Iridium-Catalyzed Borylation of Secondary Benzylic C–H Bonds

Prehistoric embalming secrets revealed. For thousands of years, ancient Egyptians carefully mummified the bodies of their dead in readiness for... BUS...
0 downloads 0 Views 442KB Size
Subscriber access provided by Mount Allison University | Libraries and Archives

Communication

Iridium-Catalyzed Borylation of SecondaryBenzylic C-H Bond Directed by Hydrosilane Seung Hwan Cho, and John F. Hartwig J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/ja403462b • Publication Date (Web): 17 May 2013 Downloaded from http://pubs.acs.org on May 18, 2013

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

Iridium-Catalyzed Borylation of Secondary Benzylic C‒H Bond Directed by Hydrosilane Seung  Hwan  Cho,  and  John  F.  Hartwig*   Department  of  Chemistry,  University  of  California,  Berkeley,  California  94270,  United  States    

 Supporting  Information  Placeholder   ABSTRACT:   Most   functionalizations   of   C‒H   bonds   by  

main   group   reagents   occur   at   aryl   or   methyl   groups.   We   describe   a   highly   regioselective   borylation   of   sec-­‐ ondary   benzylic   C‒H   bonds   catalyzed   by   an   iridium   precursor   and   3,4,7,8-­‐tetramethylphenanathroline   as   ligand.  The  reaction  is  directed  to  the  benzylic  position   by   a   hydrosilyl   substituent.   This   hydrosilyl   directing   group   is   readily   deprotected   or   transformed   to   other   functional   groups   after   the   borylation   reaction,   provid-­‐ ing   access   to   diverse   set   of   secondary   benzylboronate   esters  by  C‒H  borylation  chemistry.    

opment  of  an  iridium-­‐catalyzed  borylation  of  the  second-­‐ ary  benzylic  C‒H  bonds  directed  by  a  hydrosilyl  group.  In   contrast   to   a   heteroaryl   directing   group,   the   hydrosilyl   group  can  be  traceless,  or  can  be  converted  to  a  series  of   functional  groups.10     a. Previous secondary (sp3) C-H borylation Bpin

O n

X

DG R

Bpin

Bpin

N

Bpin R

n

(ref 9a)

(ref 9b)

(ref 9c)

(1)

(ref 9d)

b. This Work: Silyl-directed secondary (sp3) C-H borylation H

Alkylboron   reagents   are   useful   synthetic   intermediates   in   a   variety   of   organic   transformations,   and   methods   for   their   preparation   have   attracted   much   attention.1   Such   compounds   are   typically   prepared   by   the   reaction   of   or-­‐ ganometallic   nucleophiles,   such   as   Grignard   or   organo-­‐ lithium   reagents,   with   boron   electrophiles2   or   by   the   hy-­‐ droboration   of   alkenes.1b,3   More   recently,   the   cross-­‐ coupling   of   boron   reagents   with   alkyl   electrophiles   have   been  reported.4   Transition-­‐metal   catalyzed   functionalization   of   C‒H   bonds  with  bis(pinacolato)diboron  (B2pin2)  has  become  a   practical   method   for   the   direct   formation   of   boronate   esters.5  Significant  progress  has  been  made  on  the  boryla-­‐ tion   of   sp2   C−H   bonds,6-­‐7     but   the   borylation   of   sp3   C‒H   bonds   is   less   developed.   Compared   to   the   borylation   of   sp2  C‒H  bonds,  the  borylation  of  sp3  C‒H  bonds  typically   requires  high  catalyst  loadings  and  excess  of  the  saturated   substrates.  The  regioselectivity  of  the  borylation  of  sp3  C‒ H  bonds  strongly  favors  reaction  at  primary  C‒H  bonds,8   making   the   functionalization   of   secondary   C‒H   bonds   challenging.   We  recently  disclosed  a  highly  reactive  catalytic  system   derived  from  the  combination  of  [Ir(COD)OMe]2  (COD  =   cyclooctadiene)   and   phenanthroline   derived   ligands   that   functionalizes  the  secondary  C‒H  bonds  of  cyclic  ethers9a   and   cyclopropanes.9b   Sawamura   and   co-­‐workers   also   re-­‐ ported   the   borylation   of   secondary   C‒H   bonds   of   cyclic   amides9c   and   alkyl   pyridines9d   catalyzed   by   an   immobi-­‐ lized-­‐catalyst   system   (eq   1).   Here,   we   describe   the   devel-­‐

N

R1 cat. [Ir]/ligand B2pin2 SiR2H likely via :

R1

H N Ir N Bpin Si R R Bpin

Bpin R1

(2)

SiR2H

 

We   previously   showed   that   hydrosilyl   groups   (-­‐SiR2H)   direct   the   sp2   C‒H   borylation   of   arenes11a   and   N-­‐ heteroarenes.11b   In   these   cases,   the   formation   of   a   five-­‐ membered   bisboryl   monosilyl   complex   was   proposed   to   lead  to  the  observed  regioselectivity.  If  a  ring  of  the  same   size   could   be   generated   from   an   alkylarylsilane,   then   the   product   would   result   from   borylation   at   a   benzylic   posi-­‐ tion    (eq  2).  Because  of  the  scarcity  of  borylations  of  ben-­‐ zylic   C‒H   bonds,12 it   was   unclear   if   this   sequence   would   lead   to   reaction   at   a   secondary   C‒H   bond   over   an   aryl   group.  Thus,  we  conducted  experiments  to  test  the  feasi-­‐ bility  of  this  directed  borylation  process.     To   evaluate   potential   catalysts   for   this   transformation,   we   investigated   the   borylation   of   2-­‐propylphenyl   dime-­‐ thylsilane  (1a).  We  allowed  1a  to  react  with  B2pin2  in  THF   at   80   °C   in   the   presence   of   the   combination   of   [Ir(COD)OMe]2  and  a  series  of  nitrogen  ligands  (Table  1).   The   reaction   catalyzed   by   [Ir(COD)OMe]2   and   4,4’-­‐di-­‐ tert-­‐butyl-­‐2,2’-­‐bipyridine   (dtbpy),   which   is   the   ligand   most   frequently   used   for   the   borylation   of   aryl   C‒H   bonds,5  proceeded  to  form  the  benzylic  boronate  ester   2a   with   90%   conversion   and   83%   yield,   as   determined   by   NMR   spectroscopy   (Table   1,   entry   1).   The   reaction   oc-­‐

ACS Paragon Plus Environment

Journal of the American Chemical Society

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

curred   selectively   at   the   benzylic   position;   no   borylation   of   the   sp2   bonds   of   the   arene   was   observed.   This   result   indicated   that   the   hydrosilane   could   redirect   the   boryla-­‐ tion   reaction   from   the   typically   reactive   aryl   position   to   the  benzylic  position.     Reactions   conducted   with   ligands   that   should   be   less   electron   donating   than   dtbpy   (entry   1)   occurred   to   mod-­‐ erate   conversion   and   yield   (entry   2).13   In   contrast,   reac-­‐ tions  conducted  with  a  series  of   ligands   derived   from  1,10-­‐ phenanthroline   (entries   3-­‐5)   showed   that   the   catalyst   generated   from   3,4,7,8-­‐tetramethyl-­‐1,10-­‐phenanthroline   (Me4phen)  is  highly  active  for  the  conversion  of  1a  to  the   benzylboronate  2a  in  93%  yield  (entry  5)..    

Table   1.   Effect   of   the   Bipyridine   Ligands   on   the   Catalytic  Borylation  of  Benzylic  C‒H  bonds  a   H Me + SiMe2H

O

O B B

O

THF, 80 oC

O

Me SiMe2H 2a

B2Pin2

1a

Bpin

[Ir(COD)OMe]2 (0.5 mol %) Ligand (1.0 mol %)

Page 2 of 5

masked   aldehyde   (2j),   or   diol   (2k).   The   present   reaction   occurred  equally  well  on  a  5  mmol  scale  as  on  the  smaller   0.3  mmol  scale  (2g).     Variation   of   the   electronic   properties   of   the   arene   had   little   influence   on   the   yield   (2l,   2m   and   2p).   Substrates   bearing   fluoro   (2n),   chloro   (2o   and   2r),   silyl   ether   (2q)   groups,   and   a   protected   catechol   (2s)   were   compatible   with   this   catalytic   system.   Finally,   the   heteroaromatic   benzothiazole  derivative  formed  product  2t  in  58%  yield.   The  hydrosilyl  group  can  be  removed  or  used  for  diver-­‐ sification   of   the   arene.   Such   transformations   of   the   hy-­‐ drosilyl  directing  group  are  shown  in  Scheme  1.  The  reac-­‐ tion  of  2c  and   2g   with  the  combination  of  TMSI  (generat-­‐ ed  in  situ)  and  water  resulted  in  cleavage  of  the  hydrosilyl   group,  affording  desilylated  benzylboronate  ester  (3a  and   3b)  or  deuterated  analogues  (3a-­‐d)  in  almost  quantitative   yields   at   room   temperature.15   Alternatively,   the   hy-­‐ drosilane  was  cleaved  by  reaction  with  AgF  and  H2O  (see   Supporting   Information).   This   cleavage   of   the   C-­‐Si   bond   occurred  while  keeping  the  benzylic-­‐Bpin  linkage  intact.       a,b

Ligand  

Conversion  (%)  

Yield  (%)  

1  

L1  

90  

83  

2  

L2  

80  

61  

3  

L3  

90  

85  

4  

L4  

94  

89  

5  

L5  

100  

97  (93)  

c

L5  

15  

9  

6   R

R

N

N

R'

R'

R = t-Bu, L1 R R = H, L2

R N

N

Table  2.  Substrate  Scope  

b

Entry  

R = R' = H, L3 R = H, R' = Me, L4 R = R' = Me, L5

H R2 R1 SiMe2H

+ B2Pin2

[Ir(COD)OMe]2 (0.5 mol %) Me4phen (1.0 mol %) THF, 80

oC,

18 h

Bpin R2 R1 SiMe2H

1

2 Bpin

Bpin

Me

Bpin Me

Me

SiMe2H 2b, 73%c,f

SiMe2H 2c, 80%

SiMe2(O-iPr) 2d, 70%d

Bpin

Bpin

Bpin OMe

 

Conditions:   1a   (0.3   mmol),   B2pin2   (0.3   mmol),   [Ir(COD)OMe]2   (0.5   mol   %),   and   ligand   (1.0   mol   %)   in   THF   o b 1 at   80   C   for   18   h.   Determined   by   H   NMR   analysis   with   1,1,2,2-­‐tetrachloroethane  as  an  internal  standard.  Numbers  in   c parenthesis  correspond  to  isolated  yield.   HBpin  (0.6  mmol)   was  used  in  place  of  B2pin2  as  a  boron  reagent.  

With   an   active   catalyst   in   hand,   we   investigated   the   scope   of   the   hydrosilyl-­‐directed,   benzylic   borylation   (Ta-­‐ ble  2).  Simple  alkylarenes  (2b,  2c   and  2d)  underwent  the   borylation  reaction  in  high  yield.  Analytically  pure  2d  was   isolated   after   conversion   of   the   hydrosilane   to   the   silyl   ether  with  2-­‐propanol  in  the  presence  of  0.5  mol  %  [Ru(p-­‐ cymene)Cl]2.14   Substrates   containing   alkyl   chains   substi-­‐ tuted   with   phenyl   and   cyclopropyl   substituents,   which   were  previously  shown  to  undergo  borylation  at  the  C‒H   bonds  of  these  groups  by  the  Ir/Me4phen  catalytic  system,   gave  the  corresponding  benzylboronate  esters  (2e  and  2f)   in   good   yields.6,   9a   This   selectivity   for   the   benzylic   C‒H   bonds   over   the   aryl   and   cyclopropyl   C‒H   bonds   under-­‐ scores   the   impact   of   the   hydrosilyl   directing   group.   The   directed   borylation   reaction   also   proceeded   in   high   yield   at   the   benzylic   position   to   form   products   2g,   2h   and   2i   from   ether-­‐containing   substrates.   Moreover,   this   process   led  to  the  benzylic  borylation  of  alkyl  chains  containing  a  

SiMe2H

SiMe2H 2e, 71%

a

Bpin

2g, 95% (85%e)

Bpin O

OMe

Bpin Ph

O

SiMe2H

O

SiMe2H 2i, 70%c

2h, 77% Me Me

Bpin O

2k, 63%c,g Bpin

Bpin

SiMe2H

Me CF3

Bpin MeO

Me

SiMe2H

TBSO

Me SiMe2H

SiMe2H

X = F, 2n, 70%f X = Cl, 2o, 68%f Bpin Cl

SiMe2H 2m, 73% Bpin

2l, 81%

Me

2p,

60%c,f

2q, 66%c,f

Bpin Me

SiMe2H 2r, 64% a

O

Me Me

SiMe2H

SiMe2H 2j, 74%f

Bpin

O

X

SiMe2H

2f, 85%c

O O

Me SiMe2H 2s, 50%c,g

SiMe2H Bpin S 2t, 58%c,g

Me

Conditions:   1   (0.3   mmol),   B2pin2   (0.3   mmol),   [Ir(COD)OMe]2   (0.5   mol   %),   and   ligand   (1.0   mol   %)   in   THF   o b c at  80   C  for  18  h.   Isolated  yields.   1.5  equiv.  of  1  with  respect   to   B2pin2   (0.3   mmol);   the   yield   was   determined   based   on   d B2pin2.   Isolated   yield   after   conversion   of   the   hydrosilane   to  

ACS Paragon Plus Environment

Page 3 of 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

the  silyl  ether  with  2-­‐propanol  (See  Supporting  Information).   e f g Conducted  on  a  5  mmol  scale.   Run  for  24  h.   Run  for  36  h.  

In  addition,  the  aryl-­‐hydrosilyl  unit  was  transformed  in-­‐ to  an  aryl  iodide  without  affecting  the  benzylic-­‐Bpin  link-­‐ age,  after  Ru-­‐catalyzed  conversion  of  the  hydrosilane  to  a   hydrosilyl  ether  with  2-­‐propanol.  Treatment  of  the  result-­‐ ing   silyl   ether   with   AgF   and   NIS   formed   the   aryl   iodide.   This   sequence   converted   2c into   4   in   67%   yield   over   2   steps.10   Both  of  hydrosilane  and  Bpin  functionality  can  be  con-­‐ verted   to   the   corresponding   hydroxyl   groups.   For   exam-­‐ ple,  reaction  of  2c  and  2g  in  the  presence  of  an  excess  of   NaOH   (aq)   and   H2O2   in   THF   gave   the   corresponding   2-­‐ (α-­‐hydroxylalkyl)phenols  5a and  5b in  excellent  yield.     The  benzylboronate  unit  can  also  be  used  for  C-­‐C  bond   formation.   The   desilylated   secondary   benzylboronate   es-­‐ ter  3a   underwent  one-­‐carbon  homologation  with  bromo-­‐ chloromethane  and  n-­‐BuLi  to  produce  the  corresponding   homobenzylic   boronate   ester   6   in   67%,   respectively.   In   addition,   Suzuki-­‐Miyaura   cross-­‐coupling   of   3a   with   two   representative   aryl   iodides   in   the   presence   of   a   catalytic   amount   of   Pd2(dba)3   and   PPh3   and   the   combination   of   Ag2O  and  K2CO3  as  base  at  70   oC  in  THF  formed  the  ary-­‐ lated   products   7a   and   7b   in   good   yields   (70%   and   81%,   respectively).16    

Scheme  1.  Functionalization  of  Hydrosilane  and   Boronate  ester   Bpin

Bpin

R

a

c,d

H 3a, R = Et, 97% 3b, R = OMe, 94%

I R

Bpin Me

Me

Bpin

SiMe2H 2

b

4, 67% (2 steps) OH R e

D

OH 5a, R = Et, 95% 5b, R = OMe, 90%

3a-d, 98% Bpin

Scheme  2.  Proposed  Mechanism   R N

HBpin

N 1

Ir

SiMe2

Bpin Bpin (C)

N N

Bpin

N

Bpin Bpin (A)

N

Ir

Ir

R

Bpin H

Bpin Bpin

N N

(B)

Ir Bpin

SiMe2 Bpin

(D) 2 B2Pin2

R N N

Ir Bpin

Si H

Bpin (E)

In   summary,   we   have   developed   an   iridium-­‐catalyzed   borylation   of   secondary   benzylic   C‒H   bonds   directed   by   a   hydrosilane   to   give   benzylboronate   esters.   This   reaction   constitutes   a   rare   example   of   secondary   C‒H   borylation   and   an   example   of   directed   borylation   of   secondary   C‒H   bonds  with  a  directing  group  that  can  be  removed  or  used   for   further   transformations.   The   formation   of   a   bisboryl   monosilyl  complex  is  proposed  to  trigger  the  benzylic  C‒ H  activation  through  a  five-­‐membered  metallacycle.  Fur-­‐ ther  studies  to  expand  the  scope  of  the  borylation  of  satu-­‐ rated  C‒H  bonds  and  development  of  an  asymmetric  ver-­‐ sion  of  this  transformation  are  ongoing.  

ASSOCIATED CONTENT

Ar Me

6, 67%

goes   reaction   with   1   to   afford   iridium   silyl   bisboryl   com-­‐ plex   C   via   unsaturated   complex   B.   Addition   of   the   ben-­‐ zylic   C‒H   bond   would   then   form   five-­‐membered   metal-­‐ lacycle   D,   and   coupling   of   the   benzyl   group   with   a   Bpin   ligand  would  give  silyliridium  hydride  complex  E.  Reduc-­‐ tive  elimination  of  silane  and  oxidative  addition  of  B2pin2   would  produce  the  borylated  product  and  regenerate  tris-­‐ boryl  iridium  intermediate  (B).    

f

3a

g

Me 7a, Ar = 4-OMe-C6H4, 70% 7b, Ar = 3-OMe-C6H4, 81%

Conditions:   (a)   TMSCl   (1.2   equiv),   KI   (1.2   equiv),   H2O   (1.2   o equiv),  CH3CN  at  25   C  (b)  TMSCl  (1.2  equiv),  KI  (1.2  equiv),   o D2O   (1.2   equiv),   CH3CN   at   25   C   (c)   [Ru(p-­‐cymene)Cl]2,   (0.5   o mol   %)   2-­‐propanol   (2.0   equiv)   at   0   C.   (d)   AgF   (4.0   equiv),   o NIS  (4.0  equiv),  THF  at  25   C.  (e)  NaOH/H2O2  (excess),  THF   o o at  0   C  to  25   C.  (f)  BrCH2Cl  (2  equiv),  n-­‐BuLi  (2  equiv),  THF   o o at  -­‐78   C  to  25   C  (g)  Pd2(dba)3  (5  mol  %),  PPh3  (40  mol  %),   Ag2O  (1.5  equiv),  K2CO3  (1.5  equiv),  ArI  (2.0  equiv),  THF  at  80   o C.  

A   proposed   mechanism   for   the   silyl-­‐directed   benzylic   borylation   is   presented   in   Scheme   2.   The   borylation   of   aryl   C‒H   bonds   has   been   shown   to   occur   through   a   tris-­‐ boryl   complex,   such   as   complex   A,13   containing   a   chelat-­‐ ing   nitrogen   ligand.   We   suggest   that   complex   A   under-­‐

Supporting Inform ation Experimental  procedures  and  spectra  for  all  new  com-­‐ pounds.  This  material  is  available  free  charge  of  via  the   Internet  at  http://pubs.acs.org.  

AUTHOR INFORMATION Corresponding Author

[email protected]     Notes The  authors  declare  no  competing  financial  interest.  

A CKNOWLEDGMENT We   thank   the   NSF   (CHE-­‐1156496)   and   a   T.   J.   Park   postdoctoral   fellowship   to   S.H.C   for   funding   of   this   work.   We   thank   Johnson   Matthey   for   a   gift   of  

ACS Paragon Plus Environment

Journal of the American Chemical Society

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

[Ir(COD)OMe]2,   and   AllyChem   for   a   gift   of   B2pin2.   S.H.C.   thanks   Dr.   Qian   Li   and   Carl   Liskey   for   helpful   discussions.  

REFERENCES (1)  (a)  Boronic   Acids:   Preparation   and   Applications   in   Organic   Synthesis   and   Medicine  (Ed.:  D.  G.  Hall),  Wiley-­‐VCH,  Wein-­‐heim,   2005;  (b)  Crudden,  C.  M.;  Edwards,  D.  Eur.   J.   Org.   Chem.  2003,   4695.     (2)   (a)   Brown,   H.   C.   Organic   Synthesis   via   Organoboranes;   Wiley  Interscience,  New  York,  1975.  (b)  Brown,  H.  C.;  Cole,  T.  E.   Organometallics  1983,  2,  1316.   (3)  (a)  Carroll,  A.  M.;  O’Sullivan,  T.  P.;  Guiry,  P.  J.  Adv.  Synth.   Catal.  2005,  347,  609.  (b)  Burgess,  K.;  Ohlmeyer,  M.  J.  Chem.  Rev.   1991,  91,  1179.  (c)  Noh,  D.;  Chea,  H.;  Ju,  J.;  Yun,  J.  Angew.   Chem.,   Int.  Ed.  2009,  48,  6062.   (4)  (a)  Yang,  C.-­‐T.;  Zhang,  Z.-­‐Q.;  Tajuddin,  H.;  Wu,  C.-­‐C.;  Liang,   J.;  Liu,  J.-­‐H.;  Fu,  Y.;  Czyzewska,  M.;  Steel,  P.  G.;  Marder,  T.  B.;  Liu,   L.  Angew.   Chem.,   Int.   Ed.  2012,  51,  528.  (b)  Ito,  H.;  Kubota,  K.  Org.   Lett.  2012,  14,  890.  (c)  Dudnik,  A.  S.;  Fu,  G.  C.  J.  Am.  Chem.  Soc.   2012,   134,   10693.   Transition-­‐metal   free   approach,   see:   (d)   Li,   H.;   Wang,   L.;   Zhang,   Y.;   Wang,   J.   Angew.   Chem.,   Int.   Ed.   2012,   51,   2943.    (5)  For  recent  reviews,  see:  (a)  Mkhalid,  I.  A.  I.;  Barnard,  J.  H.;   Marder,  T.  B.;  Murphy,  J.  M.;      Hartwig,  J.  F.  Chem.  Rev.  2010,  110,   890.  (b)  Hartwig,  J.  F.  Chem.  Soc.  Rev.  2011,  40,  1992.  (c)  Hartwig,   J.  F.  Acc.  Chem.  Res.  2012,  45,  864.   (6)  For  examples  of  non-­‐directed  sp2  C−H  borylations,  see:  (a)   Cho,   J.-­‐Y.;   Iverson,   C.   N.;   Smith,   M.   R.,   III.   J.   Am.   Chem.   Soc.   2000,  122,  12868.  (b)  Tse,  M.  K.;  Cho,  J.-­‐Y.;  Smith,  M.  R.,  III.  Org.   Lett.  2001,  3,  2831.  (c)  Ishiyama,  T.;  Takagi,  J.;  Ishida,  K.;  Miyaura,   N.;  Anastasi,  N.  R.;  Hartwig,  J.  F.  J.  Am.  Chem.  Soc.  2002,  124,  390.   (d)  Cho,  J.-­‐Y.;  Tse,  M.  K.;  Holmes,  D.;  Maleczka,  R.  E.,  Jr.;  Smith,   M.  R.  III.  Science  2002,  295,  305.  (e)  Takagi,  J.;  Sato,  K.;  Hartwig,  J.   F.;  Ishiyama,  T.;  Miyaura,  N.  Tetrahedron  Lett.  2002,  43,  5649.  (f)   Ishiyama,  T.;  Takagi,  J.;  Hartwig,  J.  F.;  Miyaura,  N.  Angew.   Chem.,   Int.   Ed.  2002,  41,  3056.  (g)  Ishiyama,  T.;  Nobuta,  Y.;  Hartwig,  J.  F.;   Miyaura,  N.  Chem.   Commun.  2003,  2924.  (h)  Ishiyama,  T.;  Takagi,   J.;   Yonekawa,   Y.;   Hartwig,   J.   F.;   Miyaura,   N.   Adv.   Synth.   Catal.   2003,  345,   1103.  (i)  Paul,  S.;  Chotana,  G.  A.;  Holmes,  D.;  Reichle,  R.   C.;  Maleczka,  R.  E.,  Jr.;  Smith,  M.  R.,  III.  J.  Am.  Chem.  Soc.  2006,   128,   15552.   (j)   Mkhalid,   I.   A.   I.;   Coventry,   D.   N.;   Albesa-­‐Jove,   D.;   Batsanov,   A.   S.;   Howard,   J.   A.   K.;   Perutz,   R.   N.;   Marder,   T.   B.   Angew.  Chem.,  Int.  Ed.   2006,   45,   489.   (k)   Iwadate,   N.;   Suginome,   M.  J.  Organomet.  Chem.  2009,  694,  1713.   (7)  For  examples  of  directed  sp2  C−H  borylations,  see:  (a)  Ka-­‐ wamorita,  S.;  Ohmiya,  H.;  Hara,  K.;  Fukuoka,  A.;  Sawamura,  M.  J.   Am.   Chem.   Soc.  2009,  131,  5058.  (b)  Ishiyama,  T.;  Isou,  H.;  Kiku-­‐ chi,  T.;  Miyaura,  N.  Chem.  Commun.  2010,  46,  159.  (c)  Yamazaki,   K.;  Kawamorita,  S.;  Ohmiya,  H.;  Sawamura,  M.  Org.  Lett.  2010,  12,   3978.   (d)   Itoh,   H.;   Kikuchi,   T.;   Ishiyama,   T.;   Miyaura,   N.   Chem.   Lett.   2011,   40,   1007.   (e)   Ros,   A.;   Estepa,   B.;   Loṕez-­‐Rodríguez,   R.;   Álvarez,  E.;  Fernańdez,  R.;  Lassaletta,  J.  M.  Angew.  Chem.,  Int.  Ed.  

Page 4 of 5

2011,  50,  11724.  (f)  Kawamorita,  S.;  Miyazaki,  T.;  Ohmiya,  H.;  Iwai,   T.;  Sawamura,  M.  J.   Am.   Chem.   Soc.  2011,  133,  19310.  (g)  Dai,  H.-­‐X.;   Yu,  J.-­‐Q.  J.  Am.  Chem.  Soc.  2012,  134,  134.       (8)  (a)  Chen,  H.;  Hartwig,  J.  F.  Angew.   Chem.,   Int.   Ed.  1999,  38,   3391.  (b)  Iverson,  C.  N.;  Smith,  M.  R.  III.  J.  Am.  Chem.  Soc.  1999,   121,  7696.  (c) Chen,  H.;  Schlecht,  S.;  Semple,  T.  C.;  Hartwig,  J.  F.   Science  2000,  287,  1995.  (d)  Lawrence,  J.  D.;  Takahashi,  M.;  Bae,   C.;  Hartwig,  J.  F.  J.  Am.  Chem.  Soc.  2004,  126,  15334.  (e)  Hartwig,   J.  F.;  Cook,  K.  S.;  Hapke,  M.;  Incarvito,  C.  D.;  Fan,  Y.;  Webster,  C.   E.;  Hall,  M.  B.  J.   Am.   Chem.   Soc.  2005,  127,  2538.  (f)  Murphy,  J.  M.;   Lawrence,   J.   D.;   Kawamura,   K.;   Incarvito,   C.;   Hartwig,   J.   F.  J.  Am.   Chem.   Soc.   2006,   128,   13684.   (g)   Ohmura,   T.;   Torigoe,   T.;   Suginome,  M.  J.  Am.  Chem.  Soc.  2012,  134,  17416.   (9)  (a)  Liskey,  C.  W.;  Hartwig,  J.  F.  J.  Am.  Chem.  Soc.  2012,  134,   12422.  (b)  Liskey,  C.  W.;  Hartwig,  J.  F.  J.   Am.   Chem.   Soc.  2013,  135,   3375.   (c)   Kawamorita,   S.;   Miyazaki,   T.;   Iwai,   T.;   Ohmiya,   H.;   Sawamura,  M.  J.  Am.  Chem.  Soc.  2012,  134,  12924.  (d)  Kawamori-­‐ ta,   S.;   Murakami,   R.;   Iwai,   T.;   Sawamura,   M.   J.   Am.   Chem.   Soc.   2013,  135,  2947.     (10)   Chernyak,   N.;   Dudnik,   A.   S.;   Huang,   C.;   Gevorgyan,   V.   J.   Am.  Chem.  Soc.  2010,  132,  8270.   (11)  (a)  Boebel,  T.  A.;  Hartwig,  J.  F.  J.   Am.   Chem.   Soc.  2008,  130,   7534.   (b)   Robbins,   D.   W.;   Boebel,   T.   A.;   Hartwig,   J.   F.   J.   Am.   Chem.  Soc.  2010,  132,  4068.     (12)   For   transition   metal   catalyzed   benzylic   borylation   reac-­‐ tions,   see:   (a)   Shimada,   S.;   Batsanov,   A.   S.;   Howard,   J.   A.   K.;   Marder,  T.  B.  Angew.  Chem.,  Int.  Ed.  2001,  40,  2168.  (b)  Ishiyama,   T.;  Ishida,  K.;  Takagi,  J.;  Miyaura,  N.  Chem.   Lett.  2001,  30,  1082.  (c)   Boebel,  T.  A.;  Hartwig,  J.  F.  Organometallics  2008,  27,  6013.   (13)  For  recent  reports  on  the  electronic  effects  of  C−H  boryla-­‐ tion   of   arenes,   see:   (a)   Boller,   T.   M.;   Murphy,   J.   M.;   Hapke,   M.;   Ishiyama,  T.;  Miyaura,  N.;  Hartwig,  J.  F.  J.  Am.  Chem.  Soc.  2005,   127,   14263.   (b)   Dang,   L.;   Lin,   Z.;   Marder,   T.   B.   Chem.   Commun.   2009,  3987.  (c)  Liskey,  C.  W.;  Wei,  C.  S.;  Pahls,  D.  R.;  Hartwig,  J.   F.  Chem.  Commun.  2009,  5603.  (d)  Chotana,  G.  A.;  Vanchura,  B.   A.,  II.;  Tse,  M.  K.;  Staples,  R.  J.;  Maleczka,  R.  E.,  Jr.;  Smith,  M.  R.,   III.   Chem.   Commun.   2009,   5731.   (e)   Vanchura,   B.   A.,   II.;   Preshlock,   S.   M.;   Roosen,   P.   C.;   Kallepalli,   V.   A.;   Staples,   R.   J.;   Maleczka,   R.   E.,   Jr.;   Singleton,   D.   A.;   Smith,   M.   R.,   III.   Chem.   Commun.  2010,  46,  7724.     (14)   Rayment,   E.   J.;   Summerhill,   N.;   Anderson,   E.   A.   J.   Org.   Chem.  2012,  77,  7052.     (15)   Radner,   F.;   Wistrand,   L.-­‐G.   Tetrahedron   Lett.   1995,   36,   5093.     (16)   Imao,   D.;   Glasspoole,   B.   W.;   Laberge,   V.   S.;   Crudden,   C.   M.    J.  Am.  Chem.  Soc.  2009,  131,  5024.          

 

 

ACS Paragon Plus Environment

Page 5 of 5

Journal of the American Chemical Society Bpin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

E+ H R2 R1 SiMe2H

Ir(I)/ligand B2Pin2 THF, 80 oC

Bpin

R2 R1 E (E = H, D or I)

R2 R1 SiMe2H 20 examples (50-95% yield)

OH [O]

R2 R1 OH

 

ACS Paragon Plus Environment

5