Ion-Neutral Complexes as Intermediates in the Decompositions of

Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77550 ... Sciences, Texas A&M University at Galveston, Galveston, Texas 7...
0 downloads 0 Views 758KB Size
7648

J. Am. Chem. SOC.1987, 109, 7648-7653

Ion-Neutral Complexes as Intermediates in the Decompositions of C5Hlo02'+Isomers David J. McAdoo,*+Charles E. Hudson,? Mark Skyiepa1,t Ellen Broido,+and Lawrence L. Griffin$ Contribution from the Marine Biomedical Institute and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77550, and Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas 77553. Received January 7 , 1987

Abstract: Ionized pentanoic acid, 3-methylbutanoic acid, and the enol isomer of ionized isopropyl acetate are shown to pass in part through common intermediates before decomposing to CH3CHC(OH)2+(7)and the "McLafferty + 1" ion CH3C(OH)2+ (10). The H transfer to form the methyl of CH$(OH),+ and the joining of two CH2 groups to form the C-C bond in the ethylene eliminated to produce CH3CHC(OH)2+are both attributed to reactions of the ion-neutral complex [CH3CH=CH2 CH2C(OH),+]. The McLafferty + 1 ion is also formed, especially from ionized esters, by another pathway in which complexes may or may not be intermediates. The intermediacy of the ion-neutral complexes is supported by energetic considerations, isotope effects, and the decomposition patterns of labeled ions. The latter correlate with a preference for hydrogen transfer from the end carbons of the C3 partner in other reactions proposed to be complex-mediated. Unification of the McLafferty rearrangement, the McLafferty 1 rearrangement, and the McLafferty rearrangement with charge reversal by a common initial y-hydrogen rearrangement followed by dissociation or isomerization in ion-neutral complexes is proposed. Group migration by 1,2-shifts, possibly by dissociation to form a double bond in one partner in an ion-neutral complex followed by addition at the opposite end of the double bond, is shown to be a general reaction of ions in the gas phase.

+

+

"McLafferty 1" ions are formed in the mass spectrometer by double hydrogen transfers accompanied by @-cleavagein ionized esters,] acids,2 ketone^,^ and other ions.4 These ions are formed ' 0H RCH2CH=CH2

+

II

kH2CR'

McLafferty rearrangement

1

/,.+II

-

RCH~CHZCH~CH~CR'

*OH RCHzCHtHCHz

+

II

CHaCR' McLafferty 1 rearrangement

\

II

RCH=CHCHi+

CHaCR'

+

charge reversal

CH2C(OH),+] that could be tested by characterizing the parallel formation of C3H,O2'+ (see Scheme I). This mechanism would also have to apply to CH3C(0H),+ and CH3CHC(OH),'+ formation from ionized pentanoic acid ( l ) ,as 1 and 2 reach those products through common intermediate^.^ W e will conclude that ion-neutral complexes are intermediates in the formation of McLafferty + 1 ions and then show that a variety of ionic decompositions can be rationalized by related mechanisms. A similar mechanism has been recently proposed to account for formation of acetic acid plus ionized 2-butene from ionized hexanoic acid.1° ( I ) (a) Sharkey, A. G.; Schultz, J. L.; Friedel, R. A. Anal. Chem. 1959, 31, 87-94. (b) Beynon, J. H.; Saunders, R. A,; Williams, A. E. Ibid. 1961, 33, 221-225. (c) Godbole, E. W . ;Kebarle, P. Trans. Faraday Sot. 1962, 58, 1897-1904. (d) Djerassi, C.; Fenselau, C. J . Am. Chem. Sot. 1965, 87, 5756-5762. (e) McFadden, W. H.; Boggs, L. E.; Buttery, R. G. J . Phys. Chem. 1966, 70, 3516-3523. (f) Benoit, F. M.; Harrison, A. G.; Lossing, F. P. Orp. Mass Sbectrorn. - r - ~ - 1977. 12. 78-82. (e) Borchers. F.: Levsen. K. Inr. j..M a s s Spectrom. Ion Phys. '1979, 31, 24jTi56. (2) (a) Weber, R.; Levsen, K.; Wesdemiotis, C.; Weiske, T.; Schwarz, H. Int. J. Mass Spectrom. Ion Phys. 1982,43, 131-155. (b) Halim, H.; Schwarz, H.; Terlouw. J. K.; Levsen, K . Ora. Mass Spectrom. 1983, 18, 147-149. .(3) (a) Carpenter, W.; Duffield,-A. M.; Djerassi, C. J . Am. Chem. Sot. 1968, 90, 160-164. (b) Bente, P. F.; McLafferty, F. W.; McAdoo, D. J.; Lifshitz, C. J . Phys. Chem. 1975, 79, 713-721. (4) McLafferty, F. W. Chem. Ind. (London) 1958, 1366-1367. ( 5 ) (a) Wendelboe, J. F.; Bowen, R. D.; Williams, D. H . J . Am. Chem. Sot. 1981, 103,2333-2339. (b) Hudson, C. E.; McAdoo, D. J. Int. J . Muss Spectrorn. Ion Processes 1984, 59, 325-332. (c) Traeger, J. C.; Hudson, C. E.; McAdoo, D. J. J . Phys. Chem., in press. (d) McAdoo, D. J.: Traeger, J. C.; Hudson, C. E.; Griffin, L. L. J . Phys. Chem., in press. (6) (a) Bowen, R. D.; Stapleton, B. J.; Williams, D. H. Chem. Commun. 1978, 24-26. (b) Bowen, R. D.; Williams, D. H . Int. J . Mass Spectrom. Ion Phys. 1979, 29, 47-55. (c) Morton, T. H . J . Am. Chem. Soc. 1980, 102, 1596-1602. (d) Hall, D. G.; Morton, T. H. Ibid. 1980, 102, 5688-5691. (e) Longevialle, P. Chem. Commun. 1980, 823-825. (0Schwarz, H.; Stahl, D. Int. J . Muss Spectrom. Ion Phys. 1980, 36, 285-289. (9) Biermann, H . W.; Freeman, W. P.; Morton, T. H . J . Am. Chem. Soc. 1982, 104, 2307-2308. (h) Morton, T. H . Tetrahedron 1982, 38, 3195-3243. (i) Longevialle, P.; Botter, R. Inr. J . Mass Spectrorn. Ion Phys. 1983, 47, 179-182. ti) Tumas, W.; Foster, R. F.; Brauman, J. I . J . A m . Chem. Soc. 1984, 106, 4053-4054. (k) Holmes, J. L.; Mommers, A. A,; Szulejko, J. E.; Terlouw, J . K . Chem. Commun.1984, 165-167. (I) Longevialle, P.Org. Muss Specfrom. 1985, 20, 644-645. (m) Bather, W.; Grutzmacher, H . Int. J . Mass Spectrom. Ion Processes 1985, 64, 193-212. (7) Audier, H . E.; Sozzi, G. Org. Mass Specfrom. 1984, 19, 150-151. (8) (a) McAdoo, D. J.; Hudson, C. E. A h . Muss Specfrom. 1985, 823. ( b ) Hudson, C. E., Griffin, L. L.; Broido, E.; Skyiepal, M. D.; McAdoo, D. J. Proc. 34th Annu. Conf: Mass Spectrom. Allied Top. 1986, 983-984. (9) (a) Audier, H.; Milliet, A.; Sozzi, G. Bull. Sot. Chim. Fr. 1985, 833. (b) Audier, H.; Sozzi, G. N o w . J . Chim., in press. (10) van Baar, B. L. M.; Terlouw, J . K.; Akkok, S.; Zummack, K. W.; Schwarz, H. Int. J . Mass Specfrom. Ion Processes, in press. 0

in parallel with the McLafferty rearrangement and the McLafferty rearrangement with charge reversal. Despite much study,'-4 satisfactory mechanisms for formation of many McLafferty 1 ions have never been proposed. Issues have included whether the two hydrogen transfers are stepwise or simultaneous,'C*dand, if stepwise, which hydrogen is transferred first.2a However, the most significant question is: how do bonds to itinerant hydrogens from alkyl chains replace the C-C bonds cleaved in the decompositions? Alkane eliminations from ions in the gas phase, which also involve replacement of a C-C by a C-H bond, probably achieve this by cleavage to ion-neutral complexes followed by hydrogen abstraction?

+

O'+

II R C H p '

-

O+

111

CRCH2C R ' l

-

RCH=C=O'+

+

R'H

Similar steps have been suggested for formation of McLafferty 1 ions.sb Passage through electrostatically bound complexes has been proposed6 to rationalize products of many other ionic decompositions in the gas phase. Audier and Sozzi' have shown that ionized 3-methylbutanoic acid (2) produces the McLafferty 1 ion C H 3 C ( 0 H ) , + containing C1 and C2, and C3H602" containing C1, C3, and a C4. This suggested* a mechanism for CH3C(0H),+ formation involving the complex [CH3CH=CH2

+ +

'Marine Biomedical Institute. 'Texas A&M University.

0002-7863/87/1509-7648$01.50/0

~

~

0 1987 American Chemical Society

J . Am. Chem. SOC.,Vol. 109, No. 25, 1987 1649

Ion- Neutral Complexes in the Decomposition of C5Hlo02'+ Scheme I

CH3CH2CH2CH2C

1 -

O' H

I

CH

1 2 /

CHCH,OC

/

5

i HO + OH

&,! C C H , CI H C H , ~ H ~

1;;'

6 -

-

t~"

CH,=CH,

C H ~ C

+

iCH2

.jcx ;I

~

,I:CH2

10 b'H

H-0

\CH3

/-1-

)cH3

'CH,

,OH /OH+

CH3EHiH2

+

CH3C

Yo \OH

16 -

Table I. Decomposition Patterns of Metastable C5Hl,0,'+ Ions product ion

CH,C(OH),+

CH,CH2CH2CH2C02H'+ CH,CH~CH~CHC(OH)~+ (CH3),CHCH2C02H'+ (CH,)2CHCHC(OH)2+ CH,CH,CH(CH,)CO,H'+ CH,CH,C(CH3)C(0H),+ CH3C0,'+CH(CH,)2 CH,C(OH)OCH(CH,)+ CH3C02'+CH2CH3CH3 CH2C(OH)OCH2CH2CH3+

CH,C(OH),' 94 0.6

3

CH2=CHC(OH)2+

50

100

0.3 63

51

2 9

2

49

100 100 100

0.3

0.4

2 8

100

1

2

1

100 3

C4H702+

39

100

2

CH3CHC(OH),+

100

100

5

100

4

Table 11. Decomposition Patterns of 13CC,Hlo02'+Ions product' ion

CH3CH2'3CH2CH2C02H'C CH,'3CH,CH,CH2COzH'+ 13CH,CH,CHzCH2C0,'+H CHzC(+OH)O'3CH(CH3)2

CH3C(OH),+

13CH,C(OH),+

100

100 100 100

m/z 73 42 47

2 2

37

m/z 74 81

51 68 0.6

13CC2H,02'+ 15'(17) 31 (32)

C4H702+

13CC,H,0,+

1

25 51

36

31

32'(18)

12

Values in Darentheses were obtained from decomuositions in the first field-free region of a DuPont 21-491 mass spectrometer. bFirst field-free region = 9. 'First field-free region = 10. Table 111. C2(H,D)S02+* Patterns from Metastable C5(H,D)loOz'+Ions

Derived from Acids product' ion CzH502' CzHdD02' C2H3D202' CzHzD30' CH3CH2CH,CH2C02D'+ 88 56 CH3CH2CHzCDzCOzH'+ 8 10 69 CH3CHzCD2CH2CO2H'+ 33 31 4 CH3CDzCH2CH2C02H'+ 100 70 3 CD3CH2CH2CH2C02H'+ 31 92 39 I (CH3)zCHCHzCOzD'+ 100 7s CH3CH(CD,)CHzCOzH'+ 26 100 41 (CH3)2CHCD2C02H'+ 5 100 'Each value is normalized to the most intense peak in the spectrum = 100. This intensity may appear in Table IV, or may be due to C4(H,D),02+formation.

Results and Discussion Similarity of the Decompositions of CH3CH2CH2CH2CO2H+, (CH3)2CHCH2C02H+, and &2C(+OH)OCH(CH,)2. Metastable decomposition patterns of assorted C 5 H l o 0 2 ' +isomers and labeled

+

Table IV. C3(H,D)502+ C3(H,D)602'+Patterns from Metastable C5(H,D),002'+Ions Derived from Acids product m/za ion

CH$H2CH,CH2CO,D" CH3CHzCH,CD2C02H'+ CH3CH2CD2CH2C02H'+ CHjCD2CH2CH2C02H" CD,CH,CH2CHZC02H'* (CH3)2CHCH2CO2D'+ CH3CH(CD3)CH2C02H'+ (CH3)2CHCD2C02H'+

73 4

56 31 79 54

3

74 100 56

75 96 100

16

16 3

100 100 51

25

68 25

11

2 62 59

64

43

47

11

21 60

''Values normalized as in Table 111.

forms thereof are given in Tables I-VI. The C5HI0O2'+spectra divide roughly into those dominated by CH,C(OH),+ and C 3 H 6 0 2 ' +formation and those dominated by C3H502' and/or

1650 J . Am. Chem. SOC., Vol. 109, No. 25, 1987

McAdoo et al.

Table V. C2(H,D)502' Products of Metastable CI(H,D)lnO,'+

Ester Ions Droductb

ion

C2HSO2"

CD,C('OH)OCH(CH,), CD3C02"CH(CH3), CH,C('OH)OCD(CH,), CH3C02'+CD(CH3)2 CH2C(+OH)OCH(CD3), CH,C( *OH)OCH(CD3)CH3 CH3C02"CH(CD3)2 CH3CO,"CH(CD3)CH3 CD3C02"CH,CH,CH3 CH3CO2'+CD2CH,CH, CH3CO2'+CH2CD,CH3 CH3CO;'CH,CH2CD3 CH~C(+OH)OCD,CH,CH, CH2C('OH)OCH2CD2CH3 CH2C('OH)OCH2CH2CD3

C2H4D02' 10

C2HD402'

C2H3D202+

C2H3D202'

100 100

100 100 9" 3 1.5a 2

3.1 3 14 100 1.5 100

100 2 1 100 1

19 100 100 11 100' 1OOd

100

22

100 3 4

3

0.7

100

2

2

bValues normalized similarly to those in Table 111. c,dWaterlosses in the CAD spectra of products of metastable decomposition demonstrate near exclusive formation of 'CH2DC(OH),+ and dCH3C(OD)OH'. "C,H,DO,".

Table VI. C3(H,D)602'+Products of Metastable C,(H,D),,O;'

Ester Ions product"

ion

C3H602'+

CD2C('OH)OCH(CH3)2 CD,CO,"CH(CH,), CH,C(+OH)OCD(CH,), CH,CO,"CD(CH3)2 CH2C('OH)OCH(CD3), CH,C('OH)OCH(CD3)CH3 CH3CO,'+CH(CD3), CH3C02"CH(CD3)CH3 ~~

C3HSD02'+

C3H4D202"

16

1.1

1.8

50.2 1.2

2.4 0.5

0.5 1

C3H3D302"

C3H2D402'+

54