Iron(I) and Iron(IV) Porphyrins - Advances in Chemistry (ACS

Jul 22, 2009 - University of Southern California, Chemistry Department, Los Angeles, CA 90007. Electrochemical and Spectrochemical Studies of ... The ...
2 downloads 16 Views 3MB Size
15 Iron(I) and Iron(IV) Porphyrins

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

CHRISTOPHER A. R E E D University of Southern California, Chemistry Department, Los Angeles, CA 90007

Critical review of the literature on iron(I) and iron(IV) porphyrins reveals many ambiguities in the assigned spin and oxidation states. The question of whether a redox reaction has occurred at the iron atom or at the porphyrin ring in highly reduced or highly oxidized complexes is not semantic and can usually be decided collectively from UV-VIS spectroscopy, Mössbauer spectroscopy, and structural parameters derived from x-ray crystallography. The low spin iron(I) state has considerable validity in iron porphyrin complexes that are reduced below the iron(II) level. Complexes that are oxidized above the iron(III) level give rise to either iron(IV) porphyrins or, more often, iron(III) radical cations. The site of redox is largely dictated by the nature of the axial ligation. Highly reduced and highly oxidized iron porphyrin complexes provide a basis for understanding intermediates in the reactions of cytochrome P-450 and the peroxidases.

T r o n porphyrin complexes have been studied intensively i n their c o m m o n l y o c c u r r i n g o x i d a t i o n states, i r o n ( I I ) a n d i r o n ( I I I ) . A l l p o s ­ s i b l e s p i n states a r e k n o w n a n d f r o m x - r a y c r y s t a l s t r u c t u r e d e t e r m i n a ­ tions a consistent a n d r e l i a b l y p r e d i c t i v e r e l a t i o n s h i p b e t w e e n s p i n state a n d s t r u c t u r e h a s e v o l v e d (J ). A l o n g w i t h v a r i o u s m a g n e t i c c r i t e ­ r i a , b o t h M ô s s b a u e r s p e c t r a (2) a n d p r o t o n N M R s p e c t r a (3) a r e n o t a b l y d i a g n o s t i c o f s p i n a n d o x i d a t i o n states. T h e s y s t e m a t i c s a r e s u f f i c i e n t l y w e l l - e s t a b l i s h e d s u c h that most properties o f iron(II) a n d iron(III) p o r p h y r i n c o m p l e x e s are u n d e r s t o o d a n d c a n b e p r e d i c t e d w i t h a g o o d degree o f metrical accuracy a n d confidence. O n the other h a n d , c o m p a r a b l e definitive characterization o f h i g h l y r e d u c e d o r h i g h l y o x i d i z e d i r o n p o r p h y r i n s is l a c k i n g . T h e l i t ­ erature contains m a n y inconsistencies o n iron(I) porphyrins a n d m a n y 0065-2393/82/0201-0333$07.00/0 © 1982 A m e r i c a n C h e m i c a l Society In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

334

a m b i g u i t i e s i n the characterization o f s o - c a l l e d i r o n ( I V ) p o r p h y r i n s . T h i s situation s h o u l d be clarified because s u c h porphyrins m a y have c o n s i d e r a b l e r e l e v a n c e to u n d e r s t a n d i n g

the r e d o x m e c h a n i s m s

w h i c h the h e m o p r o t e i n s p e r o x i d a s e , catalase, a n d c y t o c h r o m e

by

P-450

carry out t h e i r c h e m i s t r y . O f t e n , the characterization o f a n i r o n p o r p h y ­ r i n c o m p l e x c a n n o t b e c o n s i d e r e d d e f i n i t i v e u n t i l its x - r a y c r y s t a l Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

structure has b e e n d e t e r m i n e d a n d a fairly c o m p l e t e battery o f spec­ t r o s c o p i c p r o b e s has b e e n a p p l i e d . E a r l y s o l u t i o n w o r k o n spectroscopy,

electrochemistry,

and

magnetic

UV-VIS

measurements

has

t u r n e d o u t to b e less t h a n a d e q u a t e . I m p r o v e d s y n t h e s e s a n d a m o r e extensive use o f M ô s s b a u e r a n d N M R spectroscopy a n d x-ray crystal s t r u c t u r e d e t e r m i n a t i o n has r e c e n t l y a l l o w e d t h e r e s o l u t i o n o f m a n y ambiguities.

Iron(l) Porphyrins R e d u c t i o n o f an i r o n p o r p h y r i n c o m p l e x b e l o w the iron(II) o x i d a ­ t i o n state w a s first r e p o r t e d i n 1971 (4). S p e c t r o s c o p i c p r o p e r t i e s o f a r e d c o m p l e x p r e s u m e d to b e [ F e ( T P P ) ] ~ w e r e d e t e r m i n e d . T h i s c o m ­ p l e x was p r e p a r e d b y s o d i u m a m a l g a m reduction o f the μ - ο χ ο iron(III) c o m p l e x F e ( T P P ) 0 i n tetrahydrofuran ( T H F ) s o l u t i o n ( T P P = tetraphenylporphyrinate). A distinctive l o w temperature E P R spectrum w i t h g± = 2 . 3 0 a n d gn = 1.93 w a s o b s e r v e d . S u c h a n i s o t r o p y is c o n ­ sistent w i t h a s i n g l e , m e t a l - l o c a l i z e d u n p a i r e d e l e c t r o n a n d b y c o m ­ parison w i t h rf -cobalt(II) p o r p h y r i n c o m p l e x e s , a l o w s p i n iron(I) formulation was assigned. H o w e v e r , an iron(II) p o r p h y r i n radical a n i o n f o r m u l a t i o n , w h e r e a n S = 1 i r o n is s t r o n g l y s p i n - c o u p l e d to t h e S = i r a d i c a l g i v i n g a n o v e r a l l S = i state, w o u l d b e e q u a l l y consistent w i t h t h e E P R s p e c t r u m . B u t , t h e m a g n e t i c m o m e n t , d e t e r m i n e d at h i g h e r t e m p e r a t u r e s , w a s c o n s i d e r a b l y i n e x c e s s o f t h a t e x p e c t e d for a n S = \ i r o n ( I ) c e n t e r . T h i s finding l e d to t h e p r o p o s a l t h a t t h e s p i n state c h a n g e d to a n S = f state o n t h a w i n g o f t h e f r o z e n t e t r a h y d r o f u r a n solution. S p i n state-structure relationships i n iron porphyrins sug­ g e s t t h a t s u c h a h i g h s p i n i r o n ( I ) s p e c i e s is v e r y u n l i k e l y b e c a u s e u n r e a l i s t i c c o r e e x p a n s i o n or o u t - o f - p l a n e i r o n d i s p l a c e m e n t [ g r e a t e r t h a n for h i g h - s p i n i r o n ( I I ) ] w o u l d b e r e q u i r e d ( J ) . M o r e o v e r , t h e V I S s p e c t r a l m a x i m a at 5 4 0 a n d 6 0 5 n m r e p o r t e d for [ F e ( T P P ) ] (4) are u n c o m f o r t a b l y c l o s e to those o f the r e d iron(II) c o m p l e x F e ( T P P ) ( T H F ) ( 5 3 9 a n d 6 1 0 n m ) , w h i c h is a n S = 2 h i g h s p i n c o m p l e x ( 5 ) . M o s t l i k e l y t h e r e p o r t e d m a g n e t i c m o m e n t (μ = 5.2 B M ) is d u e n o t t o [ F e ( T P P ) ] " b u t to a m i x t u r e c o n t a i n i n g m o s t l y h i g h s p i n i r o n ( I I ) . B e c a u s e iron(II) p o r p h y r i n s are E P R silent a n d the E P R t e c h n i q u e was not a p p l i e d q u a n t i t a t i v e l y , o n l y s m a l l a m o u n t s o f authentic [ F e ( T P P ) ] " w o u l d b e n e c e s s a r y to m a t c h t h e o b s e r v a t i o n s . 2

2

7

-

2

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

15.

335

REED

Iron(I) and Iron(IV) Porphyrins

A subsequent electrochemical study o f [Fe(TPP)]~ and related i r o n p o r p h y r i n s (6) s t r e n g t h e n e d t h e l o w s p i n a s s i g n m e n t i n f r o z e n solution, a n d further E P R studies w e r e c o n d u c t e d . [ F e ( T P P ) ] ~ m a y b e d e v o i d o f a x i a l l i g a t i o n , e v e n i n t h e p r e s e n c e o f g o o d d o n o r s s u c h as i m i d a z o l e or p y r i d i n e . T h e s l i g h t s o l v e n t d e p e n d e n c e o f t h e E P R s p e c t r u m w a s i n t e r p r e t e d i n t e r m s o f a (d 2) c o n f i g u r a t i o n b y c o m p a r i ­ s o n to c o b a l t ( I I ) p o r p h y r i n s . B o t h t h e (d^) c o n f i g u r a t i o n a n d t h e o v e r ­ a l l n e g a t i v e c h a r g e p r o v i d e a r a t i o n a l e for t h e l a c k o f a x i a l c o o r d i n a t i o n b u t t h e g r o u n d state is b y n o m e a n s c e r t a i n . A (d ) c o n f i g u r a t i o n is equally viable. 1

Z

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

1

1

xz

A t h i r d s t u d y (7) r e p o r t e d a s y n t h e t i c r o u t e t h a t , for t h e first t i m e , a l l o w e d i s o l a t i o n o f a c r y s t a l l i n e s o d i u m salt, N a [ F e ( T P P ) ] . Na

+

naphthalide" + Fe(II)(TPP) ™

Na[Fe(TPP)] +

naphthalene

A e r o b i c sensitivity created difficulties i n o b t a i n i n g e l e m e n t a l analyses, b u t a t o m r a t i o s w e r e s a t i s f a c t o r y for N a [ F e ( T P P ) ] , e x c e p t for c a r b o n . T h i s result o c c u r r e d p r o b a b l y b e c a u s e T H F solvation was not taken into account. U n e x p l a i n e d , h o w e v e r , was the h i g h m a g n e t i c m o m e n t (μ = 5.0 B M ) . A l t h o u g h s u c h a v a l u e is s i m i l a r to t h a t o b t a i n e d i n t h e o r i g i n a l s o l u t i o n w o r k , i t is a g a i n i n c o n s i s t e n t w i t h a l o w s p i n S = i i r o n ( I ) c o m p l e x . T h e l i k e l y o r i g i n o f t h i s h i g h m a g n e t i c m o m e n t is a e r o b i c u p t a k e o f o x y g e n b y [ F e ( T P P ) ] ~ to form the h i g h s p i n i r o n ( I I I ) species [ F e ( 0 ) ( T P P ) ] " . 2

W h e n the synthesis a n d characterization are c a r r i e d out u n d e r s c r u p u l o u s l y anaerobic conditions, p u r p l e crystals o f formulation [ N a ( T H F ) ] [ F e ( T P P ) ] a r e p r o d u c e d (8). [Anal C a l c u l a t e d for C 5 6 H 0 3 N F e N a : C , 74.08; H , 5.77; N , 6.17. F o u n d : C , 74.34; H , 5.94; N , 6.06. Q u a n t i t a t i v e G L C a n a l y s i s for T H F : c a l c u l a t e d : 2 3 . 8 % . F o u n d : 25.4%] T h i s isolated product had a room-temperature magne­ t i c m o m e n t o f 2 . 3 B M , w h i c h is m u c h c l o s e r to t h a t e x p e c t e d o f a n S = i s y s t e m . T h e c o m p l e x reacts i m m e d i a t e l y w i t h o x y g e n i n the s o l i d state w i t h a c o n c o m i t a n t i n c r e a s e i n m a g n e t i c m o m e n t , a p p r o a c h ­ i n g 5.9 B M (8). 3

5 2

4

T h e e a r l y s y n t h e t i c s t u d y (7) a l s o r e p o r t e d t h a t [ F e ( T P P ) ] " b i n d s c a r b o n m o n o x i d e to g i v e a n u n u s u a l " h y p e r " t y p e U V - V I S s p e c t r u m r e l a t e d to c y t o c h r o m e P - 4 5 0 . T h i s o b s e r v a t i o n is at o d d s w i t h t h e ear­ l i e r r e p o r t e d i n a b i l i t y o f [ F e ( T P P ) l ~ to b i n d a x i a l l i g a n d s . R e p e a t i n g t h i s e x p e r i m e n t (8) i n d i c a t e d t h a t C O has n o effect o n t h e U V - V I S s p e c t r u m o f [ F e ( T P P ) r i n T H F (392 Soret,424 Soret,512,576sh, 6 0 5 s h , a n d 6 7 4 n m ) a n d t h a t t h e s p e c t r u m r e p o r t e d for t h e p r o p o s e d C O a d d u c t ( 4 5 5 n m S o r e t ) c a n b e a c c o u n t e d for e i t h e r b y t h e p r e s e n c e o f t h e d i a n i o n [ F e ( T P P ) ] (358 a n d 4 4 8 n m S o r e t ) o r b y t h e p r e s e n c e of a n a p p a r e n t l y different form o f [ F e ( T P P ) ] ~ , the s o - c a l l e d form A (457 n m Soret). 2 -

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

336

T h u s , a l t e r n a t i v e e x p l a n a t i o n s c a n b e g i v e n for a l l t h e a n o m a l o u s p r o p e r t i e s r e p o r t e d for s o - c a l l e d i r o n ( I ) p o r p h y r i n s . B e c a u s e t h e s p i n state o f a n i r o n p o r p h y r i n is a l w a y s r e f l e c t e d i n its s t r u c t u r e ( I ), w e d e c i d e d t o d e t e r m i n e t h e x - r a y c r y s t a l s t r u c t u r e o f [ F e ( T P P ) ] ~ to c h e c k for c o n s i s t e n c y w i t h t h e s p i n a n d a x i a l l i g a t i o n states d e d u c e d . C r y s t a l s s u i t a b l e for x - r a y w e r e o b t a i n e d f r o m a p y r i d i n e - T H F s o l u t i o n o f N a [ F e ( T P P ) ] i n the p r e s e n c e o f d i b e n z o - 1 8 - c r o w n - 6 (8). T h e p r o d u c t has the f o r m u l a t i o n [ N a ( c r o w n ) ( T H F ) ] [ F e ( T P P ) ] · T H F . P y r i d i n e l i ­ g a t i o n w a s a b s e n t , d e s p i t e its u s e as c o s o l v e n t . T h e a n i o n is t e t r a c o o r d i n a t e d a n d p l a n a r w i t h a n a v e r a g e F e - N d i s t a n c e o f 1.988 (1) Â ( 9 ) . T h i s d i s t a n c e is e n t i r e l y c o n s i s t e n t w i t h t h e l a c k o f d&^p o c c u p a t i o n i n t h e l o w s p i n state. It is s l i g h t l y l o n g e r t h a n t h a t o f t h e i n t e r m e d i a t e s p i n i r o n ( I I ) c o m p l e x F e ( T P P ) ( 1 . 9 7 Â ) as e x p e c t e d f r o m v a l e n c y c h a r g e c o n s i d e r a t i o n s . It is s l i g h t l y s h o r t e r t h a n t h o s e o f l o w s p i n h e x a c o o r d i n a t e d i r o n ( I I ) c o m p l e x e s (—2.00 Â ) a n d is far r e m o v e d f r o m t h o s e o f h i g h s p i n i r o n ( I I ) c o m p l e x e s (—2.08 Â ) . 2

F i n a l l y , the M o s s b a u e r spectrum o f crystalline [ N a ( T H F ) ] [ F e ( T P P ) ] w a s d e t e r m i n e d a n d t h e i s o m e r s h i f t (δ) r e l a t i v e to m e t a l l i c i r o n is 0 . 6 5 m m / s (JO). T h i s v a l u e is v e r y h i g h for a n i r o n p o r p h y r i n a n d is q u i t e c o n s i s t e n t w i t h t h e h i g h e l e c t r o n d e n s i t y at t h e n u c l e u s o f i r o n i n t h e f o r m a l l y u n i v a l e n t o x i d a t i o n state. T a b l e I l i s t s s o m e representative examples that illustrate the u s u a l t r e n d o f increas­ i n g δ w i t h d e c r e a s i n g o x i d a t i o n state. H o w e v e r , t h e apparently s t r a i g h t f o r w a r d t r e n d i n δ is d e c e p t i v e . E x c e p t i o n s c a n e a s i l y b e f o u n d . I n t h e a b s e n c e o f m a g n e t i c field i n v e s t i g a t i o n s ( w h i c h d o n o t h e l p i n d i a m a g n e t i c c o m p o u n d s ) a s i m p l e t r e n d i n isomer shift s h o u l d b e a c c e p t e d w i t h c a u t i o n . S i m i l a r l y , the q u a d r u p o l e shift m a y defy a s i m p l e e x p l a n a t i o n . I n t h e p r e s e n t c a s e t h e l a r g e v a l u e (ΔΕη = 2 . 2 3 m m / s ) is c o n s i s t e n t w i t h t h e l a r g e c h a r g e a s y m m e t r y e x p e c t e d o f t h i s tetragonal ion. 3

I r o n (I) p o r p h y r i n s m i g h t a p p e a r to b e w e l l - b e h a v e d s y s t e m s w i t h all properties consistent w i t h an S = i d system. O n close inspection, h o w e v e r , t w o p r o p e r t i e s are s o m e w h a t o u t o f l i n e w i t h t h e i r o n ( I ) p o r p h y r i n f o r m u l a t i o n a n d are m o r e c o n s i s t e n t w i t h a n i r o n ( I I ) p o r p h y ­ r i n r a d i c a l a n i o n formulation, [ F e ( T P P - ) ] ~ - F i r s t , the U V - V I S spec­ t r u m is q u i t e l i k e t h a t o f a p o r p h y r i n r a d i c a l a n i o n h a v i n g b r o a d , l o w intensity Soret m a x i m a a n d b r o a d m a x i m a i n the α , β - r e g i o n c o m p a r e d w i t h , for e x a m p l e , F e ( T P P ) i n T H F (see F i g u r e 1). A p a r t f r o m s u c h b r o a d e n i n g , r e d - s h i f t e d Soret b a n d s also are c o n s i d e r e d d i a g n o s t i c o f p o r p h y r i n r a d i c a l a n i o n s (J9). H o w e v e r , t h e m a j o r S o r e t b a n d s o f F e ( T P P ) a n d o f [ F e ( T P P ) ] ~ are essentially the s a m e w a v e l e n g t h i n T H F . S e c o n d , i n s p e c t i o n o f the b o n d lengths a n d angles o f the porp h i n a t o core i n [ F e ( T P P ) ] ~ s h o w trends that m a y b e consistent w i t h o c c u p a t i o n o f the p o r p h y r i n l o w e s t u n o c c u p i e d m o l e c u l a r o r b i t a l 7

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2

+

c

6

a

Γ Γ II II III III IV IV IV IV IV

Oxidation State

S= 1

s s = i,s

=

S = i S = 0 S = 1 S = 0 S =1 S = 2 S = 1 = 1,S = S = 1 = 1,S =

S =i low S = 1 S = 0 S = f S = f S = 1 S = 1 S = 1 S = 1

s

Overall Spin State

Iron Spin State

Reference 10 10 11 11 12 13 14 15 16 17 18

AEq 2.23 1.29 1.51 1.44 0.46-0.70 0.56 1.24 1.55 1.61 1.49 1.25

(rel. Fe) 0.65 0.48 0.52 0.51 0.41-0.47 0.41 0.11 0.05 0.03 0.05 0.08

δ

T r e n d i n M ô s s b a u e r P a r a m e t e r s ( m m / s at 4 . 2 K ) w i t h O x i d a t i o n S t a t e o f I r o n

Probably in resonance with Fe(II). See text. The S = i radical is protein located and does not interact significantly with the S = 1 iron atom. Weakly interacting.

[FeCl(TPP-)] FeO(TPP)U-Melm) Compd E Sof C C P Compd II of H R P FeO(TMP)Cl Compd I of H R P

2

[Fe(TPP)][Fe(TPP)] Fe(TPP) Fe(TPP)(pip) FeX(TPP)

Compound

Table I.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

Co CO

κ, ο

BIOLOGICAL REDOX COMPONENTS

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

338

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

15.

REED

339

Iron(I) and Iron(IV) Porphyrins

( L U M O ) . I n F i g u r e 2 t h r e e s t r u c t u r e s are c o m p a r e d : F e ( T P P ) ( T H T )

2

as a t y p i c a l l o w s p i n i r o n ( I I ) p o r p h y r i n o f w e l l - d e f i n e d v a l e n c y (20); [Fe(TPP)]"

as

its

sodium

crown-THF-solvated

salt

2

[ F e ( T P P ) ] " , the further r e d u c e d species that q u i t e

(9);

and

unambiguously

h a s p o r p h y r i n r a d i c a l a n i o n c h a r a c t e r ( d i s c u s s e d later) (9). T h e b o n d d i s t a n c e s are l i s t e d i n o r d e r for t h e s e t h r e e c o m p o u n d s i n t h e

upper

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

r i g h t q u a d r a n t o f F i g u r e 2 a n d t h e l a b e l i n g s c h e m e is i n t h e u p p e r left quadrant. T h e lengthening

o f the

and C

a

- N bonds and

the

s h o r t e n i n g o f the C - C & b o n d i n [ F e ( T P P ) ] " r e l a t i v e to those o f a a

n o r m a l p l a n a r p o r p h y r i n are c o n s i s t e n t w i t h s o m e p o p u l a t i o n o f t h e porphyrin L U M O , an e

g

C -C b

b

and C

a

o r b i t a l t h a t is a n t i b o n d i n g w i t h r e s p e c t to

- N a n d b o n d i n g w i t h r e s p e c t to C - C a

structures o f u n a m b i g u o u s

(21).

6

radical anion complexes

M o r e x-ray

are n e e d e d

c l a r i f y t h e f u l l effects o f L U M O p o p u l a t i o n .

124.4(2) Figure 2. Porphyrin core dimensions for Fe(TPP)(THT) , [Fe(TPP)]~, and [Na(THF) ] [Fe(TPP)] (9). Each group of digits gives the dimensions for these three species in their respective order. 2

3

2

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

to

BIOLOGICAL REDOX COMPONENTS

340

T h e c o n c l u s i o n is t h a t s o m e c o n t r i b u t i o n o f a s p i n - c o u p l e d i r o n ( I I ) p o r p h y r i n r a d i c a l a n i o n formulation to the iron(I) p o r p h y r i n formula­ tion m a y b e necessary to r a t i o n a l i z e f u l l y the properties o f [ F e ( T P P ) ] " . R e s o n a n c e forms c a n b e w r i t t e n w i t h iron(I) as the major c o n t r i b u t o r :

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

[Fe(I)(TPP)]- ~ [Fe(II)(TPP · )]"

S u c h resonance suggests that i n the f o r m a l i z e d iron(I) c o n t r i b u t o r the u n p a i r e d e l e c t r o n m u s t r e s i d e i n a n o r b i t a l o f t h e s a m e s y m m e t r y as t h e p o r p h y r i n L U M O . B e c a u s e t h e p o r p h y r i n L U M O has e s y m m e t r y , g

the s i n g l y o c c u p i e d iron(I) orbital must be d

xz

or d . yz

1

T h i s o b s e r v a t i o n is i n c o n f l i c t w i t h t h e (d^) c o n f i g u r a t i o n s u g ­ gested b y E P R results, w h i c h c o m p a r e d iron(I) to t h e isoelectronic 1

C o ( I I ) ( T P P ) (6). T h i s i s s u e r e m a i n s to b e r e s o l v e d , b u t t h e (d )

spin

xz

c o n f i g u r a t i o n for i r o n ( I ) w o u l d b e m o r e i n k e e p i n g w i t h t h e

2

(d ,d ) xz

yz

configuration o f F e ( I I ) ( T P P ) w h e r e the d 2 orbital is l o w e r i n energy Z

than

d ,d . xz

yz

I n s u m m a r y , t h e l o w s p i n i r o n ( I ) f o r m u l a t i o n for [ F e ( T P P ) ] " is a n adequate assignment

for m o s t p r o p e r t i e s , b u t s o m e r e s o n a n c e

con­

t r i b u t i o n f r o m a s p i n - c o u p l e d i r o n ( I I ) r a d i c a l f o r m u l a t i o n is n e e d e d to r a t i o n a l i z e the broadness o f the U V - V I S s p e c t r u m a n d the s u b t l e dif­ ferences i n core b o n d lengths b e t w e e n [ F e ( T P P ) ] " a n d a n o r m a l i r o n p o r p h y r i n . F o r t h e first t i m e , a s i n g l e , d i s c r e t e v a l e n c y is i n a d e q u a t e for d e s c r i b i n g a m e t a l l o p o r p h y r i n c o m p l e x . T y p i c a l l y , a p o r p h y r i n c a n b e c o n s i d e r e d a " h a r d , " i n n o c e n t l i g a n d a n d the issue o f assigning o x i d a t i o n states is n o t s e m a n t i c . F o r e x a m p l e , b o t h v a l e n c e i s o m e r s ô f an oxidized nickel porphyrin were

observed. T h e metal

oxidized

+

[ N i ( I I I ) ( T P P ) ] c a n b e c o n v e r t e d to t h e r i n g o x i d i z e d [ N i ( I I ) ( T P P )]

+

s i m p l y b y m a k i n g m i n o r alterations i n the solvation e n v i r o n m e n t o f the c o m p l e x (22), s u g g e s t i n g t h a t b o t h N i a n d T P P m a i n t a i n d i s c r e t e v a l ­ encies i n a c h e m i c a l e q u i l i b r i u m :

+

[ N i ( I I I ) ( T P P ) ] 5± [ N i ( I I ) ( T P P · ) ]

+

W h e t h e r a true e q u i l i b r i u m exists has not b e e n i n v e s t i g a t e d . H o w e v e r , t h i s i n t e r p r e t a t i o n is to b e c o n t r a s t e d w i t h t h e r e s o n a n c e b e t w e e n v a l ­ e n c y h y b r i d s j u s t s u g g e s t e d for i r o n ( I ) . I f r e s o n a n c e c o n t r i b u t o r s a r e n e e d e d w i t h r a d i c a l a n i o n s t r u c t u r e s b u t n o t for r a d i c a l c a t i o n s t r u c ­ tures, a rationale m a y l i e i n orbital o v e r l a p s y m m e t r i e s . A l t h o u g h the e L U M O s o f a p o r p h y r i n h a v e t h e c o r r e c t s y m m e t r y for o v e r l a p w i t h t h e (d ,d ) m e t a l o r b i t a l s , n e i t h e r t h e a n o r t h e α% H O M O s ( h i g h e s t

g

xz

yz

2u

η

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

15.

341

REED

lron(l)

and Iron(IV)

Porphyrins

o c c u p i e d m o l e c u l a r o r b i t a l s ) h a v e t h e c o r r e c t s y m m e t r y for o v e r l a p w i t h a n y o f the m e t a l d-orbitals. H o w e v e r , l a c k o f o v e r l a p does not r u l e out s p i n c o u p l i n g i n r a d i c a l cations.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

C h o i c e o f a n i n t e g r a l v a l e n c y d e p e n d s on the p a r t i c u l a r p h y s i c a l p r o p e r t y that forms the basis o f the assignment. T h e f o r e g o i n g analysis demonstrates that M o s s b a u e r spectroscopy c a n be a g o o d p r o b e o f the i r o n o x i d a t i o n state, U V - V I S s p e c t r o s c o p y m a y b e t h e b e s t p r o b e o f the oxidation l e v e l o f the p o r p h y r i n , a n d a consistency c h e c k w i t h an x - r a y c r y s t a l s t r u c t u r e is h i g h l y d e s i r a b l e . M a g n e t i c c r i t e r i a a r e fre­ q u e n t l y a m b i g u o u s . E l e c t r o c h e m i c a l c r i t e r i a for d i s t i n g u i s h i n g r i n g redox from m e t a l r e d o x i n c l u d e the ~ 2 . 2 5 - V difference i n p o t e n t i a l b e t w e e n t h e first r i n g o x i d a t i o n a n d t h e first r i n g r e d u c t i o n (23). T h i s c r i t e r i o n is n o t p a r t i c u l a r l y h e l p f u l for i r o n p o r p h y r i n s . A n o t h e r e l e c ­ t r o c h e m i c a l c r i t e r i o n for i d e n t i f y i n g t h e s i t e o f r e d o x i n v o l v e s c o m p a r ­ i n g t h e r e d u c t i o n p o t e n t i a l s for M ( T P P ) ( M = m e t a l ) c o m p l e x e s w i t h those o f the tetracyano-substituted t e t r a p h e n y l p o r p h y r i n c o m p l e x e s M ( T P P - C N ) (24). D i f f e r e n c e s o f 1.0 ± 0.1 V i n d i c a t e r i n g r e d o x , w h e r e a s m e t a l c e n t e r e d r e d o x u s u a l l y has m u c h s m a l l e r d i f f e r e n c e s . F o r t h e i r o n ( I I I - I I ) r e d u c t i o n t h e d i f f e r e n c e is o n l y 0 . 0 5 V b u t for t h e n e x t r e d u c t i o n , t h e d i f f e r e n c e is 0.8 V . T h i s r e s u l t s u p p o r t s t h e i r o n ( I ) a s s i g n m e n t b u t a l s o i n d i c a t e s t h a t t h e i r o n ( I - I I ) p o t e n t i a l is c l o s e to the T P P - T P P - potential. 4

O n e p u z z l i n g feature o f the e l e c t r o c h e m i c a l p r o d u c t i o n o f iron(I) p o r p h y r i n s r e m a i n s . B o t h e l e c t r o c h e m i c a l s t u d i e s (6, 25) r e p o r t t w o forms o f [ F e ( T P P ) ] " , l a b e l e d A a n d B . T h e y are d i s t i n g u i s h e d b y U V - V I S s p e c t r a a n d f o r m Β c o r r e s p o n d s to t h e s y n t h e t i c a l l y a c c e s s i ­ b l e s p e c i e s ( 3 9 0 a n d 4 2 4 n m S o r e t ) a l r e a d y d i s c u s s e d . F o r m A is p r o ­ d u c e d w h e n r e d u c t i o n is c a r r i e d o u t at a m o r e n e g a t i v e p o t e n t i a l . I n l i g h t o f t h e c h e m i s t r y n o w e s t a b l i s h e d for [ F e ( T P P ) ] ~ , i t is n o t c l e a r h o w t w o n o n i n t e r c o n v e r t i b l e forms c o u l d exist. T h e i n v o l v e m e n t o f h y d r o x i d e w a s d i s c u s s e d (25) b u t t h e r e d u c t i o n l e v e l o f A ( 3 6 2 a n d 4 5 7 n m Soret) was not u n a m b i g u o u s l y d e t e r m i n e d . T h e air sensitivity o f these h i g h l y r e d u c e d species makes this w o r k e x p e r i m e n t a l l y v e r y d e m a n d i n g , b u t m o r e s t u d i e s a r e n e e d e d to a s s i g n a f o r m u l a a n d s t r u c ­ ture to the s o - c a l l e d form A o f [ F e ( T P P ) ] " .

Utility of lron(l) Porphyrins: A New Type of Dioxygen Adduct I r o n ( I ) p o r p h y r i n s d o n o t a p p e a r to b e b i o l o g i c a l l y i m p o r t a n t b e ­ c a u s e t h e v e r y n e g a t i v e i r o n ( I - I I ) r e d o x p o t e n t i a l is i n a c c e s s i b l e w i t h t y p i c a l b i o l o g i c a l r e d u c i n g agents. H o w e v e r , the one-electron

reduc­

tion o f the o x y g e n a d d u c t d e r i v e d from ferrous c y t o c h r o m e

P-450

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

342

BIOLOGICAL REDOX COMPONENTS

[ f o r m a l l y a n F e ( I I I ) s u p e r o x o c o m p l e x (26)] is t h e k e y s t e p t h a t i n i ­ tiates m o n o o x y g e n a s e c h e m i s t r y :

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

Fe(III)J

substrate b o u n d ,

r e s t i n g state

oxygenated P-450

ferric P - 4 5 0

+ ROH+ H 0 2

I n the presence o f organic substrate ( R H ) a n d a source o f protons, the o n e - e l e c t r o n r e d u c e d o x y g e n a d d u c t reacts r a p i d l y , w i t h o u t i s o l a b l e i n t e r m e d i a t e s , t o g i v e o x y g e n a t e d s u b s t r a t e ( R O H ) a n d H 0 (27). C o n ­ c e p t u a l l y , t h e o n e - e l e c t r o n r e d u c t i o n o f a n o x y g e n a d d u c t is t h e s a m e as a d d i n g 0 to a n i r o n ( I ) p o r p h y r i n . It is a l s o c o n c e p t u a l l y t h e s a m e as a d d i n g s u p e r o x i d e to a n i r o n ( I I ) p o r p h y r i n (28). 2

2

Fe(0 )(porph)

+

[Fe(I)(porph)]-

+

0

2

Fe(II)(porph)

+

0

2

2

I g n o r i n g t h e effect o f a x i a l l i g a t i o n , t h e r e a c t i o n o f i r o n ( I ) p o r p h y r i n w i t h oxygen should y i e l d a n e w type of reduced oxygen complex, p o s s i b l y r e l a t e d to the k e y r e d u c t i o n s t e p i n the c y t o c h r o m e P - 4 5 0 cycle. T r e a t m e n t o f [ F e ( T P P ) ] " w i t h d r y o x y g e n i n T H F s o l u t i o n at l o w t e m p e r a t u r e s or as a s o l i d at r o o m t e m p e r a t u r e p r o d u c e s [ F e ( 0 ) ( T P P ) ] ~ as its s o d i u m s a l t (8). It is s p e c t r o s c o p i c a l l y i d e n t i c a l to the species p r o d u c e d b y treatment o f F e ( T P P ) w i t h superoxide i o n (28, 2 9 ) . It is c h a r a c t e r i z e d b y U V - V I S s p e c t r o s c o p y ( 4 3 3 , 5 6 4 , a n d 6 0 7 n m i n T H F ) , Ε P R s p e c t r o s c o p y (g = 8, 4 . 2 2 , 1.98 i n f r o z e n D M S O ) , M ô s s b a u e r s p e c t r o s c o p y [ δ = 0 . 5 7 m m / s , AEq = 1 . 0 m m / s at 4 . 2 Κ i n t h e s o l i d state (10)], a n d v i b r a t i o n a l s p e c t r o s c o p y o f t h e o c taethylporphyrinate ( O E P ) analogue [ K ) - 0 = 806 c m ( 2 8 ) ] . T h e ef­ fects o f t e m p e r a t u r e a n d a p p l i e d m a g n e t i c field o n t h e M ô s s b a u e r s p e c t r u m are r e a d i l y i n t e r p r é t a b l e i n terms o f a h i g h - s p i n S = f i r o n ( I I I ) state (20). T a k e n a l l t o g e t h e r t h e s e d a t a s u g g e s t a p e r o x o i r o n ( I I I ) f o r m u l a t i o n for [ F e ( 0 ) ( T P P ) ] ~ w i t h t r i a n g u l a r d i h a p t o c o o r ­ d i n a t i o n l i k e T i ( 0 ) ( O E P ) (30): 2

- 1

2

2

Ο

Ο

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

15.

REED

343

Iron(I) and Iron(IV) Porphyrins

A l t h o u g h [ F e ( I I I ) ( 0 ) ( T P P ) ] ~ lacks the axial thiolate c o o r d i n a t i o n 2

o f c y t o c h r o m e P-450, t h i s w o r k s u g g e s t s t h a t a p e r o x o

intermediate

c o u l d f o r m at t h e d i o x y g e n a d d u c t r e d u c t i o n s t e p i n t h e P-450 c a t a l y t i c c y c l e , p o s s i b l y w i t h t r a n s i t o r y a x i a l - l i g a n d d i s s o c i a t i o n . M o r e w o r k is n e e d e d to v a l i d a t e s u c h s p e c u l a t i o n , h o w e v e r . T h u s , a l t h o u g h iron(I) p o r p h y r i n s t h e m s e l v e s are u n l i k e l y inter­ Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

mediates i n hemoprotein biochemistry, their reaction chemistry may l e a d to u s e f u l m o d e l c o m p o u n d s .

Further Reduced Iron Porphyrins E l e c t r o c h e m i c a l p r o d u c t i o n o f a s p e c i e s t h a t is t w o - e l e c t r o n r e ­ d u c e d b e l o w i r o n ( I I ) w a s i d e n t i f i e d b y U V - V I S s p e c t r o s c o p y (6, 25) (see F i g u r e 1) a n d a s s i g n e d t h e f o r m u l a [ F e ( T P P ) ] " . T h i s g r e e n s p e c i e s is p r e s u m a b l y t h e s a m e as t h a t s e e n as t h e final p r o d u c t o f N a ( H g ) r e d u c t i o n o f F e ( T P P ) 0 (4), a n d o n t h e b a s i s o f t h e b r o a d m a x i m a a n d t h e r e d - s h i f t e d S o r e t b a n d w a s f o r m u l a t e d as a r a d i c a l a n i o n o f i r o n ( I ) , [ F e ( I ) ( T P P - ) ] ~ - A s y n t h e s i s for t h i s d i a n i o n w a s d e ­ v e l o p e d b y treating F e C l ( T P P ) w i t h three equivalents of s o d i u m ant h r a c e n i d e i n T H F s o l u t i o n (8). D a r k g r e e n c r y s t a l s o f t h e d i s o d i u m s a l t w e r e i s o l a t e d a n d a n a l y z e d for [ N a ( T H F ) ] [ F e ( T P P ) ] [Anal C a l ­ c u l a t e d for C 8 H 0 6 N 4 F e N a : C/71.19; H,6,68; N,4.88. F o u n d : C,71.42; H , 6 . 7 8 ; N,5.08.] T h i s s p e c i e s is e x t r e m e l y a i r s e n s i t i v e , d e ­ c o m p o s i n g a e r o b i c a l l y to [ F e ( T P P ) ] 0 . It is d i a m a g n e t i c a n d s h o w s n o E P R s i g n a l w h e n p u r e . A s u s u a l , m a g n e t i c d a t a d o n o t a l l o w o n e to d i s t i n g u i s h b e t w e e n t h r e e p o s s i b l e , b u t n o t e x c l u s i v e , f o r m u l a t i o n s : (1) a n iron(O) rf -porphyrin, [ F e ( 0 ) ( T P P ) ] " , (2) a s p i n - c o u p l e d S = i i r o n ( I ) p o r p h y r i n r a d i c a l a n i o n , [ F e ( I ) ( T P P - ) ] ~ , a n d (3) a s p i n - c o u p l e d S = 1 iron(II) p o r p h y r i n d i r a d i c a l dianion, [Fe(II)(TPP:)] ~. A s m e n ­ t i o n e d e a r l i e r , the g r e e n c o l o r a n d U V - V I S s p e c t r a l features are c o n ­ s i s t e n t w i t h r a d i c a l a n i o n c h a r a c t e r o f t h e p o r p h y r i n r i n g (see F i g u r e 1) s u g g e s t i n g that the iron(I) and/or the iron(II) formulations are m o s t s u i t a b l e . H o w e v e r , M ô s s b a u e r spectroscopy a n d a n x-ray crystal struc­ t u r e w e r e d e s i r a b l e to m a k e a firmer a s s i g n m e n t . 2

2

2

2

3

6

7 6

2

2

2

8

2

2

2

T h e x-ray crystal structure o f [ N a ( T H F ) ] [ F e ( T P P ) ] w a s deter­ m i n e d (9) a n d r e v e a l s t h e 2 : 1 i o n - p a i r e d s t r u c t u r e i l l u s t r a t e d i n F i g ­ u r e 3. T h e a v e r a g e F e - N d i s t a n c e is 1.968 (2) Â , w h i c h is c o n s i s t e n t w i t h a l o w s p i n state. I n F i g u r e 2 t h e r i n g b o n d l e n g t h s a r e c o m p a r e d w i t h those o f an iron(II) l o w s p i n p o r p h y r i n a n d w i t h [ F e ( T P P ) ] ~ . A g a i n , the l e n g t h e n i n g o f CÔ-C& a n d C - N a n d the s h o r t e n i n g o f C - C f t s u g g e s t s p o p u l a t i o n o f t h e p o r p h y r i n L U M O , m o r e so t h a n w i t h [ F e ( T P P ) ] " . T h e structural results therefore support the iron(I) r a d i c a l formulation b u t d o not r e a d i l y d i s t i n g u i s h it from the iron(II) d i r a d i c a l formulation. 3

2

a

a

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

344

BIOLOGICAL REDOX COMPONENTS

Figure 3.

The crystal

structure

of [Na(THF) ] [Fe(TPP)] 3

2

(9).

T h e somewhat surprising result comes from the M ô s s b a u e r spec­ t r u m . T h e i s o m e r s h i f t o f [ N a ( T H F ) ] [ F e ( T P P ) ] is 0 . 4 8 m m / s (JO), w h i c h is c o m p a r a b l e w i t h i r o n ( I I ) p o r p h y r i n s n o t i r o n ( I ) (see T a b l e I). A v a l u e s i m i l a r to i r o n ( I ) or e v e n h i g h e r m i g h t h a v e b e e n e x p e c t e d b u t n o t l o w e r . T w o p o s s i b l e e x p l a n a t i o n s for t h i s r e s u l t are (1) t h e i o n p a i r i n g w i t h s o d i u m v i a the porphinato nitrogen atoms m a y decrease the s-electron density seen b y the i r o n n u c l e u s , m a k i n g the d i a n i o n a p p e a r to b e m o r e o x i d i z e d t h a n t h e m o n o a n i o n [ F e ( T P P ) ] " ( δ = 0 . 6 5 m m / s ) a n d (2) a n u n e x p e c t e d l y l a r g e c o n t r i b u t i o n c o u l d c o m e f r o m t h e i r o n ( I I ) d i r a d i c a l s t r u c t u r e t o t h e f o r m u l a t i o n . I n fact, a l l t h e d a t a o n [ F e ( T P P ) ] can be rationalized b y the s p i n - c o u p l e d iron(II) d i r a d i c a l f o r m u l a t i o n . H o w e v e r , a n u n e x p l a i n e d fact is t h a t t h e t w o - e l e c t r o n r e d u c t i o n o f iron(II) retains l a r g e l y iron(II) character w h i l e the oneelectron r e d u c t i o n gives l a r g e l y iron(I) character. T h u s , a resonance h y b r i d o f i r o n ( I ) a n d i r o n ( I I ) is f a v o r e d . 3

2

2 -

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

REED

15.

345

Iron(I) and Iron(IV) Porphyrins 2

2

[Fe(I)(TPP-)] ~ ~ [Fe(II)(TPP:)] -

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

C o n s i d e r e d i n d i v i d u a l l y , b o t h o f these contributors m u s t b e c o m ­ p l e t e l y s p i n - c o u p l e d b e c a u s e these formulations are i n resonance, not i n e q u i l i b r i u m , a n d t h e c o m p l e x is d i a m a g n e t i c . M e t a t h e s i s w i t h a l k y l a m m o n i u m salts t o r e m o v e t h e s o d i u m i o n - p a i r i n g is b e i n g at­ t e m p t e d to r e s o l v e t h e a m b i g u i t y i n t h e M ô s s b a u e r i n t e r p r e t a t i o n ( 8 ) .

[FeCl(TPP)]+: Iron(IV) Porphyrin or Iron(III) Radical Cation? I n t h e first r e p o r t (31) o f a n i r o n p o r p h y r i n o x i d i z e d a b o v e

the

i r o n ( I I I ) l e v e l , F e ( O A c ) ( T P P ) was e l e c t r o c h e m i c a l l y o x i d i z e d to a species written [ F e ( T P P ) ]

2 +

, a n d o n t h e b a s i s o f its U V - V I S

spectrum

( b r o a d , b l u e - s h i f t e d , m o d e r a t e l y l o w i n t e n s i t y S o r e t at 3 9 6 n m broad

and

α,/3-region) assigned an iron(III) radical cation formulation,

[Fe(III)(TPP)]

2 +

. A m a g n e t i c m o m e n t o f 2 . 7 1 B M w a s i n t e r p r e t e d as

an overall S = 1 system h a v i n g a l o w s p i n S = i iron(III) a n d an S = i p o r p h y r i n radical w i t h no s p i n - c o u p l i n g . I n v i e w o f subsequent mea­ surements

on

the

very

closely related

S = 2

chloride

complex

+

[ F e C l ( T P P ) ] , this m a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t most l i k e l y w a s i n e r r o r . W e t s o l v e n t s p r o b a b l y g a v e r i s e to [ F e ( T P P ) ] 2 0 a n d its oxidation products. These antiferromagnetically c o u p l e d systems have l o w m a g n e t i c m o m e n t s a n d the p u b l i s h e d U V - V I S s p e c t r a are consis­ t e n t w i t h t h e i r p r e s e n c e as m a j o r c o m p o n e n t s . Solutions

of [FeCl(TPP)]

+

were

prepared

by

electrochemical

m e t h o d s (32, 33). T h e c o m p l e x w a s a s s i g n e d a h i g h s p i n i r o n ( I V ) for­ m u l a t i o n b a s e d o n t h e S = 2 s p i n state, U V - V I S a n d p r o t o n N M R spectroscopy, and molecular orbital calculations. T h e closely related [Fe(p-methoxyTPP)Cl]

+

s h o w s s i m i l a r s p e c t r o s c o p i c p r o p e r t i e s to t h e

a n a l o g o u s p r o t o p o r p h y r i n I X d i m e t h y l e s t e r c o m p l e x (34). H o w e v e r , n o n e o f these data u n a m b i g u o u s l y d i s t i n g u i s h b e t w e e n the alternate formulations o f [ F e C l ( T P P ) ]

+

as (1) a h i g h s p i n i r o n ( I V ) p o r p h y r i n o r

(2) a h i g h s p i n i r o n ( I I I ) r a d i c a l c a t i o n w h e r e t h e S = i i r o n is s p i n c o u p l e d t o t h e S = i p o r p h y r i n r a d i c a l to g i v e a n o v e r a l l S = 2 state (19). I n k e e p i n g w i t h t h e v i e w s t h a t M ô s s b a u e r s p e c t r o s c o p y is o n e o f t h e b e s t c r i t e r i a o f o x i d a t i o n a n d s p i n states o f t h e i r o n a n d t h a t a synthetic m e t h o d that a l l o w e d isolation o f [ F e C l ( T P P ) ]

+

for x - r a y

a n a l y s i s w a s d e s i r a b l e to r e s o l v e t h i s p r o b l e m , t h i s s y s t e m w a s r e i n ­ v e s t i g a t e d (13). u s i n g the

A convenient synthetic method was d e v e l o p e d b y

hexachloroantimonate

+

salts o f o r g a n i c r a d i c a l s ( R · )

as

clean, one-electron oxidants of k n o w n potential. +

FeCl(TPP) + R · SbCl " ^ > 6

[FeCl(TPP)][SbCl ] + R 6

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

346

BIOLOGICAL REDOX COMPONENTS

I n m a n y respects these reagents represent the synthetic e q u i v a l e n t o f controlled potential electrochemistry. T h e product [FeCl(TPP)][ S b C l ] is i s o l a b l e as b l a c k c r y s t a l s a n d h a s a U V - V I S s p e c t r u m i n d i c h l o r o m e t h a n e i d e n t i c a l t o t h a t r e p o r t e d for [ F e C l ( T P P ) ] p r o d u c e d e l e c t r o c h e m i c a l l y . T h e m a g n e t i c m o m e n t (μ = 5.1 B M ) is i n d i c a t i v e of four u n p a i r e d electrons a n d C u r i e - W e i s s l a w behavior ( 5 - 3 0 0 K ) shows it to b e a w e l l - b e h a v e d S = 2 system. T h i s magnetic m o m e n t a l s o r u l e s o u t t h e u n l i k e l y f o r m u l a t i o n o f [ F e C l ( T P P ) ] as a n u n ­ c o u p l e d p o r p h y r i n radical cation o f intermediate s p i n iron(III) b e ­ c a u s e s o m e c o u p l i n g o f a d j a c e n t S = f a n d S= i s y s t e m s w o u l d b e e x p e c t e d at 5 K . N o t a b l y , t h e M ô s s b a u e r s p e c t r u m o f [ F e C l ( T P P ) ] [ S b C l e ] is v e r y m u c h l i k e h i g h s p i n i r o n ( I I I ) , n o t o n l y i n t e r m s o f t h e i s o m e r s h i f t a n d q u a d r u p o l e s p l i t t i n g (see T a b l e I ) , b u t a l s o i n t h e a s y m m e t r y o f t h e d o u b l e t as a f u n c t i o n o f t e m p e r a t u r e ( 2 3 ) . T h i s e v i ­ d e n c e is p a r t i c u l a r l y c o m p e l l i n g f o r a h i g h s p i n i r o n ( I I I ) r a d i c a l for­ m u l a t i o n . A l l the spectroscopic data p r e v i o u s l y u s e d to support the alternate iron(IV) assignment (32, 3 3 ) c a n b e reinterpreted. T h e U V V I S spectrum o f [ F e C l ( T P P ) ] has most o f the characteristics o f a r a d i c a l cation i n c l u d i n g a b r o a d α , β - r e g i o n a n d a Soret b a n d (396 n m ) t h a t is b r o a d e n e d , b l u e - s h i f t e d , a n d l o w e r e d i n i n t e n s i t y c o m p a r e d to F e C l ( T P P ) (see F i g u r e 4 ) . T h e s e c h a r a c t e r i s t i c s w e r e p r o b a b l y o v e r l o o k e d at first b e c a u s e t h e r a d i c a l c h a r a c t e r i s t i c s a r e n o t as d r a ­ m a t i c as i n a n i d e a l c a s e s u c h as [ Z n ( T P P ) ] w h e r e m e t a l a n d l i g a n d orbital energies are p r e s u m a b l y well-separated. T h e proton N M R s p e c t r u m has the /3-pyrrole protons m a r k e d l y s h i f t e d d o w n f i e l d (-63.8 ppm) i n a manner reminiscent o f h i g h s p i n iron(III) [ - 7 9 p p m in F e C l ( T P P ) ] (3). T h e value o f - 6 9 p p m originally reported (32) 6

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

+

+

+

+

1

p r o b a b l y arose from s i g n a l a v e r a g i n g from a m i x t u r e o f [FeCl(TPP)]" " a n d F e C l ( T P P ) . T h i s l a r g e d o w n f i e l d s h i f t is p r o b a b l y d u e t o s p i n d e n s i t y i n t h e d 2_ o r b i t a l a n d i t is n o t a b l y u n l i k e t h a t o f t h e h i g h s p i n d - c o m p l e x M n C l ( T P P ) [ + 2 0 p p m ( 3 ) ] , w h i c h h a s d 2_ unoc­ c u p i e d . B e c a u s e M n C l ( T P P ) is i s o e l e c t r o n i c w i t h h i g h s p i n i r o n ( I V ) , i t is p r o b a b l y a g o o d N M R m o d e l . T h e c h e m i c a l shifts o f t h e p h e n y l p r o t o n s a r e a n a l y z e d i n m o r e d e t a i l e l s e w h e r e (34). T h e s i n g l e o c c u ­ pation o f the p o r p h y r i n H O M O i n T P P - m i g h t b e e x p e c t e d to shift various ring vibrational modes. Interestingly, [ F e C l ( T P P ) ] [ S b C l ] h a s a s t r o n g b a n d at 1 2 9 0 c m i n t h e I R s p e c t r u m t h a t d o e s n o t a p p e a r i n F e C l ( T P P ) . T h i s b a n d d o e s n o t a r i s e f r o m t h e a n i o n a n d is s e e n i n other T P P r a d i c a l cation species ( 3 5 ) . T h i s b a n d appears to b e a u n i q u e l y d i a g n o s t i c criterion o f r a d i c a l cations o f T P P . X

y2

4

X

y2

+

6

- 1

T h e final a r b i t e r o f t h i s f o r m u l a t i o n q u e s t i o n w i l l b e t h e x - r a y crystal structure because a h i g h s p i n iron(III) atom i n [ F e C l ( T P P ) ] s h o u l d have c o o r d i n a t i o n g r o u p parameters e n t i r e l y different from a n i r o n ( I V ) a t o m . W i t h d^- i o c c u p i e d , h i g h s p i n i r o n ( I I I ) , i f p e n t a c o o r +

y

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Figure

4.

UV-VIS

6

spectra of Fe(III)Cl(TPP) (—) and [Fe(III)Cl(TPP)][SbCl ] (->) methane (35). These essentially are identical to those of Ref. 33.

in

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

dichloro-

348

BIOLOGICAL REDOX COMPONENTS

d i n a t e d s h o u l d h a v e l o n g F e - N d i s t a n c e s (—2.05 Â ) a n d s h o u l d b e d i s p l a c e d c o n s i d e r a b l y (—0.5 Â ) f r o m t h e p o r p h y r i n p l a n e . O n t h e o t h e r h a n d , h i g h s p i n i r o n ( I V ) , h a v i n g άχ2- 2 u n o c c u p i e d , is e x p e c t e d to s h o w short F e - N distances ( ^ 2 . 0 0 À) a n d c o o r d i n a t i o n g r o u p pa­ rameters s i m i l a r to, b u t s l i g h t l y c o n t r a c t e d f r o m , M n C l ( T P P ) .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

υ

T h e e l e c t r o c h e m i c a l c r i t e r i a for d i s t i n g u i s h i n g m e t a l o x i d a t i o n f r o m r i n g o x i d a t i o n are at b e s t a m b i g u o u s a n d at w o r s t m i s l e a d i n g for i r o n . T h e 2 . 2 5 ± 0 . 1 5 - V d i f f e r e n c e b e t w e e n t h e first r i n g o x i d a t i o n a n d first r i n g r e d u c t i o n o f m o s t o c t a e t h y l p o r p h y r i n a t e ( O E P ) c o m p l e x e s l e a d s to a m b i g u i t y i n F e ( O E P ) ( O H ) (23). F o r F e ( T P P ) d e r i v a t i v e s t h e [ F e ( I ) ( T P P ) ] - / [ F e ( I I I ) C l ( T P P ) ] d i f f e r e n c e is - 2 . 1 V a n d t h e [ F e ( T P P ) ] 7 F e ( I I I ) C l ( T P P - ) ] r i n g d i f f e r e n c e is - 2 . 7 V . C l e a r l y , t h e 2 . 2 5 - V c r i t e r i o n is n o t a p p l i c a b l e i n t h i s c a s e . T h e d i f f e r e n c e b e t w e e n t h e first a n d s e c o n d r i n g o x i d a t i o n s is f r e q u e n t l y 0 . 2 9 ± 0 . 0 5 V , s u g ­ g e s t i n g a n o t h e r c r i t e r i o n for a s s i g n i n g r e d o x s t e p s ( 1 9 ) . I n e t i o p o r p h y r i n I iron(III) chloride a n d tetra-p-tolylporphyrin iron(III) chlor­ i d e d i f f e r e n c e s o f 0 . 5 4 a n d 0 . 4 3 V , r e s p e c t i v e l y , w e r e u s e d to s u b ­ stantiate the i r o n ( I V ) assignment (33). I n v i e w o f the c o n c l u s i o n that [ F e C l ( T P P ) ] is n o t i r o n ( I V ) a n d t h e l i k e l i h o o d t h a t t h e e t i o p o r p h y r i n I a n d t o l y l p o r p h y r i n a n a l o g u e s are l i k e w i s e not i r o n ( I V ) , this e l e c t r o ­ c h e m i c a l c r i t e r i o n is a p p a r e n t l y n o t a l w a y s r e l i a b l e . O f s u b s t a n t i a l l y m o r e r e l i a b i l i t y is t h e c r i t e r i o n o f i n s e n s i t i v i t y o f r i n g o x i d a t i o n t o a x i a l l i g a t i o n c h a n g e (36). T h i s study l e n d s support to the r i n g o x i d a ­ tion o f F e C l ( T P P ) . T h u s , a l t h o u g h i n favorable cases e l e c t r o c h e m i c a l c r i t e r i a c a n s u p p o r t the a s s i g n m e n t o f a site o f r e d o x , they s h o u l d not b e r e l i e d o n i n cases w h e r e m e t a l r e d o x p o t e n t i a l s m a y b e c l o s e to ring potentials. +

2

+

+

I n s u m m a r y , t h e w e i g h t o f e v i d e n c e is h e a v i l y a g a i n s t a n i r o n ( I V ) f o r m u l a t i o n for [ F e C l ( T P P ) ] a n d b e c a u s e a n x - r a y s i n g l e - c r y s t a l s t u d y is i n p r o g r e s s ( 3 7 ) a n d e x t e n d e d x - r a y a b s o r p t i o n fine s t r u c t u r e ( E X A F S ) m e a s u r e m e n t s a r e b e i n g m a d e ( 3 8 ) , t h e final r e s o l u t i o n o f this question c a n b e a n t i c i p a t e d i n the near future. M ô s s b a u e r spec­ t r o s c o p y h a s p r o v e d to b e a d e c i s i v e p r o b e for t h e o x i d a t i o n s t a t e o f iron. Furthermore, although U V - V I S spectroscopy remains a useful p r o b e o f t h e o x i d a t i o n l e v e l o f t h e p o r p h y r i n , i t is n o t a l w a y s c l e a r c u t . S p e c t r a l p a t t e r n s t h a t i d e n t i f y p o r p h y r i n r a d i c a l s (19, 39) t e n d t o p o r ­ t r a y i d e a l cases. F o r i r o n , w h e r e t h e d - o r b i t a l e n e r g i e s a r e c l o s e t o t h o s e o f t h e p o r p h y r i n H O M O or L U M O , less p r e d i c t a b l e s p e c t r a a r i s e . P o s s i b l y N M R a n d I R c r i t e r i a w i l l e v e n t u a l l y p r o v e to b e o f greater u t i l i t y than U V - V I S i n i d e n t i f y i n g r a d i c a l character i n a por­ phyrin. +

S o m e c o m m e n t m u s t b e m a d e o n the nature o f the lar antiferromagnetic c o u p l i n g b e t w e e n a p a r a m a g n e t i c and a p o r p h y r i n radical cation. T h e overall S = 2 [ F e ( I I I ) C l ( T P P ) ] i n d i c a t e s t h a t c o u p l i n g is v e r y l a r g e . +

intramolecu­ metal center character o f This finding

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

REED

15.

349

Iron(I) and Iron(IV) Porphyrins

is i n m a r k e d c o n t r a s t w i t h C o m p o u n d I o f h o r s e r a d i s h

peroxidase

1

where a very small c o u p l i n g ( - J — 2 c m " ) b e t w e e n the S = 1 iron(IV) a n d t h e p o r p h y r i n r a d i c a l is o b s e r v e d (18). S i m i l a r l y , t h e [ C u ( I I ) ( P - ) ]

+

s p e c i e s a p p a r e n t l y h a s n e g l i g i b l e c o u p l i n g , g i v i n g r i s e to t w o u n ­ p a i r e d e l e c t r o n s (31, 40).

O n e report, h o w e v e r , f o u n d d i a m a g n e t i s m

(39). C l e a r l y , t h e r e are t o o f e w u n a m b i g u o u s d a t a t o r e v e a l a n y s y s ­ Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

t e m a t i c trends. B e c a u s e a n t i f e r r o m a g n e t i c interactions are g e n e r a l l y d i f f i c u l t to r a t i o n a l i z e , i t is o f l i t t l e u s e t o s p e c u l a t e o n w h y c o u p l i n g is +

strong i n [ F e ( I I I ) C l ( T P P - ) ] b u t not i n other c o m p l e x e s . P o p u l a t i o n o f 5

a l l the d-orbitals i n h i g h s p i n

rf -iron(III)

certainly m a x i m i z e s the op­

p o r t u n i t y for c o u p l i n g .

Oxidized μ-Οχο Ferric Dimers T h e two-electron electrochemical oxidation o f [ F e ( T P P ) ] 0 oc­ c u r s i n d i s c r e t e s t e p s s e p a r a t e d b y ~ 0 . 3 V (33). T h i s s i t u a t i o n h a s a l l o w e d study o f b o t h the one-electron o x i d i z e d " m i x e d - v a l e n c e " c o m p o u n d , [ F e ( T P P ) 0 ] a n d the two-electron o x i d i z e d p r o d u c t , [ F e ( T P P ) 0 ] . T h e F e ( O E P ) 0 complex apparently behaves i n a very similar manner. 2

+

2

2

2 +

2

2

2

2

+

T h e singly o x i d i z e d species [ F e ( T P P ) 0 ] was characterized b o t h i n s o l u t i o n a n d i n t h e s o l i d state (33, 34). T h e U V - V I S s p e c t r u m is n o t c o m p e l l i n g l y r a d i c a l c a t i o n - l i k e b u t is s u g g e s t i v e o f o n e (see F i g u r e 5). It s h o w s a r e d u c e d i n t e n s i t y S o r e t b a n d a n d a b r o a d e n e d α , β - r e g i o n b u t no b l u e - s h i f t i n g o f the Soret. T h e l o w m a g n e t i c m o m e n t (μ - 2 . 9 at 4 0 ° C ) w a s t e n t a t i v e l y i n t e r p r e t e d as a m i x t u r e o f S = \ a n d S = f states i n e q u i l i b r i u m (33) b u t is m o r e l i k e l y to a r i s e f r o m a n t i f e r ­ 2

2

r o m a g n e t i c c o u p l i n g . T h e E S R s p e c t r u m (g = 2 . 0 5 9 , 1.993) is c o n s i s ­ t e n t w i t h m e t a l - l o c a l i z e d u n p a i r e d s p i n (33), b u t i t d o e s n o t r u l e o u t a p o r p h y r i n r a d i c a l b e c a u s e its s p i n w o u l d a l m o s t c e r t a i n l y b e c o u p l e d to t h e i r o n as i n [ F e C l ( T P P - ) ] . T h e p r o t o n N M R a s s i g n m e n t s h a v e b e e n p u t o n a firm b a s i s (34) a n d t e m p e r a t u r e d e p e n d e n c e s t u d i e s s u p p o r t t h e p r e s e n c e o f a n t i f e r r o m a g n e t i s m . T h e b e s t e v i d e n c e for a p o r p h y r i n r a d i c a l formulation comes from the appearance o f the d i a g ­ n o s t i c 1 2 8 0 - c m " I R b a n d (35). A r e p o r t o f a s y n t h e t i c m e t h o d o f i s o l a t ­ i n g [ F e ( T P P ) 0 ] as a B F " o r P F " s a l t a n d t h e d e t e r m i n a t i o n o f m a g n e t i c , M ô s s b a u e r , E P R , a n d I R c h a r a c t e r i s t i c s (41) s h o u l d p r o b a ­ b l y b e e n t i r e l y d i s c o u n t e d b e c a u s e t h e p r e s e n c e o f fluoro-bridged d i ­ m e r s p r o v i d e s a m o r e a c c e p t a b l e r a t i o n a l e for t h e o b s e r v a t i o n s (42). C o m p a r e d to [ F e C l ( T P P ) ] , t h e p r e s e n c e o f a n o x o l i g a n d s h o u l d i m p r o v e t h e a c c e s s i b i l i t y o f i r o n ( I V ) b u t t h e w e i g h t o f e v i d e n c e is t o w a r d a r a d i c a l c a t i o n f o r m u l a t i o n for [ F e ( T P P ) 0 ] r a t h e r t h a n a m i x e d - v a l e n c e i r o n ( I I I ) - ( I V ) s p e c i e s . T h e d e t e r m i n a t i o n o f its M ô s s b a u e r s p e c t r u m a n d x-ray c r y s t a l structure s h o u l d l e a d to a confi­ dent assignment. +

1

+

2

2

4

6

+

+

2

2

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Figure

5. 2

e2

2

+

600 nm

e2

2

2+

UV-VIS spectra of Fe^TPP) 0 (—), [F (TPP) 0] SbClf (•••), and [F (TPP) 0] (- • -) in dichloromethane (35). These essentially are identical to those of Ref. 33.

1

500

1

400

1

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

2ShClï

REED

15.

351

Iron(I) and Iron(IV) Porphyrins +

A c o m p a r i s o n m a y be d r a w n b e t w e e n [ F e ( T P P ) 0 ] a n d the i s o e l e c t r o n i c n i t r i d e F e ( T P P ) N (43). T h i s s p e c i e s , h o w e v e r , d e f i e s s t r a i g h t f o r w a r d f o r m u l a t i o n d e s p i t e e x t e n s i v e s t u d y o f its p h y s i c a l p r o p e r t i e s . M a g n e t i c c r i t e r i a s u c h as s u s c e p t i b i l i t y m e a s u r e m e n t s a n d E S R s p e c t r o s c o p y c l e a r l y s h o w t h a t t h e d i m e r is a n o v e r a l l S = i s y s ­ t e m w i t h t h e u n p a i r e d e l e c t r o n l o c a l i z e d o n t h e F e N F e m o i e t y (43, 44). A l l e x p e r i m e n t s s h o w t h e t w o i r o n a t o m s to b e i d e n t i c a l so t h a t a n a v e r a g e d v a l e n c e f o r m a l i s m is r e q u i r e d (43). B e c a u s e t h e U V - V I S s p e c t r u m s h o w s n o p o r p h y r i n r a d i c a l cation characteristics, the metals c a n b e a s s i g n e d a n a v e r a g e d i r o n ( I I I ) - ( I V ) v a l e n c y . T h e c o m p o u n d is a s o - c a l l e d C l a s s I I m i x e d - v a l e n c e c o m p o u n d a n d c a n b e v i e w e d as h a v i n g a n i r o n ( I I I 1) v a l e n c y , r e p r e s e n t e d b y e q u a l c o n t r i b u t i o n f r o m t w o resonance forms: 2

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

2

2

2

F e ( I I I ) — N — F e ( I V ) F e ( I V ) = N — F e ( I I I ) ' T h e u n a n s w e r e d q u e s t i o n is t h a t o f the s p i n state(s). T h e M ô s s b a u e r s p e c t r a w e r e i n t e r p r e t e d as i n d i c a t i v e o f h i g h s p i n (43); t h e x - r a y c r y s t a l s t r u c t u r e is m o r e i n a c c o r d w i t h a n a v e r a g e o f l o w s p i n i r o n ( I I I ) a n d h i g h , s p i n i r o n ( I V ) (44); t h e X P S s p e c t r a r e q u i r e a l o w s p i n a s s i g n m e n t (45), a n d t h e r e s o n a n c e R a m a n s u g g e s t a h i g h s p i n state (46). S o , u n l i k e a l l o f t h e m o n o m e r i c i r o n p o r p h y r i n s d i s c u s s e d p r e v i o u s l y , t h e a s s i g n m e n t o f s p i n states to i r o n i n F e ( T P P ) N a p p e a r s to b e at b e s t , p e r m a n e n t l y a m b i g u o u s a n d at w o r s t , o n e o f t h o s e n u i ­ sance questions o f inorganic chemistry. 2

2

I n a s o m e w h a t r e l a t e d m a n n e r , the a m b i g u o u s assignment o f o x i d a t i o n a n d s p i n states i n c a r b e n e c o m p l e x e s o f the type F e ( C R ) ( p o r p h ) p o i n t s to t h e n o n i n n o c e n t b e h a v i o r o f a c a r b e n e ' l i g a n d 2

(47): Fe(IV)=CR

2

F e ( I I ) ^ : C R

2

S o m e i r o n ( I V ) c h a r a c t e r c a n b e i n v o k e d to r a t i o n a l i z e t h e s i m i l a r i t y o f the U V - V I S spectra o f v i n y l i d e n e c o m p l e x e s w i t h C o m p o u n d II o f p e r o x i d a s e s (48). I n a d d i t i o n to t h e s i n g l y o x i d i z e d μ-οχο d i m e r t h e r e is a l s o t h e d o u b l y o x i d i z e d s p e c i e s [ F e ( T P P ) 0 ] a n d its O E P a n a l o g u e . F i r s t p r o d u c e d e l e c t r o c h e m i c a l l y (32), t h e d i p e r c h l o r a t e s a l t n o w h a s b e e n i s o l a t e d (34). T h e b i s h e x a c h l o r a n t i m o n a t e s a l t c a n a l s o b e s y n ­ t h e s i z e d u s i n g R · S b C l ~ r e a g e n t s (35). T h e v i s i b l e s p e c t r u m o f [Fe (TPP) 0] is r a t h e r l i k e a c a t i o n r a d i c a l h a v i n g a b r o a d e n e d b l u e - s h i f t e d S o r e t b a n d at 3 9 6 n m a n d a b r o a d e n e d α , β - r e g i o n (see F i g u r e 5). T h i s s p e c t r u m s u g g e s t s a n i r o n ( I I I ) r a d i c a l f o r m u l a t i o n b u t is b y n o m e a n s c o n c l u s i v e w i t h o u t M ô s s b a u e r a n d s t r u c t u r a l c o r r o b o r a 2 +

2

2

+

6

2 +

2

2

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

352

t i o n . S t r o n g a n t i f e r r o m a g n e t i c c o u p l i n g v i a t h e o x o b r i d g e is s u g g e s t e d b y a n a n a l y s i s o f t h e p r o t o n N M R s p e c t r u m (34). T h e a p p e a r a n c e o f a strong 1 2 9 0 - c m

- 1

b a n d i n t h e I R s p e c t r u m o f [ F e ( T P P ) 0 ] [ S b C l e ] 2 is 2

2

d i a g n o s t i c o f p o r p h y r i n r a d i c a l f o r m u l a t i o n (35), a n d o t h e r s (34) f a v o r s u c h a n assignment over the iron(IV) formulation p r e v i o u s l y assigned

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

(33).

Monomeric Iron(lV) Porphyrins T h e s o l u t i o n c h a r a c t e r i z a t i o n o f w h a t is a p p a r e n t l y t h e first a u ­ thentic

iron(IV) porphyrin

was reported

recently

(49).

μ-Peroxo

i r o n ( I I I ) d i m e r s c a n b e c l e a v e d h o m o l y t i c a l l y w i t h l i g a n d s ( L ) s u c h as 1-methylimidazole

( l - M e l m ) , p y r i d i n e , or p i p e r i d i n e to y i e l d o x o

iron(IV) porphyrins [FeO(porph)L]: (porph)Fe-O-O-Fe(porph) + 2 l - M e l m

> 2 FeO(porph)L toluene

T h e r e a c t i o n m u s t b e c a r r i e d o u t at l o w t e m p e r a t u r e s u n d e r s c r u p u ­ l o u s l y a p r o t i c c o n d i t i o n s , a n d t h e p r o d u c t is u n s t a b l e i n s o l u t i o n a b o v e - 3 0 ° C . T h e U V - V I S spectrum of F e O ( T m T P ) ( l - M e I m ) ( T m T P = t e t r a - m - t o l y l p o r p h i n a t o ) is t y p i c a l l y m e t a l l o p o r p h y r i n - l i k e a n d s h o w s n o c a t i o n r a d i c a l c h a r a c t e r . T h e m a g n e t i c s u s c e p t i b i l i t y is 2 . 9 B M at - 4 0 ° C , a n d t h e C u r i e l a w b e h a v i o r o f t h e p o r p h y r i n shifts i n t h e p r o ­ ton N M R s p e c t r u m suggests a w e l l - b e h a v e d m o n o m e r i c S = 1 system. T h e s e data support an intermediate s p i n iron(IV) formulation a n d the close similarity o f the s u s c e p t i b i l i t y a n d electronic spectra to those o f C o m p o u n d I I o f p e r o x i d a s e s is v e r y g r a t i f y i n g . T h e c e n t r a l i m p o r t a n c e o f t h i s c o m p l e x to i r o n ( I V ) p o r p h y r i n c h e m i s t r y a n d its r e l e v a n c e to peroxidase c h e m i s t r y m a k e d e f i n i t i v e structural characterization a paramount objective. T h e thermal insta­ b i l i t y o f F e O ( T P P ) ( l - M e I m ) means this characterization w i l l not b e easy, b u t i n the absence o f a n x-ray structure, M ô s s b a u e r s p e c t r o s c o p y c a n p r o v i d e a d d i t i o n a l c h a r a c t e r i z a t i o n . S p e c t r a w e r e o b t a i n e d for F e O ( T P P ) ( l - M e I m ) (14) a n d t h e y g i v e s t r o n g s u p p o r t t o t h e i r o n ( I V ) a s s i g n m e n t . T h e i s o m e r s h i f t ( δ ) is 0 . 1 1 m m / s at 4 . 2 Κ a n d t h e q u a d r u p o l e s p l i t t i n g is 1.24 m m / s . S u c h a l o w i s o m e r shift r e f l e c t s a h i g h o x i d a t i o n state, a n d δ p r o g r e s s e s f r o m a h i g h o f 0 . 6 5 i n t h e iron(I) p o r p h y r i n to a l o w o f 0.03 i n i r o n ( I V ) h e m o p r o t e i n s ( T a b l e I). T h e t e m p e r a t u r e a n d a p p l i e d m a g n e t i c field d e p e n d e n c i e s o f F e ( 0 ) ( T P P ) ( l - M e I m ) a r e i n a c c o r d w i t h a n S = 1 state a n d c l o s e l y m i m i c the spectra o f C o m p o u n d E . S . o f c y t o c h r o m e c peroxidase ( C C P ) (14, 15). The comparison of F e ( I V ) 0 ( T P P ) ( l - M e I m ) and [Fe(III)Cl( T P P ) ] d e m o n s t r a t e s h o w t h e site o f r e d o x is d i c t a t e d b y t h e a x i a l +

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

15.

REED

353

Iron(I) and Iron(IV) Porphyrins

ligand. T h e ferryl moiety ( F e = 0 )

p r o v i d e s the o n l y axial ligation

capable of stabilizing iron(IV) i n mononuclear species. T h e nitrido m o i e t y ( F e N F e ) a l s o s e e m s to s h o w t h i s c a p a c i t y i n d i m e r s .

The

u n i q u e a b i l i t y o f o x o l i g a n d s t o s t a b i l i z e h i g h o x i d a t i o n states o f t r a n ­ sition metals

is w e l l - k n o w n a n d o n l y

fluoride,

hydroxide, and alk-

o x i d e a x i a l l i g a t i o n r e m a i n as u n t e s t e d b u t v i a b l e a l t e r n a t i v e s i n t h e Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

s e a r c h for o t h e r i r o n ( I V ) p o r p h y r i n c o m p l e x e s . T h e c i r c u m s t a n t i a l e v i ­ d e n c e for o x o l i g a t i o n i n i r o n ( I V ) h e m o p r o t e i n s is n o w q u i t e

strong,

a l t h o u g h h y d r o x o l i g a t i o n cannot b e r u l e d out.

Further Oxidized Iron Porphyrins I r o n p o r p h y r i n s t h a t are t w o - e l e c t r o n o x i d i z e d a b o v e

iron(III)

h a v e b e e n r e f e r r e d to as i r o n ( V ) p o r p h y r i n s p u r e l y as a f o r m a l i s m o f c o n v e n i e n c e . A p p a r e n t l y , h o w e v e r , the o n e - e l e c t r o n o x i d a t i o n p r o d ­ ucts o f S = 1 i r o n ( I V ) p o r p h y r i n s are a c t u a l l y i r o n ( I V ) r a d i c a l cations. S y n t h e t i c a l l y , t h e y w e r e a p p r o a c h e d b y reaction o f i o d o s o b e n z e n e or p e r a c i d reagents w i t h iron(III) porphyrins. A green intermediate o f possible composition F e O ( O E P ) C l was reported

i n the interaction o f F e ( O E P ) C l w i t h i o d o s y l x y l e n e (50).

S o m e U V - V I S s p e c t r a l s i m i l a r i t y w i t h C o m p o u n d I o f c a t a l a s e ( C a t I) l e n d s s u p p o r t to the a s s i g n m e n t o f a n i r o n ( I V ) r a d i c a l c a t i o n . S u c h s p e c t r a l s i m i l a r i t y is n o t , h o w e v e r , m u c h c l o s e r t o C a t I t h a n o x i d i z e d c a r b e n e c o m p l e x is to H R P I (48).

an

C l e a r l y , structural assign­

ments based upon modest spectral similarity should be made

with

c o n s i d e r a b l e c a u t i o n . A m a g n e t i c m o m e n t o f 4.8 B M w a s r e p o r t e d a n d a h i g h s p i n i r o n ( I V ) a s s i g n m e n t s u g g e s t e d . T h i s r e p o r t is i n c o n s i s t e n t w i t h expectations based on H R P I a n d leaves some doubt about

the

i d e n t i t y o f t h i s c o m p l e x . T h e h i g h - s p i n state o f i r o n ( I V ) , i f i t e x i s t s , r e m a i n s to b e e s t a b l i s h e d i n a d e f i n i t i v e l y c h a r a c t e r i z e d p o r p h y r i n complex. A more definitive characterization o f the p r o d u c t o f iron(III) por­ p h y r i n s w i t h " o x y g e n a t o m " r e a g e n t s w a s p u b l i s h e d (17).

Treatment

of

m-chloro-

FeCl(TMP)

( T M P = tetramesitylporphyrinate)

with

peroxybenzoic a c i d gives a green intermediate, w h i c h can be studied s p e c t r o s c o p i c a l l y at l o w e r e d t e m p e r a t u r e s . Its M ô s s b a u e r (see

spectrum

T a b l e I) is s i m i l a r to t h e S = 1 i r o n ( I V ) s p e c i e s F e ( 0 ) ( T P P ) ( l -

M e l m ) . Its m a g n e t i c m o m e n t o f 4 . 2 B M is s l i g h t l y l a r g e r t h a n e x p e c t e d for a n S = f s y s t e m b u t is c o n s i s t e n t w i t h a n e s s e n t i a l l y n o n c o u p l e d S = 1 iron(IV) a n d a p o r p h y r i n radical cation. T h e proton N M R spec­ t r u m s h o w s p y r r o l e shifts ( - 2 7 p p m ) t y p i c a l o f a r a d i c a l c a t i o n , w h i c h , together w i t h the distinctly radical cation-like U V - V I S spectrum leads to t h e a s s i g n m e n t o f a n i r o n ( I V ) r a d i c a l c a t i o n f o r m u l a t i o n : F e ( I I I ) C l ( T M P ) + R C O O O H -> F e ( I V ) 0 ( T M P )C1 +

RCOOH

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

354

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

T h e product's U V - V I S s p e c t r u m s o m e w h a t resembles that o f C o m ­ p o u n d I o f H R P , w h i c h is a l s o g r e e n a n d is w i d e l y a c c e p t e d t o b e a n i r o n ( I V ) r a d i c a l c a t i o n (18, 51). A l t h o u g h o x o a x i a l l i g a t i o n is p r o p o s e d i n b o t h F e ( 0 ) ( T M P )C1 a n d H R P I , t h e c o n j u g a t e a c i d , n a m e l y h y ­ d r o x i d e , cannot b e r u l e d out. A l s o , the presence or absence o f other a x i a l l i g a t i o n s u c h as c h l o r i d e o r s o l v e n t ( m e t h a n o l ) is u n k n o w n . C h e m i c a l l y r e l a t e d to this green c o m p l e x is a r e d c o m p l e x that c a n be generated either b y treatment o f the green c o m p l e x w i t h base ( O H ~ ) o r b y t r e a t m e n t o f F e C l ( T M P ) w i t h i o d o s o b e n z e n e (17). Its t r u e n a t u r e is q u i t e p u z z l i n g . Its M ô s s b a u e r s p e c t r u m ( δ = - 0 . 0 3 p p m , Δ Ε = 2 . 1 3 m m / s ) s u g g e s t s o f e i t h e r i r o n ( I V ) o r i r o n ( V ) b u t its m a g n e t i c m o m e n t (2.9 B M ) is i n d i c a t i v e o f a C u r i e l a w b e h a v e d o v e r a l l S = 1 s y s t e m . N o strong E P R signals are noted, b u t the p r o t o n N M R has the β - p y r r o l e r e s o n a n c e i n t h e d o w n f i e l d p o s i t i o n (δ - 3 3 . 5 p p m ) u s u a l l y associated w i t h a radical cation. W o r k o n t h e s e h i g h l y o x i d i z e d i r o n p o r p h y r i n c o m p l e x e s is v e r y d e m a n d i n g experimentally. T h e m u c h needed information o n their s t r u c t u r e s a n d t h e r e s o l u t i o n o f u n c e r t a i n t i e s i n t h e i r p r o p e r t i e s is greatly h a m p e r e d b y their h i g h reactivity toward hydrocarbons. T h e i n t e g r i t y o f t h e f e r r y l l i g a t i o n r e m a i n s t o b e e s t a b l i s h e d , at l e a s t b y I R s p e c t r o s c o p y , a n d c l o s e r m o d e l s for H R P I a n d C a t I n e e d t o b e sought. F i n a l l y , F e ( I V ) ( 0 ) ( P ) X s p e c i e s d o n o t s h o w m u c h e v i d e n c e for s p i n - c o u p l i n g b e t w e e n t h e S = 1 m e t a l a n d S = i r i n g . T h i s finding is i n c o n t r a s t to [ F e ( I I I ) C l ( T P P ) ] w h e r e c o u p l i n g is c o m p l e t e . F o r H R P I the c o u p l i n g constant has b e e n estimated from M ô s s b a u e r a n d E P R s p e c t r o s c o p y t o b e - J -2 c m " (18) w h e r e a s i n [ F e C l ( T P P - ) ] | - J | m u s t b e » 2 0 0 c m . A l m o s t n o t h i n g is u n d e r s t o o d a b o u t t h e mechanism(s) a n d magnitude o f antiferromagnetic c o u p l i n g i n metalloporphyrin radical species. I n s u m m a r y , authentic iron(IV) porphyrins are accessible w h e n a n o x o l i g a n d is p r e s e n t . C o m p l e x e s o f t h e t y p e F e ( I V ) 0 ( T P P ) L a r e g o o d m o d e l s for C o m p o u n d I I o f H R P a n d c o m p o u n d s o f t h e t y p e F e ( I V ) 0 ( T M P - )C1 a r e s a t i s f a c t o r y m o d e l s for C o m p o u n d I . T h e i r r e a c ­ t i v i t y is c u r r e n t l y r e c e i v i n g c o n s i d e r a b l e a t t e n t i o n ( 2 7 , 5 2 ) a n d is l e a d ­ i n g to a l o n g a w a i t e d insight into the c h e m i c a l m e c h a n i s m s b y w h i c h the peroxidases a n d the c y t o c h r o m e s P - 4 5 0 function. +

1

+

- 1

Acknowledgments M u c h o f the present u n d e r s t a n d i n g o f the iron cussed i n this r e v i e w has arisen from c o l l a b o r a t i v e R o b e r t Scheidt ( U n i v e r s i t y o f N o t r e D a m e ) , G e o r g e v a n i a State U n i v e r s i t y ) , a n d J e a n - C l a u d e M a r c h o n

porphyrins dis­ studies w i t h W . L a n g (Pennsyl­ (Centre Etudes

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

15.

REED

Iron(I) and Iron(IV) Porphyrins

355

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

N u c l é a i r e s de Grenoble). I particularly thank them, their students, and my students who are cited in the references. I also thank John T. Groves and Harold Goff for discussion of results prior to publication. I sincerely hope that the authors whose work I reinterpret will grant me the liberty of critical scientific enquiry and the license of alternative interpretation.

Literature

Cited

1. Scheidt, W. R.; Reed, C. A. Chem. Rev., 1981, 81, 543-555. 2. Sams, J. R.; Tsin, T. B. In "The Porphyrins"; Dolphin, D., Ed.; Academic: New York, 1979; Vol. 4, 425-478. 3. La Mar, G. N.; Walker, F. A. In "The Porphyrins"; Dolphin, D., Ed.; Academic: New York, 1979; Vol. 4, pp. 61-157. 4. Cohen, I. Α.; Ostfeld, D.; Lichtenstein, B.J.Am. Chem. Soc. 1972, 94, 4522-4525. 5. Reed, C. Α.; Mashiko, T.; Scheidt, W. R.; Spartalian, K.; Lang, G.J.Am. Chem. Soc. 1980, 102, 2302-2306. 6. Lexa, D.; Momenteau, M.; Mispelter, J. Biochim. Biophys. Acta 1974, 338, 151-163. 7. Collman, J. P.; Sorrell, T. N.; Dawson, J. H.; Trudel, J. R.; Bunnenburg, E.; Djerassi, C. Proc. Nat. Acad. Sci. U.S.A. 1976, 73, 6-10. 8. Mashiko, T.; Reed, C. Α., unpublished data. 9. Haller, K. J.; Scheidt, W. R.; Reed, C. Α., unpublished data. 10. Lang, G.; Reed, C. Α., unpublished data. 11. Collman, J. P.; Hoard, J. L.; Kim, N.; Lang, G.; Reed, C. A.J. Am. Chem. Soc. 1975, 97, 2676-2681. 12. Maricondi, C.; Straub, D. K.; Epstein, L. M.J.Am. Chem. Soc. 1972, 94, 4157-4159. 13. Gans, P.; Marchon, J.-C.; Reed, C. Α.; Regnard,J.-R.Nouv.J.Chimie 1981, 5, 203-204. 14. Simonneaux, G.; Scholz, W. R.; Lang, G.; Reed, C. Α., Biochim. Biophys. Acta 1982, 715. 15. Lang, G.; Spartalian, K., Yonetaini, T. Biochim. Biophys. Acta 1976, 451, 250-258. 16. Schulz, C.; Chiang, R.; Debrunner, P. G.J.Phys. 1979, 40, C2-534-536. 17. Groves,J.T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B.J.J. Am. Chem. Soc. 1981, 103, 2884-2886. 18. Schulz, C. E.; Devany, P. W.; Winkler, H.; Debrunner, P. G.; Doan, N.; Chiang, R.; Rutter, R.; Hager, L. P. FEBS Lett. 1979, 103, 102-105. 19. Fuhrhop,J.-H.Struct. Bonding 1974, 18, 1-67. 20. Mashiko, T.; Reed, C. Α.; Haller, K.J.;Kastner, M. E.; Scheidt, W.R.J. Am. Chem. Soc. 1981, 103, 5758-5767. 21. Gouterman, M.J.Mol. Spectrosc. 1961, 6, 138-163. 22. Dolphin, D.; Niem, T.; Felton, R. H.; Fujita, I.J. Am. Chem. Soc. 1975, 97, 5288-5290 23. Furhop, J. H.; Kadish, K. M.; Davis, G. D. J. Am. Chem. Soc. 1973, 95, 5140-5147. 24. Giraudeau, Α.; Callot, H.J.;Jordan,J.;Ezhar, I.; Gross, M.J.Am. Chem. Soc. 1979, 101, 3857-3862. 25. Kadish, Κ. M.; Larson, G.; Lexa, D.; Momenteau, M.J.Am. Chem. Soc. 1975, 97, 282-288. 26. Reed, C. Α.; Cheung, S. K. Proc. Nat. Acad. Sci. U.S.A. 1977, 74, 17801784. 27. Groves, J. T. Adv. in Inorg. Biochem. 1979, 1, 119-145.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch015

356

BIOLOGICAL REDOX COMPONENTS

28. McCandlish, E.; Miksztal, A. R.; Nappa, M.; Sprenger, A. Q.; Valentine, J. S.; Stong, J. D.; Spiro, T. G.J.Am. Chem. Soc. 1980, 102, 4268-4271. 29. Afanas'er, I. B.; Prigoda, S. V.; Khenkin, A. M.; Shteinman, A. A. Dokl. Akad. Nauk. SSSR, Engl. 1977, 236, 902-905. 30. Guilard, R.; Latour, J.-M.; Lecomte, C.; Marchon, J.-C.; Protas,J.;Ripoll, D. Inorg. Chem. 1978, 17, 1228-1237. 31. Wolberg, Α.; Manassen, J. J. Am. Chem. Soc. 1970, 92, 2982-2991. 32. Felton, R. H.; Owen, G. S.; Dolphin, D.; Fajer,J.J.Am. Chem. Soc. 1971, 93, 6332-6334. 33. Felton, R. H.; Owen, G. S.; Dolphin, D.; Forman, Α.; Borg, D. C.; Fajer, J. Ann. N.Y. Acad. Sci. 1973, 206, 504-515. 34. Phillippi, Μ. Α.; Goff, H. M.J.Am. Chem. Soc. 1979, 101, 7641-7643. 35. Shimomura, E . T.; Phillippi, Μ. Α.; Goff, H. M.; Scholz, W. F.; Simonneaux, G.; Reed, C. A.J.Am. Chem. Soc. 1981, 103, 6778-6780. 36. Phillippi, Μ. Α.; Shimomura, E . T.; Goff, H. Inorg. Chem. 1981, 20, 13221325. 37. Marchon, J. C., personal communication. 38. Hahn, J.; Hodgson, K. O.; Reed, C. Α., unpublished data. 39. Dolphin, D.; Muljiani, Z.; Rousseau, K.; Borg, D. C.; Fajer, J.; Felton, R. H. Ann. N.Y. Acad. Sci. 1973, 206, 177-200. 40. Mengersen, C.; Subramanian, J.; Fuhrhop, J.-H. Mol. Phys. 1976, 32, 893-897. 41. Wollman, R. G.; Hendrickson, D. N. Inorg. Chem. 1977, 16, 723-733. 42. Cohen, I. Α.; Lavallee, D. K.; Kopelove, A. B. Inorg. Chem. 1980, 19, 1098-1100. 43. Summerville, D. Α.; Cohen, I.A.J.Am. Chem. Soc. 1976, 98, 1747-1752. 44. Scheidt, W. R.; Summerville, D. Α.; Cohen, I.A.J.Am. Chem. Soc. 1976, 98, 6623-6628. 45. Kadish, Κ. M.; Bottomley, L. Α.; Brace, J. G.; Winograd, N.J.Am. Chem. Soc. 1980, 102, 4341-4344. 46. Schick, G. Α.; Bocian, D. F.J.Am. Chem. Soc. 1980, 102, 7982-7984. 47. Mansuy, D.; Chottard, J.-C.; Lange, M.; Battioni,J.-P.J.Mol. Cat. 1980, 7, 215-226. 48. Mansuy, D.; Lange, M.; Chottard, J.-C. J. Am. Chem. Soc. 1979, 101, 6437-6439. 49. Chin, D.-H.; Balch, A. L.; La Mar, G. Ν.J.Am. Chem. Soc. 1980, 102, 1446-1448. 50. Chang, C. K.; Kuo, M.-S. J. Am. Chem. Soc. 1979, 101, 3413-3415. 51. Dolphin, D.; Forman, Α.; Borg, D. C.; Fajer, J.; Felton, R. H. Proc. Nat. Acad. Sci. U.S.A. 1971, 68, 614-618. 52. Chin, D.-H.; La Mar, G. N.; Balch, A. L.J.Am. Chem. Soc. 1980, 102, 5945-5947. RECEIVED for review June 2, 1981. ACCEPTED September 14, 1981.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.