OL, 72L, 13L, 17L, l Q L ,33L, 35L, 38L-40L) ( 2 L 4L-6L QL 11L 74L-16L ZOL-26L i g L , 37L: 3 2 i , 3 4 i , 36L, 3 7 i , 41L, 4 Z i )

adsorption of acidic and basic gases. Typical gas adsorption studies include those of Pollio and Kunin on H2S ( d M ) ,Vinnikov et al. ( 5 M ) on SOZ, Vulikh and Arkhipov ( 6 M ) on COZ, Vulikh et al. ( B M ) on HF, Vulikh et al. ( 7 M ) on amines and SOZ,Iwai et a / . (3M)on radioactive iodine, and Ishibashi et al. ( Z M ) , and others ( 1 M ) on mercaptans. BIBLIOGRAPHY Reviews (1.4) Cejnar, F., Chem. Lirty, 62, 249 (1968).

(2A) Cohan H . J. and Kennedy R. W Proc. Intern. Symp. Waicr Dcsalinatzan, lsi, Washingtdn, D. 1965, 2, 389:406 ( P l h . 1967). (3A) Dixon, H. B. F., Usp. Bioi. Khim., 8, 278 (1967). (4A) Egorov, E. V., Rusr. Chem. Revs., 36, 536 (1967). (5.4) Egorov, E. V., and Novikov, P. D., “Action of Ionizing Radiation on Ion Exchange Materials,” Davey, h-ew York, N. Y.,1967. (6A) Frolov,Yu. G., T r . M o s k . Khim.-Tekhnol. Inst.,No. 54,40 (1967). (7A) Gillam, W. S., and McCoy, W. H., Desalination, 2, 13 (1967). (8A) Gros, I., and Knall, H., Materiale Plasi., 4,75 (1967). (7.4) Howc, E. D., Proc. Intern. S p p . Water Desalination, lst, Washington, D. C., 1965, 2, 301 (Pub. 1967). (10A) Stamberg, J.,Chem.Listy,62, 153 (1968).

b.,

Theory

(1B) Alovitdinov, 4 . B., So& Plastics (Engl. Tr.), 14, 24-26 (Aug 1966). (2B) Birch, B. J., Redfern, J. P., and Salmon, J. E., Trans. Faraday Soc., 63 (IO), 2362 (1967). (3B) Boyd, G. E., e t o l . , J. Phys. Chem., 71, 2214 (1967). (4B) Boyd, G . E., and Larson, Q. V., J.Arnsr. Chem. Soc., 89,6038 (1967). (5B) Boyd, G . E., Larson, Q. V . , and Lindenbaum, S., J. Phys. Chem., 72, 2651 (1968). (6B) Boyd, G. E,, et ai., ibid., 71, 3879 (1967). (7B) Cantow, M. J. R., and Johnson, J. F.,J.Polym. Sci., Part A-1, 5,2835 (1967). (8B) Central Leather Research Institute, India, J. Amer. Leather Chem. Assoc., 63, 246 (1968). (9B) Curnmings,T., and Korkisch, J., Talanta, 14, 1185 (1967). (10B) Dusek, K., Collection Czech. Chem. Commun., 32, 1554 (1967). (11B) Gustafson. R . L Alhright, R . L., Heisler J., Lirio, J. A , , and Reid, 0. T., Jr., IND. END.C;HEM.yPRon. RES.DEVELOP., 7,’107 (1968). (12B) Gustafson, R . L., and Lirio, J.A.,ibid., p 116. (13B) Jullien, H., C. R . h a d . Sci., Paris,Ser. C, 264,1039 (1967). (14B) Kawabe, T., Teshima, H., and Morita, N., Kogyo Kagaku Zusshi, 70, 133 (1967). (15B) Kawazoe, K., Takeuchi, Y . , and Hashimoto, T., Kagaku Kogaku, 32, 175 (1968). (16B) Kawazoe, K., Takeuchi, Y., Sugiyama, I., and Hashimoto, T., ibid., 31, 49- 11967). (17B) Kiseleva E. D Chmutov, K. V., Klientovskaya, M. M., and Li, V. P., Zh. F h . Khim:, 41,lib0 (1967). (18B) Koganovskii, A . M., and Klimenko, N. A , , Dopou. Akad. Nmk Ukr. RSR, Ser. B , 2 9 , 821 (1967). (19B) Korkisch, J., Feik, F., and Ahluwalia, S. S.,Talanta, 14, 1069 (1967). (20B) Krska, F. and Pelzbauer, Z., Collection Czech. Chem. Commun., 32, 4175 (1967). (21B) Krylova, .4. A . , e t a l . , Russ.J.Phys. Chem. (Engi. T r , ) ,41, 194 (1967). (22B) Kun, K . A,, and K u n i n , R . , J . Polym. Sci., Part C , 16, 1457 (1967). (23B) 40,1990 Laskorin, (1967). B. N., Vodolazov, L. I., and Stepanova, L. M., Zh. Prikl. Khim., \ - -

I .

(24B) Libinson, G . S., and Vagina, I. M., Zh. Fir. Kkinz., 41,2933 (1967). (25B) Marinsky, J. A , , J.Phys. Chem., 71,1572 (1967).

(26B) Marinsky, J. A,, ibid., p 4349. (27B) Menin, J. P. and Kikindai, T., C. R. Acad. Sci., Paris, Ser. C, 264, 1993 (1967). (28B) Mercer, B. W., U . S. At. Energy Comm., BNWL-SA-1173, 26 pp (1967). (29B) Mukherji, A. K., Fresenius’ Z . Anal. Chem. 226, 401 (1967). (30B) Nikolaev, A. V., Gribanova, I. N., Khol’kina, I. D., and Yakovleva, N. I., Izv. Stbirsk. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1967 (3), 91-4. (31B) Nikolaev, N. I., Russ. J . Phys. Chem. (Engl. Tr.),41, 255 (1967). (32B) Paramonova, V. I., Akopov, G. A., and Kochevanova, L. A., Radiokhimiya, 9,642 (1967). (33B) Peryshkina N G Soldatov, V. S., and Sudarikova, N. I., Soviet Plastics (Engl. T i , ) ,15,’64-k (zpril 1967). (34B) Polak, F., and Bortel, E., Zeszyty Nauk. Uniw. Jagiel., Pr. Chem., 12, 171 (1967). (35B) Samsonov, G. V., and Moskvichev, B. V., Izv. Akad. Nauk SSSR, Ser. Khim., 1967 (4), 742-6. (36B) Schultz, B. J., and Crook, E. H., Ind. Eng. Chem., Prod. Res. Develop., 7, 120 (1968). (37B) Schwarz, A., J . Phys. Chem., 72,789 (1968). (38B) Shamritskaya, I. P., and Meleshko, V. P., Russ. J. Phys. Chem. (Engl. Tr.), 41,442 (1967). (39B) Small, H., J . Amer. Chem. Soc., 90,2217 (1968). (40B) Soldatov V. S., Bespal’ko, M . S., and Novitskaya, L. V., Zh. F i t . Khim., 41, 2210 (1965). (41B) Soldatov, V. S., and Manenok, S., ibid., p 2214. (42B) Starobinets, G. L. and Novitskaya, L. V., Ionity Ionnyi Obmen, Akad. Nauk SSSR, Sb. Statei, 1966, pp 14-20. (43B) Starobinets, G. L., and Zalevskaya, T. L., Russ. J. Phys. Chem. (Engl. Tr.), 41,522 (1967). (44B) Strelow, F. W. E.,etnl., Anal. Chem., 40, 196 (1968). (45B) Vagina, I. M., and Libinson, G. S., Zh. Fir. Khim., 41,2060 (1967). (46B) Vaisberg, E. S., et al., Russ. J.Phys. Chem. (Engl. Tr.),41,468 (1967). (47B) Vaisber E. S., Yakhontova, L. F., and Bruns, B. P., Zh. Fir. Khim., 41 (4), 892 (19&). (48B) Vaisberg, E. S.,Yakhontova, L. F., and Bruns, B. P., ibid., ( l l ) , 2962 (1967). (49B) Vasil’ev, V. P., and Parkhomenko, N. V., Z h . Neorg. Khim. 13,240 (1968). (50B) Wagner, J. D., and Dranoff, J. S., J . Phys. Chem., 71,4551 (1967). (51B) Whittington, D., and Miliar, J. R., J . Appi. Chem., 18, 122 (1968). (52B) Wolf, F., and Baasch, G., Kolloid-Z. Z . Polym., 222, 25 (1968). (53B) Wolf, F., and Fuertig, H., ibid., 212, 20 (1966). Water a n d Waste Treatment (1C) Arden, T. V.,Proc., A.1.Ch.E.-I. Chem. E. Joint Meeting, London, 1965,p 18. (2C) Bahensky, V., Korase Ochrnne Mater., 11, 97 (1967). (3C) Blake, W. E., and Randle, J., J . Appl. Chem., 17,358 (1967). (4C) Bucksteeg, W., Gas Wasserfach, 108, 962 (1967). (5C) Capecci, J. R., U. S. 3,377,270 (April 1968). (6C) Crits, G. J.,BrewersDig.,43, 70 (1968). (7C) Emelity, L. A,, Tech. Rept. Ser., Int. At. Energy Agency, 78, 147 pp (1967). (8C) Emel’yanenko, G. A., Portretnyi, V. P., Nosova, E. D., Baibarova, E. Ya., Elin, V. B., and Simulin, G. G., Zh. Prikl. Khim., 41,430 (1968). (9C) Horembala, L. E., and Feldt, C. A., Power, 112, 67 (1968). (1OC) Hunter, R. F., Simmons, P. J., Tan, K. S.,and Spinner, I. H., Can. J. Chem. Eng., 46,57 (1968). (11C) Inczedy, J., and Frankow, T., Periodica Polytech., 11, 53 (1967). (12C) Kas’yanenko, E. I., Vakulenko, V. A., Samborskii, I. V., and Grachev, L. L., Teploenerg., 15, 58 (1968). (13C) Kennedy, C. M., Meyers, P. S., and Crits, G . J., Combustion, 39, 19 (1968). (14C) Klein, G., Ruddick, E. L., Cherney, S., and Vermeulen, Th., Eur. Symp. Fresh Water Sea, Preprints Pap., Znd, Athens, 5 (39) (1967). (15C) Klump, W., Energie, 19,212 (1967). (16C) Kolychev, B. S., and Sedov, V. M., At. Energy Rev., 5,123 (1967). (17C) Kos, J., and Sourek, V., Korose Ochrann Mater., 11,75 (1967). (18C) Kunin, R., Eur. Symp. Fresh Water Sea, Preprints Pup., Znd, Athens, 5 (84) (1967). (19C) Kunz, G. K.,ibid., 5 (85). (2OC) Lockiey, J. C., Moores, N., and Ray, N. J., Efluent Water Treat. J., 7, 257 (1967). (21C) Malasek, E,, At. Energy Rev., 5,151 (1967). (ZZC) Marquardt, K., Wasser, Luft Betrieb, 11, 659 (1967). (23C) McIlhenny, W. F., Proc. Intern. Synp. Water Desal., Ist, Washington, D. C., 2, 251 (1967). (24C) Newman, J., Chem. Eng., 74,72 (1967). (25C) Novochikhina, I. T., and Meleshko, V. P., J. Appl. Chem. USSR,39, 2512 (1966). (26C) Pollio, F., and Kunin, R., Enuiron. Sci. Technol., 2, 54 (1968). (27C) Pollio, F., and Kunin, R., Water WastesEng., 4,64 (1967). (28C) Prochazka J Sich J., and Eliasek J Sb. Vysoke Skoly Chtm. Techno(. v Pram, oddil Fak.’Teyknol. $olio Vody, 10, 45 (19i;). (29C) Rizaev, N. U.,Nazarov, A. S . , Merenkov, K . V., and Ynsipov, M . M., Izv. Vyrsh. Ucheb. Zaved., Khim. i Khim. Tekhnol., IO, 1279 (1967). (30C) Sanks, R . L., Proc. Amer. Power Conf., 29, 808 (1967). (31C) Schlegel, H., Werkstntt Betrieb Z . Maschinenbau Fertigung, 100, 19 (1967). (32C) Smagin, V. N., Proc. Intern. Symp. Water Desal., 7st, Washington, D. C., 2, 575 (1967). (33C) Solt,G. S.,Brit. Chem. Eng., 12,1582 (1967). (34C) Sturla, P., Proc. Int. Symp. Water Desal., 7st, Washington, D. C., 1965, I , 416 (1967). DES.DEVELOP., 6,419 (1967). (35C) Tallmadge, J. A., IND.ENO.CHEM.,PROOESS (36C) Vajna, S.,Desolination 3,91 (1967).

(37C) Vassiliou B and Sturla, P., Eur. Symp. Fresh Water Sea, Preprints Pap., Znd, Athens, 5 (87) ’(1527). (38‘3 Von Krusenstjern, A., and Nusser, P., Draht, 18,679 (1967). (39C) Weiss, D. E., Bolto, B. A., McNeill, R., Mac herson, A. S., Siudak, R Swinton, E. A., and Willis, D., Proc. Intern. Symp. d t e r Desal., Ist, Washingtod: D. C., 1965, 2, 103 (1967). (40‘2) Yankovskii, K. A., Teploenerg., 14, 12 (1967). (41C) Zvegintseva G. B. Davankov A B Zubakova L. B., Ginzburg, B. G., and Korchilova, ’E. Ya.,’Zh. Prikl. Kkim:, 4;, 458 (19683. Hydrometallurgy (ID) Barney, D. L., and Kent, C. E., Ind. Eng. Chem. Process Des. Develop., 7, 1 (1968). (2D) Cordero, G., Gasos, P.? Merino, J. L., and Suarez, Y. E., Process. Low-Grade Uranium Ores, Proc. Panel, Vzenna, 1966, 172 (1967). (3D) Davenkov A. B. Laufer V M Mironov A. A., and Shishunova, T. S., Z h . Nauch. P r i k Fotog)r.Kinem&., I s , 14 (19683. (4D) Dement’ev, V. S., Izv. Akad. Nauk K a z S S R , Ser. Khim., 17, 12 (1967). (5D) Dement’ev, V. S., Radiokhiniyja, 9, 156 (1967). (6D) Demidov, V. I., Kreines, R . Z., Ivanova, M . I., and Kartasheva, A. S., Tsvet. Metal., 40, 44 (1967). (7D) Faure A Finney S.,Hart H. P. Jordaan C. L van Heerden D Viljoen E. B., Robinsbn, R . g., and Ll&yd,P.’J. D., Pr&r. &w-Grade Uran&m ‘bres, Pro: Panel, Vienna, 1966, 119 (1967). (8D) Jickling, R. S., Diez, G., Van Cleave, A. B., and DeCoursey, W. J., Can. J . Chem., 46, 53 (1968). (9D) Ka a, A Kudo, H., Shirahashi, J., and Suzuki, S., J. Nucl. Sci. Technol., 4,289 4967):) (10D) Lebedev, K. B., and Ageev, S. A., Izv. Akad. Nauk Kaz. SSR, Ser. Khim., 17, 5, (1967). (11D) Persiani, C.,etal.,Separ.Sci., 2,789 (1967). (12D) Sopkova,A., Rudy (Prague), 15,211 (1967). (13D) Tataru, S.,Studii CercetoriChim., 15, 327 (1967). (14D) Tikhomirov, V. K., and Petrukhin, N. V., Rodiokhimiya, 10, 111 (1968). (15D) Tudorache, G., and Ionita, Gh., Metallurgin (Bucharest), 19, 102 (1967). Biochemistry a n d Pharmaceutical Chemistry (1E) Armasescu, L., and Armasescu, S. I., Farmacia (Bucharest), 15, 455 (1967). (2E) At’lshuler G. N Portnov M. A,, Terent’eva G. A,, Ryadovykh, I. N., and Sapozhnikov;, L. A:: Khim.-F&m. Zh., 1,54 (19673. (3E) Blanchard, J., and Nairn, J. G., J . Phys. Chem., 72, 1204 (1968). (4E) Conklin, D. A., and Gillin, J., U. S. Patent 3,325,539 (June 13, 1967). (5E) Dixon, H.B. F., Usp. Bid. Khim., 8,278 (1967). (6E) Dobry, R., U. S.Patent, 3,336,374 (Aug. 15, 1967). (7E) Dronov I. S. F A adzhanyan, Ts. E., and Sokolova, L. B., Mikrobiol. Sin. Sb. Inform. Mater., 16: 3 8966). (BE) Jarzebinski, J., and Rolski, S.,Farm. Polrka, 23,311 (1967). (9E) Kanhere, S.S . , Shah, R . S.,and Bafna, S. L., J . Phnrm. Sci.,57,342 (1968). (10E) Klyueva, L. M. and Torgovanova, T. V., Khim.-Farm. Zh., 1,54 (1967). (11E) Maruta, Y., Ger. Patent 1,250,445 (Sept 21, 1967). (12E) Miles Laboratories, Inc., Belg. Patent 689,052 (March 1967). (13E) Nagy, G., Fr. Patent 89,987 (Aug 16,1967). (14E) Sisman,T., and Mahlis, I., Rev. Chin.(Bucharest), 18, 360 (1967). (15E) Starobinets, G . L.,and Koka, I. P., Vertsi Akad. Navuk Belarusk, SSR, Ser. Khim. Navuk, 1967 (4), 16-21. (16E) Suciu, D., Rev. Chin. (Bucharest), 18, 245 (1967). (17E) Thompson, C. M., Lab. Prac., 16,968 (1967). (18E) Thompson, C. M., and Kember, N. F., Proc. Biochem., 2 , 7 (1967). (19E) Vaisberg, E. S.,etal., Russ.J. Phys. Chem., 41,468 (1967). (20E) Williams, R . E., U. S.Patent 3,337,409 (Aug 22, 1967).

Food Processing (1F) Andrus, G. M., Sugar Azucar, 62,54 (1967). (2F) Bogolyubova, A. V., Vopr. Pitaniya, 26, 69 (1967). (3F) Federal Register, 32,10735 (1967). (4F) Zbid., 33,2845 (1968). Fruechteverdert., Ganeva Tsv li’, 180 Goranov (196f). N., and Lichev, L., Mitt. Rebe Wein, Obstbau (5F) (6F) Ionescu, T. D., Athanasiade, G., Iliescu, V., and Dumitrescu, M., 2nd. Aliment. Produse Vegetale, 17, 605 (1966). (7F) Ionercu T D. Racotta, V., Simionescu, I., Iliescu, V., and Dumitrescu, M., ibid., 18, l l b (i96f). (8F) Kurita Kogyo, K. K., Sugar Ind. Abstr., 29,89 (1967). (9F) Lifshutz, N., and Dranoff, J. S., IND.ENO.CHEM.,PROOESS DES. DEVELOP., 7, 266 (1968). (10F) Lon in, M . L., and Ermolenko, I. N., Izobret. Prom. Obraztsy, Toliarnye Znaki, 44,175 (7967). (11F) Murakami,Y.,and Mori, O.,Intern.SugnrJ.,69,313 (1967). (12F) Murthy, G.K., J.DairySci., 50,809 (1967). (13F) Perschak, F., Zucker, 20, 377 (1967). (14F) Peterson, R . G., and Caputi, A., Jr., Amer. J . Enol. Viticult., 18, 105 (1967). (15F) Runenkova, V. V., Chikin, G. A., and Voitovich, V. B., Tr. La6. ionoolhen. Protsessov Sorbtsii, Nauch.-Issled. Fiz.-Khim. Inst., Voronezh. Gos. Univ., 1, 179 f1966). ~~. .-,.

(16F) Sano, K., and Yamaha, M., J. Amer. Soc. Sugar Beet Technologists, 14, 377 (1967). (17F) Schneider, F., Schliephake, D., and Paleos, J., Intern. Sugnr. J . , 1968, 67-69, 77 (March).

VOL. 6 0

NO. 1 1

NOVEMBER 1 9 6 8

61

(18F) Schultz, W. G., Stark, 3. B., and Lowe, E., Int. Sugar J.,69, 35 (1967). (19F) Zelikman, I. F., and Leibovich, D. M., Izu. Vyssh. Ucheb. Zmed., Pithch. Tekhnol., 1967 (4), 54-5. Catalysis

(1G) Darlington, A., and Guenther, W.B., J . Chem. Eng. Data, 12, 605 (1967). (2G) Frohwein, Y. Z., Nature, 217 642 (1968). (3G) Gupta, V. P., and Douglas, W. J. M., A.I.Ch.E.J., 13, 8 8 3 (1967). (4G) Karpov, 0.N., and Bystrova, R . M., Zh. Prikl. Khim., 40, 1399 (1967). (5G) Keikin, Y. A., Davankov, A . B., and Korshak, V. V., Polymer Sci. USSR, 9, 692 (1967). (6G) Khaibullina, R . A., Intern. Chem. Eng., 7,536 (1967). (7G) Khaibullina, R . A., Fatkulina, L. G., and Rustamov, Kh. R., Uzb. Khim. Zh., 11, 65 (1967). (8G) Kuz’michev, 0. V., Ustavshchikov, B. F., and Farberov, M . I., Zh. Prikl. Khim.,40, 2778 (1967). (9G) Plouin, D., and Glenat, R., C. R. Acad.Sci.,Paris,Ser. C, 265,595 (1967). (10G) Starkov, S. P., and Glushkova, L. V., Zh. Prikl.Khim., 40,224 (1967). (11G) Verkhovskaya, 2. N., Klimenko, M. Ya., Zalesskaya, E. M., and Bychkova, I.N., Khim. Prom., 43, 500 (1967). (12G) Vysotskii, ,M. P., Ketslakh, M. M., Ratanova, A . I., Rudkovskii, D. M., and Eppel, F. A.,Zh. Prikl. Khim., 40,2552 (1967). (13G) Wolf, F . and Schaaf, H., Z . Chem., 7, 391 (1967). New Ion Exchange Materials (1H) Alberti, G., Costantino U. Di Gregorio, F., Galli, P., and Torracca, E., J.Inorg. Nucl. Chem.,BO, 295’(19&). (2H) Alberti, G., and Torracca, E., ibid., p 317. (3H) Baetsle, L. H., and Huys, D., ibid., p 639. (4H) Bernhard, I. H., and Grass, F., Monatsh. Chem., 98,1050 (1967). (5H) Betteridge,D., and Stradling, G.N., J . Inorg. N u c l . Chem., 29,2652 (1967). (6H) Bortel, E., Przem. Chem., 46, 723 (1967). (7H) Braun, D. and Kim. A . Y., Koiioid Z . , 216-17, 321 (1967). (8H) Breitenbach, J. W., and Fucik, I., J.Polym. Sci., Part B, 5,993 (1967). (9H) Chaikina, E. A., Gal’braikh, L. S., and Rogovin, Z. A , , Vysokomol. Soedin., Ser. A , 9, 1168 (1967). (IOH) Clearfield, A , , Smith, G . D., and Hammond, B., J. Inorg. Nucl. Chem., 30, 277 (1968). (11H) Davankov V. A . Rogozhin S. V Korshak V. V., and Tsyurupa, M. P., In.. Akad. AToukkSSR, Khim., lb67 ($ ;, 1612-14: (12H) Freeman,D. H.,andAiyar,A. S., Anal. Cham.,39,1141 (1967). (13H) Galitskaya, N. B., Pashkov, A. B., and Lyustgarten, E. I., Plast. Massy, 1967 (7), 13-16. (14H) Iovu, M., Turcu, A,, and Rusenescu, E., P!ast. Mod. Elastomeres, 19, 137 (1967). (15H) Kapustova, J., and Oltus, E., Chem. Prumysl, 17,203 (1967). (16H) Kolesnikov, G. S., Tevlina, A. S., Chuchin, A . E., and Kulikov, A. P., Plast. Massy, 1967 (7), 26-8. (17H) Kuehn, G., and Hoyer, E., J. Prakt. Chem., 35,197 (1967). (18H) Kuehn, G., and Hoyer, E., itiokromol. Chem., 108,84 (1967). (15”) Kucnetsova, PI‘. N., Vansheidt, A. A,, Papukova, K. P., and Libel, A. N., Vysokomol. Soedin.,Ser. A , 9,1751 (1967). (20H) Leikin, Y. A,, and Davankov, A . B., Zh. Prikl. Khim., 40, 1804 (1967). (21H) Leikin, Y. A,, Davankov, A. B., and Korshak, V. V., Vysokomol. Soedin., Sei. A , 9, 619 (1967). (22H) Leikin, Y. A,, Davankov, A. B., Sergeeva, L. M., Cherkasova, T. A . , and Korshak, V. V., ibid.,Ser. B , 9, 744 (1967). (23H) Leikin Y . A . Smirnov. A. V., Davankov, A . B., and Korshak, V. V., ibid., Ser. A , 10, 1)57 (19i8). (24H) Li, V. P., and Paskov, A. B., Acta Chim. Acad. Sci. Hung., 54, 345 (1967). (25H) Lindfors, T., and Enkrist, T., Acta Polytech Scond., Chem. Met. Ser. No. 58, 18 pp (1967). (26H) Manecke, G., and Zerpner,D., Mnkromol. Chem., 108,198 (1967). (27H) McKelvey, J. B., and Beneriro, R . R., J . Appl. Polym. Sci., 11, 1693 (1967). (28H) Mehltretter, C. L., Weakley, F. B., and Wilham, C. A,, INn. ENG.CHEM., PROD.RES.DEVELGP., 6,145 (1967). (29H) Pashkov, A.B., etal.,Soviet Plastics, 1967, 7-9 (Sept). (30H) Pashkov, A . B., Aleksandrova, V. F., Itkina, M. I., and Stebeneva, I. G., Plast. Massy, 1967 (3), 17-21. (31H) Saldadze, K . M., and Bel’fer, S. I., Souiet Plastics (3), 14 (1967). (32H) Seidl, J. Malinsky, J., Dusek, K., and Hietz, W., Fortschr. Hochpolym.-Forsch,, 5,113 (1967):. (33H) Sevcik, S., and Stamberg, J., Collection Czech. Chem. Commun.,32, 4232 (1967). (34H) Skor nina, I. S., and Ermolenko, I. N.,Dok!. Akad. Nuuk, Beloruss. SSR,11, 606 (19677. (35H) Small, H., I N D ENC. . CHEM.,PROD.RES.DEVELOP., 6,147 (1967). (3613) Smirnov, A . V., Leikin, Y. A , , Davankov, A. B., Korshak, V. V., and Rataichak, V., Vysokomol. Soedin., Ser., R,9, 657 (1967). (37H) Storck, W., and Manecke, G., Makromol. Chem., 110,207 (1967). (38H) Sykora, V., and Dubsky, F., Collection Czech. Chem. Commun., 32,3342 (1967). (39H) Taylor,E. L., Text. Res.J., 38,104 (1968). (40H) Trostvanskava Y B Makarova S. B. Aptova, T. A,, and Vinogradova, N. M., Vysbkomol.’S6edin., j i r . A , 9,106i (19673. (41H) Trostyanskaya,Y.B.,etal.,PoZym.Sci. USSR, 9,1186 (1967). (42H) Trusliin, B. N., Davankov, A . B., and Korshak, V. V., Vysokomol. Soedin., Ser. A , 9, 1140 (1967). (43H) Vasil’eva, E. M., Podval’naya, E. K., Kolomeitsev, 0. P., and Gavurina, R . K., Vyokomol. Soedin.,Ser. A , 9, 1499 (1967). (44H) Voigt, B., Gaberr,A., and Leibnitz, E., J . Prakt. Chem., 36,280 (1967). (45H) Wolf, F., and Mlytz, H., J.Chromatogr., 34, 59 (1968). (46H) Wolf, F., and Reuter, H., 2. Chpm., 8,26 (1968).

8,.

Liquid Ion Exchangers (1J) Awwal, M. A,, and Carswell, D. J., J.Inorg. A’ucl. Chem., 30, 1057 (1968). (25) Grinstead, R . R . and Davis, J. C., J.Phys. Chem., 72, 1630 (1968). (3J) Jickling, R . S., et a/., Can. J.Chem. Eng., 46, 53 (1968).

62

INDUSTRIAL AND E N G I N E E R I N G CHEMISTRY

(4J) McDowell, W. J.,J. Inorg. Nucl. Chem., 30,1037 (1968). (5J) Pollio, F. X., Kunin, R., and Preuss, A. F., Environ. Sci. Technol., 1,495 (1967). (6J) Prasilova, J., and Satorie, Z., Collection Crech. Chem. Commun., 32, 322 (1967). (7J) Sato,T., J.Inorg. Nucl. Chem., 30, 1065 (1968). (8J) Sato,T., Kagaku To Kogyo (Tokyo), 20,432 (1967). (95) Tedesco, P. H., De Rumi, V. B., and Gonzalez, J. A., J. Inorg. N u c l . Chem., 29, 2813 (1967). Equipment (1K) Adams, R. E., U. S. Patent 3,297,043 (Jan 1967). (2K) Cloete, F. L. D., and Streat, M., Brit. Patent 1,070,251 (June 1967). (3K) D’Elia, R . A., Water Wastes Eng., 5 , 48 (1968). (4K) Gilwood, M. E., Chem. Eng., 74,83 (1967). (5K) Gorshkov, V. I., Dmitriev, S. N., Panchenkov, G. M., and Krasil’nikov, A. I., Khim. Prom., 43,693 (1967). (6K) Houser, C. B., and Olejar, L., Paper Trade J., 152, 41 (1968). (7K) Newman, J., Chem. Eng., 74, 72 (1967). (8K) Olsen, R . S., Dissertation Abrtr. B , 27, 3917 (1967). (9K) Uchiyama, H., KagakuSochi (Tokyo), 9,37 (1967).

Ion Exchange Membrane Processes (1L) Arnold, R . and Swift, D. A., Aurt. J.Chem., 20, 2575 (1967). (2L) Bejerano. T , Forgacs, C., and Rabinowitz, J., Desalination, 3, 129 (1967). (3L) Block, M., Chem. Ind. (London), 50,2099 (1967). (4L) Brian, P. L. T., Proc. h i . Symp. Water Desal., I s f , Washington, D. C., 1965, 1,349 (1967). , J. WaterPol!. Contr. Fed., 39, R l - R l 5 (1967). (6L) Dasare, B. D., e t a/., Desalination, 3, 182-94 (1967). (7L) DeKorosy, F. and Zeigerson, E., J . Phys. Chem., 71, 3706 (1967). (8L) Egorov, E, V., Usp. Khim., 36,1270 (1967). (9L) Forgacs, C., Proc. Int. S’mp. Water Desal., Ist, Washington, D. C., 1965, 3, 155 (1967). (1OL) Gnusin N. P Rudenko E. N. Pevnitskaya M V., and Shkaruba, V. M., I r u . Sib. Otd.’Akad.’:Vauk SSSR; Ser. khim..&‘auk, I, ?45’(1967). (11L) Gomella, C., Desoiinotton, 2, 283 (1967). (12L) Hansen, R . D., and Anderson, M. L., 1h.n. ENG. CHEM.,FUYDAM., 6, 543 (1967). (13L) Honeycutt, S . C.,etal.,J. Co!loidZnter/aceSci., 24, 277 (1967). (14L) Itio S., Desalination, 2, 378 (1967). (1SL) Klyachko, V. A . , Pervov, G . G., and Ushakov, L. D., Proc. In!. Symp. Water Desal., Ist, Washington,D. C., 1965, 2, 511 (1967). (16L) Klyachko, V. A . and Ushakov, L. D., Eur. Symp. Fresh Water Sea, Preprints Pap., Znd, Athens, 5 ( 5 3 ) (1967). (17L) Kooistra, W., Desalination, 2, 139 (1967). (18L) Krishnaswamy, N., J.Sci. Ind. Res., 26, 421 (1967). (19L) Lakshminarayanaiah, N., and Subrahmanyan, V., J. Phys. Chem., 72, 1253 (1968). (2OL) Lemaignen, J., Desn!ination, 3,203 (1967). (21L) Loeb, S., and Selover, E., Eur. Symp. Fresh Water Sea, Znd, Athens, 6 (68) (1967). ( 2 2 L ) Mandersloot, W. G. B., Proc. Int. Symp. Water Desal., Ist, Washington, D. C., 1965, 2, 461 (1967). (23L) Matsuda, T . , Ogawa, S., and Onoue, Y . , Desalination, 3, 295 (1967). (24L) Matz, R . , Proc. In!. Symp. Water Desal., Irt, Washington, D. C., 1965, 3, 251 (1967). (25L) Matz, R., and Feist, E. hi., Desalination, 2, 116 (1967). (26L) McRae, W. A . , Glass, W., Leitz, F. B., Clarke, J. T., and Alexander, S. A , , Eur. Symp. Fresh Water Sea, Znd, Athens, 8 (57) (1967). (27L) Meares, P., e t al., Ber. Bunsenges, Phys. Chem., 71, 765 (1967). (28L) Nishimura, M., et al., J . Chem. Soc. Japan, Ind. Chem. Sect., 70,32 (1967). (29L) Pashkov 4.B. Klimova Z. V. Zhukov M. A. Tikhomirova N. S. Serenkov, V. I., L)aikorii, B. N., Skrno;a, N. M.’, SemeAova, E. L., add Tis:;. Y. I., Proc. Int.Symp. WaterDesa!., Ist,Washington, D. C., 1965, 2, 561 (1967). (30L) Pashkov, A . B., and Semenova, E. I., Soviet Plastics, 1967, 48 (May). (31L) Rajan, K. S., Boies, D. B., Casolo, A. J., and Bregman, J. I., Eur. Symp. Fresh Water Sea, Znd, Athens, 5 (58) (1967). (32L) Rauzen, F. V., Dudnik, S. S., and Gutin, E. I., A t . Enerp., 22, 393 (1967). (33L) Scatrergood, E. M., and Lightfoot, E. N., Trans. Farodoy Soc., 64, 1135 (1968). (34L) Schaefer, W., Desniinntion, 3, 174-82 (1967). (35L) Schweigart, H.,ibid., 2, 134 (1967). (36L) Soh, G. S., Prac. Int. Symp. Water Desal., 7st, Washington, D. C., 1965, 2, 13 (1967). (37L) Spiegler, K. S., ibid., 1, 473 (1967). (381~)Toyoshima, Y.,Kobarake, Y . , and Fujita, H., Trans. Farodoy Soc., 63, 2814, (1967). (39L) Toyoshima, Y., Kobatake, Y.,and Fujita, H., ibid., p 2828. (40L) Toyoshima, Y., Yuasa, M., Kobatake, Y., and Fujita, H., ibid., p 2803. (41L) Tsunoda, Y., Proc. Int. Symp. Water Desal., Ist, Washington, D. C., 1965, 3, 325 (1967). (42L) Yamabe,T., and Seno, M., Desalination, 2, 148 (1967). Gas Phase Applications

(1M) Howe-Baker Engineers, Inc., Neth. Appl. 6,614,280 (April 1967). (ZM) Ishibashi, N., Kamata, S . , and hlatsuura, M., Kogyo Kagaku Zasshi, 70, 1036 (1967). (331) Iwai, S., Inoue, Y . , Terasima, Y., and Sugawara, M., Nippon Genshiryoku Gakkaishi, 9, 249 (1967). (4M) Pollio, F., and Kunin, R., IND.ENG.CHEM.,Pmc. RES. DEVELOP., 7, 62 (1968). ( j M ) Vinnikov, L. I., Mukhlenov, I. P., and Lesokhin, I. G., Zh. Prikl. Khim.,40, 1895 (1967). (6M) Vulikh, .4.I., and Arkhipov, S. M . , ibid., 41,216 (1968). (7M) Vulikh, A . I., Bogatyrev, V. L., Zagorskaya, M. K., and Shivandronov, Y . A., Bezop. Tr. Prom., 1,46 (1967). (8M) Vulikh, A . I., Zagorskaya, M. K., and Ksenzenko, V. I., Dokl. Akad. Nauk SSSR, 175,1059 (1767).