Isolation of the First d0 Metalloxy Ketene Complexes via" Double

Isolation of the First d0 Metalloxy Ketene Complexes via "Double Insertion" of Carbon Monoxide into Thorium-Silicon ..... Barrel assembly senses glyco...
0 downloads 0 Views 293KB Size
J. Am. Chem. SOC. 1995,117, 3621-3622

3621

Isolation of the First Metalloxy Ketene Complexes via "Double Insertion" of Carbon Monoxide into Thorium-Silicon Bondst Nora S. Radu, Mary P. Engeler, Christopher P. Gerlach, and T. Don Tilley*

Department of Chemistry University of Califomia, Berkeley Berkeley, Califomia 94720-1460 Arnold L. Rheingold*

Department of Chemistry, University of Delaware Newark, Delaware 19716 Received December 8, 1994 Migratory insertion reactions of carbon monoxide in earlytransition-metal compounds have played an important role in development of molecular CO-activation chemistry.' In particular, do metal complexes of the transition, lanthanide, and 6, PR'3 PM03 7, PR'3 P M q P h actinide series have often been observed to participate in COCO coupling reactions.'-' The mechanisms of these "double insertion" reactions have been the subject of much speculation, but little mechanistic information has been forthcoming. In some cases, reactivity studies have suggested the possibility that an initial q2-acyl product of insertion couples with carbon attempt to trap compound 1, a toluene solution of Cp*2ThC12 monoxide to form a highly reactive metalloxy ketene intermediand the lithium silyl was pressurized with carbon monoxide (40 ate, (L,MO)(R)CCO; however, despite much effort, such ketene psi), since do metal silyl complexes are known to undergo rapid, derivatives have never been isolated or even o b ~ e r v e d . ~ . ~ . ~and often clean, carbonylations. This trapping reaction provided Because of their enhanced reactivity, it has been suggested that the ketene derivative 49 (Scheme 1) as pink crystals from these species are activated by intramolecular coordination of pentane (41%). The infrared spectrum exhibits characteristic the terminal ketene oxygen to the metal center (and bending of ketene absorption bands at 2044 and 1244 cm-I,'O and the I3C the C=C=O linkage) in monometallic2a-bor bimetallid strucNMR spectrum contains resonances for the terminal (Cp) carbon tures. In our investigations of the chemistry of do metal-silicon at 6 66.77 and for the =C,=O carbon at 6 223.31." bonds, we have encountered carbonylation reactions which Molecules of 4 in the solid state (Figure 1)'* have the ketene appear to involve (tantal~xy)(silyl)-~~ and (scandoxy)(silyl)fragment oriented roughly in the plane bisecting the CsMes rings, ketene4bintermediates. We now report the Fist observation and (9) Selected data. 1: 'H NMR (benzene-d6, 300 MHz) 6 0.44 (s, 27 H, isolation of metalloxy ketene complexes, which have resulted SiMe), 2.09 (s, 30 H, C5Me5). 3-13C: I3C{'H} NMR (benzene-d6, 100.6 from attempts to study the chemistry of actinide-silicon bonds. MHz) 6 370.06 (y2-I3COSi'BuPh2). 4: 'H NMR (benzene-ds, 300 MHz) 6 0.37 ( s , 27 H, SiMe), 2.06 (s, 30 H, C5Me5). Anal. C, H, C1. IR (Nujol, For reasons that are currently unclear, actinide silyl complexes CsI, cm-I): v(CC0) 2044. 4-I3C2: I3C{'H} NMR (benzene-ds, 100.6 have proven very difficult to isolate, with the only reported MHz) 6 1.79 (SiMe), 11.58 (CNes), 67.77 (d, 'Jcc = 100 Hz, '3C=13C=0), success being C~3LlSiPh3.~The reaction of Cp*zThC12 (Cp* 223.31 (d, 'JCC= 100 Hz, i3C='3C=O). 5: 'H NMR (benzene-&, 300 = q5-C5Me5) with (THF)3LiSi(SiMe3)3 produces the yellow MHz) 6 1.28 (s, 9 H, CMe3), 1.96 (s, 30 H, C5Me5). IR (Nujol, CsI, cm-I) v(CC0) 2050. 5-I3C2: I3C{ IH} NMR (benzene-d6, 100.6 MHz) 6 74.63 thorium silyl complex Cp*~Th[Si(SiMe&lCl(1,by 'HNMR (d, 'Jcc = 100 Hz, i3C-i3C-O), 224.55 (d, 'Jcc = 100 Hz, 13C='3C=O). spectroscopy): but decomposition to Cp*2ThC12, HSi(SiMe&, 6-I3Cz: 'H NMR (benzene-d6,400 MHz) 6 0.38 (s, 27 H, SiMe), 1.00 (dd, and other products has so far prevented its isolation. In an 'JPH= 13.2 HZ, 3JCH = 2.0 HZ, 9 H, PMe3), 2.25 ( S , 30 H, c5Me5). I3C{'H} NMR (benzene-d6, 100.6 MHz) 6 135.48 (dd, 'JPC= 115 Hz, JCC = I

i.

t This work was initiated at the University of Califomia, San Diego. (1) (a) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980,13, 121. (b) Durfee, L. D.; Rothwell, I. P. Chem. Rev. 1988, 88, 1059. (c) Kahn, B. E.; Rieke, R. D. Chem. Rev. 1988, 88, 733. (d) Tatsumi, K.; Nakamura, A.; Hofmann, P.; Stauffert, P.; Hoffmann, R. J . Am. Chem. Soc. 1985, 107, 4440. (e) Hofmann, P.; Stauffert, P.; Frede, M.; Tatsumi, K. Chem. Ber. 1989, 122, 1559. (f) Erker, G. Acc. Chem. Res. 1984, 17, 103. (g) Carnahan, E. M.; Protasiewicz, J. D.; Lippard, S . J. Acc. Chem. Res. 1993, 26, 90. (2) (a) Fagan, P. J.; Manriques, J. M.; Marks, T. J.; Day, V. W.; Vollmer, S . H.; Day, C. S . J . Am. Chem. SOC. 1980, 102, 5393. (b) Moloy, K. G.; Fagan, P. J.; Manriques, J. M.; Marks, T. J. J . Am. Chem. SOC. 1986, 108, 56. (c) Tatsumi, K.; Nakamura, A,; Hofmann, P.; Hoffmann, R.; Moloy, K. G.; Marks, T. J. J . Am. Chem. SOC. 1986, 108, 4467. (3) Planalp, R. P.; Andersen, R. A. J . Am. Chem. SOC.1983, 105, 7774. (4) (a) h o l d , J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J.; Arif, A. M. J . Am. Chem. SOC. 1989, 111, 149. (b) Campion, B. K.; Heyn, R. H.; Tilley, T. D. Organometallics 1993, 12, 2584. ( 5 ) Evans, W. J.; Wayda, A. L.; Hunter, W. E. Atwood, A. L. J . Chem. Soc., Chem. Commun. 1981, 706. (6) Bristow, G. S.; Lappert, M. F.; Martin, T. R.; Atwood, J. L.; Hunter, W. F. J . Chem. Soc., Dalton Trans. 1984, 399. (7) Erker, G.; Czisch, P.; Schlund, R.; Angemund, K.; Kriiger, C. Angew. Chem., Int. Ed. Engl. 1986, 25, 364. (8) Porchia, M.; Brianse, N.; Casellato, U.; Ossola, F.; Rossetto, G.; Zanella, P.; Graziani, R. J . Chem. SOC., Dalton Trans. 1989, 677.

0002-7863/95/1517-3621$09.00/0

67 Hz, OI3CPMe3), 165.72 (dd, 2Jpc = 61 Hz, JCC = 67 Hz, 0l3CSi(SiMelhl. 31P