13 Isopeptides: The Occurrence and Significance of Natural and Xenobiotic Crosslinks in Proteins
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
MICHAEL S. OTTERBURN Department of Chemical Engineering, The Queen's University of Belfast, 21 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland
Proteins are biopolymers having a molecular weight arbi trarily greater than 5,000 daltons. They are essential for func tions in cellular structure, catalysis, metabolic regulation and contractile processes. They also play an important part in the defensive and protective mechanisms in animals. Protein chains are built up of monomeric units, the α-amino acids linked together by amido groups (peptide links). This polymerisation occurs through the α-amino and α-carboxyl groups of adjacent residues. The result is a complex random copolymer with many different functional groups and consequently complex chemical and physical properties. Whilst it is self-evident that the protein reactivity and many of its physical properties depend on the primary sequence, the secondary and tertiary structures are also important in defining the molecules functions. Many inter- and intrachenic forces and crosslinks are responsible for maintaining these structures and it is the purpose of this review to emphasize the importance of such crosslinks in protein struc ture, function and reactivity. Bonding and C r o s s l i n k i n g i n P r o t e i n s Bonding f o r c e s which occur i n p r o t e i n s f a l l into two groups, p h y s i c a l and c h e m i c a l , the l a t t e r being o f p a r t i c u l a r i n t e r e s t in t h i s review. P h y s i c a l f o r c e s include i o n i c i n t e r a c t i o n s b e tween o p p o s i t e l y charged r e s i d u e s {Y) hydrogen bonds which a r e v i t a l i n s t a b i l i z i n g t h e α - h e l i c a l conformations and i n t e r c h e n i c a t t r a c t i o n s in the secondary and t e r t i a r y s t r u c t u r e s ( 2 , 3 ) . The r o l e o f hydrophobic i n t e r a c t i o n i s a l s o p a r t i c u l a r l y Impor tant i n the s t a b i l i z a t i o n process ( 4 - 6 ) . The common feature o f such p h y s i c a l s t a b i l i z a t i o n i s t h a t t h e a t t r a c t i o n s can be broken and reformed by v a r i o u s chemical and p h y s i c a l changes i n t h e p r o t e i n s ' environment. An a l t e r n a t i v e method o f s t a b i l i z a t i o n i n p r o t e i n s i s t h a t 9
0097-6156/83/0234-0221 $06.00/0 © 1983 American Chemical Society
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
222
X E N O B I O T I C S IN F O O D S A N D
FEEDS
b r o u g h t a b o u t by c o v a l e n t i n t e r a c t i o n s between r e s i d u e s o f a d j a c e n t p o l y p e p t i d e c h a i n s . T h e most w i d e l y d i s t r i b u t e d o f a l l known c r o s s l i n k s i s c y s t i n e . T h i s m o l e c u l e a l l o w s two c h a i n s ( o r a s i n g l e f o l d e d c h a i n ) t o be c o v a l e n t l y l i n k e d t o g e t h e r by a d i s u l p h i d e b r i d g e . T h e i m p o r t a n c e o f t h i s m o i e t y and i t s i n h e r e n t r e a c t i v i t y has l e d t o a c o n s i d e r a b l e amount o f work b e i n g r e p o r t e d i n t h e s c i e n t i f i c l i t e r a t u r e (7_, 8 ) . O t h e r c r o s s l i n k s o f a more s p e c i a l i z e d o r i g i n have a l s o been n o t e d i n t h e l i t e r a t u r e . Such c r o s s l i n k s t e n d t o be s p e c i f i c t o a p a r t i c u l a r p r o t e i n rather than being ubiquitous l i k e c y s t i n e . Thus i n c o l l a g e n and e l a s t i n t h e a l d o l and a l d o l i m i d e c r o s s l i n k s o c c u r . Precursors f o r c r o s s l i n k i n g in these p r o t e i n s are the l y s i n e and h y d r o x y l y s i n e d e r i v e d a l d e h y d e s w h i c h a r e f o r m e d enzymically. The c r o s s l i n k s o f c o l l a g e n a r e f o r m e d by a s e r i e s o f s p o n t a n e o u s a l d o l and a l d i m i d e c o n d e n s a t i o n s . I n e l a s t i n t h e c r o s s l i n k s a r e f o r m e d by s i m i l a r r e a c t i o n s l e a d i n g i n t h i s c a s e t o t h e h i g h l y s t a b l e p y r i d i n i u m compounds d e m o s i n e and i s o d e m o s i n e . In the case o f c o l l a g e n , the f u n c t i o n o f the c r o s s l i n k s seems t o be t o c o n f e r o r d e r o n t h e a g g r e g a t e d p r o t e i n c h a i n s w i t h a r e s u l t i n g i n c r e a s e i n s t r e n g t h and d i m e n s i o n a l s t a b i l i t y . I n t h e c a s e o f e l a s t i n , the c r o s s l i n k s f u n c t i o n a p p e a r s t o be t h a t of r e s t r i c t i n g the e x t e n s i b i l i t y o f the polypeptide chain (9-11). Another group o f c r o s s l i n k s i n v o l v i n g t y r o s y l r e s i d u e s h a s been d e m o n s t r a t e d t o e x i s t i n t h e p r o t e i n r e s i l i n (12). T h i s c r o s s l i n k has been shown t o be f o r m e d f r o m d i m e r i c and t r i m e r i c r e s i d u e s o f t y r o s i n e ( 1 3 ) . The mechanism o f f o r m a t i o n o f t h e s e compounds i s b e l i e v e d t o be i n i t i a t e d by a p e r o x i d a s e . The e n zyme c a t a l y z e s t h e o x i d a t i v e c o u p l i n g o f t h e t y r o s i n e r e s i d u e s through the three p o s i t i o n s o f the aromatic r i n g s . T a b l e 1 i l l u s t r a t e s some o f t h e c r o s s l i n k s known t o o c c u r i n p r o t e i n s . Isopeptide
Links
I s o p e p t i d e c r o s s l i n k s a r e f o r m e d by t h e c o v a l e n t r e a c t i o n o f t h e ε-amino g r o u p o f l y s i n e r e a c t i n g w i t h e i t h e r t h e 3 - c a r b o x y l group o f a s p a r t i c a c i d o r the α-carboxyl group o f glutamic a c i d . T h u s t h e g e n e r a l n o t a t i o n o f t h e s e l i n k s i s t o r e f e r t o them a s ω-ε i s o p e p t i d e c r o s s l i n k s t o d i f f e r e n t i a t e them f r o m t h e normal peptide 1 ink. The i d e a t h a t such c r o s s l i n k s m i g h t o c c u r i n p r o t e i n s was r a i s e d by F i s c h e r (14) and more f o r c e f u l l y by A s t b u r y ( 1 5 ) . P a u l i n g and Nieman a l s o a l l u d e d t o s u c h amide c r o s s l i n k s ( 1 6 ) . However, l i t t l e o r no work was c a r r i e d o u t o n t h e s e e a r l y s u g g e s t i o n s , p o s s i b l y because o f the p r o t e i n chemistry obsession with c y s t i n e and t h e i n t r a c t a b l e c r o s s l i n k s o f c o l l a g e n . In s p i t e o f t h i s h i a t u s , much i n d i r e c t e v i d e n c e was amassed f o r t h e i n v o l v e ment o f t h e ε-amino g r o u p o f l y s i n e i n b i n d i n g r e a c t i o n s . This c i r c u m s t a n t i a l e v i d e n c e has been a d e q u a t e l y r e v i e w e d by Loewy (J_7), P i s a n o e t a l . ( J 8 ) , F i n l a y s o n Q 9 ) and A s q u i t h e t a l . (20). As a c o n s e q u e n c e o f t h i s , t h e c r o s s l i n k s (and o t h e r s ) were i n -
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
ι
0
ι
H C-CH -S-S-CH,-CH ι 2 2 ,
Naturally Occurring
C r o s s l i n k s in P r o t e i n s
Table 1
— C H
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
— C H — I
ω-ε ISOPEPTIDE
I
224
X E N O B I O T I C S IN F O O D S A N D
FEEDS
f e r r e d from binding experiments. This u n s a t i s f a c t o r y s i t u a t i o n was r e s o l v e d when an a d e q u a t e e n z y m i c d i g e s t i o n p r o c e d u r e was d e v e l o p e d w h i c h e n a b l e d c - ( - y - G L U T A M I C ) L Y S I N E (G-L) t o be i d e n t i f i e d f o r t h e f i r s t t i m e . T h i s b r e a k t h r o u g h o c c u r r e d i n 1968 w i t h t h e i d e n t i f i c a t i o n o f G-L i n b o v i n e and human f i b r i n . T h i s work showed t h a t a c r o s s l i n k o f G-L was f o r m e d a s t h e f i r s t s t e p i n t h e f i b r i n o g e n ^ f i b r i n t r a n s f o r m a t i o n i n b l o o d c l o t t i n g . The s t e p s l e a d i n g up t o t h e c r o s s l i n k f o r m a t i o n were i d e n t i f i e d and c h a r a c t e r i z e d {2]_ 2 2 ) . T h e p r e s e n c e o f G-L i n t h i s s y s t e m o p e n e d a new e r a i n c r o s s l i n k i n v e s t i g a t i o n and f r o m t h a t t i m e many w o r k e r s have f o u n d t h e m o i e t y i n a wide v a r i e t y o f o r g a n i s m s . T h i s l e d Loewy e t a l . t o c o n c l u d e t h a t t h e i s o p e p t i d e o c c u r s u n i v e r s a l l y in a l l l i v i n g systems (23). Subsequent r e s e a r c h y i e l d e d t h e c r o s s l i n k i n an i m p r e s s i v e a r r a y o f c e l l s , o r g a n i s m s and t i s s u e s . T h e o c c u r r e n c e o f G-L and i t s s i g n i f i c a n c e i n b i o l o g i c a l m a t e r i a l s was t h e s u b j e c t o f an e x c e l l e n t r e v i e w by F o l k and F i n i a y s o n ( 2 4 ) . F o l l o w i n g t h e work o n f i b r i n , t h e n e x t p r o t e i n t o be e x t e n s i v e l y s t u d i e d a s f a r a s t h e i s o p e p t i d e was c o n c e r n e d was t h e h e t e r o g e n e o u s s t r u c t u r a l p r o t e i n k e r a t i n . In t h e i r work, A s q u i t h e t a l . (25) i d e n t i f i e d and i s o l a t e d G-L f r o m n a t i v e wool k e r a t i n and s u b s e q u e n t l y i s o l a t e d t h e a s p a r t y l a n a l o g u e c-(-3-ASPARTIC) LYSINE (A-L) f r o m t h e same s o u r c e ( 2 6 ) . O t h e r w o r k e r s went o n t o i d e n t i f y t h e i s o p e p t i d e s i n human h a i r , g u i n e a p i g h a i r , p o r c u p i n e q u i l l s and p r o t e i n f r o m h a i r f o l l i c l e s (27, 2 8 ) . O t h e r t i s s u e s where i s o p e p t i d e s have been l o c a t e d i n c l u d e a v i a n and mouse m u s c l e ( 2 9 ) , human s t r a t u m c o r n e u m (_30), e r t h y r o c y t e membranes (31 ) , c e l l membranes {32) and b o v i n e c o l o s t r u m ( 3 3 ) . The mechanisms o f f o r m a t i o n o f G-L i n a l l t h e s e d i v e r s e t i s s u e s , w h e t h e r s l i m e m o u l d s o r human t i s s u e , i s b e l i e v e d t o be s i m i l a r . The c r o s s l i n k i n g b e i n g b r o u g h t a b o u t e n z y m i c a l l y v i a a t r a n s g l u t a m i n a s e , i n some c a s e s t h e enzyme s y s t e m , has been i d e n t i f i e d (24). The f u n c t i o n o f t h e i s o p e p t i d e s i n t h e v a r i o u s t i s s u e s i s n o t c l e a r , a l t h o u g h t h e y may c o n t r i b u t e d i r e c t l y t o t h e s t r u c t u r e o f the p a r t i c u l a r p r o t e i n . For example, p r i o r t o k e r a t i n i z a t i o n o r by s i m p l y i n c r e a s i n g t h e m o l e c u l a r w e i g h t o f a p r o t e i n s y s t e m c o n f e r s e n h a n c e d s t a b i l i t y , d e c r e a s e d s o l u b i l i t y and i n c r e a s e d r e s i s t a n c e t o enzymic h y d r o l y s i s .
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
9
I s o l a t i o n and A n a l y s i s o f I s o p e p t i d e s The m a j o r p r o b l e m i n a l l work c a r r i e d o u t o n i s o p e p t i d e s was r e l a t e d t o t h e f a c t t h a t t h e i s o p e p t i d e bond i s c h e m i c a l l y a n amide bond and a s a c o n s e q u e n c e o f t h i s i s s u s c e p t i b l e t o a t t a c k by a c i d s o r a l k a l i s , t h u s d e s t r o y i n g t h e i s o p e p t i d e . The o n l y p o s s i b l e methods were m i c r o b i o l o g i c a l o r e n z y m i c , b o t h o f w h i c h o b v i a t e t h e p r o b l e m o f random h y d r o l y s i s . Methods o f e n z y m i c d i g e s t i o n had p r e v i o u s l y been known and a d e q u a t e l y u s e d ; however, such methods, a l t h o u g h s u i t a b l e f o r g l o b u l a r p r o t e i n s , p r o v e d t o
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
13.
OTTERBURN
Natural
and Xenobiotic
Crosslinks
in
Proteins
225
be i n s u f f i c i e n t f o r p r o t e i n s w i t h a h i g h c r o s s l i n k d e n s i t y due t o h i g h c o n c e n t r a t i o n s o f c y s t i n e . In t h e l a t e 1960's and e a r l y 1970's, new methods i n v o l v i n g r e d u c i n g and b l o c k i n g o f c y s t i n e f o l l o w e d by e n z y m i c d i g e s t i o n were d e v e l o p e d . T h e s e p r o v e d t o be s u c c e s s f u l enough t o a l l o w i d e n t i f i c a t i o n and i s o l a t i o n o f t h e i s o p e p t i d e s (22, 3 4 ) . S i n c e t h e n , o t h e r methods have been s u g g e s t e d which m o d i f y t h e r e d u c t i o n and b l o c k i n g s t a g e s and a l s o i n t r o d u c e p r e - d i g e s t i o n s t a g e s i n t o t h e schemes ( 3 5 ) . In a l l t h e s e methods, p a r t i c u l a r l y w i t h t h e I c e r a t i n s , t h e e f f i c i e n c y o f r e d u c t i o n , b l o c k i n g and d i g e s t i o n i s i n q u e s t i o n and c o n s e q u e n t l y t h e t r u e c o n c e n t r a t i o n o f i s o p e p t i d e . I f t h e r e d u c t i o n s t a t e i s not 100% e f f i c i e n t , a r e a s o f t h e p r o t e i n w i l l be u n a b l e t o be d i g e s t e d and t h u s any i s o p e p t i d e s p r e s e n t i n such r e g i o n s w i l l n o t be m o n i t o r e d . T h u s t h e r e a r e f r u i t f u l areas o f r e s e a r c h a v a i l a b l e i n t o enzymic d i g e s t i o n o f c r o s s l i n k e d p r o t e i n s and, u n t i l a t o t a l l y e f f i c i e n t s y s t e m i s d e v e l o p e d , t h e t r u e s i g n i f i c a n c e o f i s o p e p t i d e s i n p r o t e i n s w i l l n o t be r e v e a l e d . The o r i g i n a l method o f a n a l y s e s o f t h e i s o p e p t i d e s i n p r o t e i n d i g e s t s was t o use i o n e x c h a n g e c h r o m a t o g r a p h y u s i n g s o d i u m b u f f e r s (22-25). However, a l t e r n a t i v e l y l i t h i u m b u f f e r s were u s e d in o r d e r t o o b t a i n b e t t e r s e p a r a t i o n and r e s o l u t i o n ( 3 6 ) . More r e c e n t l y G r i f f i n e t a l . (37) have d e v e l o p e d HPLC t o q u a n t i f y G-L, w h i l s t o t h e r w o r k e r s have d e v e l o p e d r a p i d i o n e x c h a n g e methods (38., 21). Formation o f Isopeptides
in Heated P r o t e i n s
The f a c t t h a t t h e i s o p e p t i d e s c o u l d be f o r m e d a s a c o n s e quence o f t h e r m a l t r e a t m e n t o f p r o t e i n s was f i r s t d e m o n s t r a t e d by A s q u i t h and O t t e r b u r n who a l s o showed t h a t t h e i s o p e p t i d e s h a d c r o s s l i n k i n g f u n c t i o n s and t h a t t h e i r c o n c e n t r a t i o n s i n c r e a s e d w i t h i n c r e a s i n g s e v e r i t y o f h e a t i n g ( 4 0 ) . T h e mechanism o f f o r m a t i o n c o u l d e i t h e r be v i a a c o n d e n s a t i o n o r t r a n s a m i n a t i o n r e a c t i o n d e p e n d i n g on w h e t h e r t h e f r e e c a r b o x y l i c a c i d o r t h e amide i s i n v o l v e d ( F i g u r e 1) ( 2 0 ) . L a t e r , o t h e r w o r k e r s c o n f i r m e d t h e s e f i n d i n g s which a r e summ a r i z e d i n T a b l e 2. T h u s i s o p e p t i d e s t o date have been f o u n d t o be f o r m e d d u r i n g h e a t i n g i n k e r a t i n ( 4 0 ) , m i l k p r o t e i n s ( 4 1 ) , m u s c l e p r o t e i n s ( 4 2 ) , r i b o n u c l e a s e ( 4 3 j and o t h e r p r o t e i n s o f n u t r i t i o n a l i n t e r e s t (44). The ease o f formation o f the isopept i d e i n a n y s p e c i f i c p r o t e i n s h o u l d be d e p e n d e n t on two f a c t o r s : f i r s t l y , t h e c o n c e n t r a t i o n o f g l u t a m i c and a s p a r t i c a c i d s i n r e l a t i o n t o t h e c o n c e n t r a t i o n o f l y s i n e and, s e c o n d l y , t h e p r o x i m i t y o f t h e l y s y l and c a r b o x y l i c r e s i d u e s w h i c h w i l l be d e t e r mined by t h e c o n f o r m a t i o n o f t h e p r o t e i n c h a i n . I t has been shown by O t t e r b u r n e t a l . (44) t h a t t h e r e i s no o b v i o u s c o r r e l a t i o n between t h e q u a n t i t y o f i s o p e p t i d e s f o r m e d and t h e c o n c e n t r a t i o n o f t h e i n v o l v e d r e s i d u e s i n t h e p r o t e i n . T h e s e a u t h o r s a l s o showed t h a t i n o n e s p e c i f i c c a s e , v i z . l y s o zyme, t h e s t e r e o s t r u c t u r e o f t h e p r o t e i n c o u l d be u s e d a s a g u i d e
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
XENOBIOTICS IN F O O D S A N D F E E D S
226
COOH HC-(CH )2-COOH or
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
2
NH
NH
2
\ ^
HC-CH -COOH
COOH
NH
2
COOH 4HC-(CH2)4-NH NH
N H^2 5
COOH
NH
COOH
2
2
2
COOH
2
ε - (-Y-GLUTAMIC) LYSINE reaction
J
NH
2
H C - C H 2 - C O - N H - (CH2)4-CH
HC- (CH2 )2 - C O - N H - (CH >4-CH
1. Proposed
/ 2
Lysine
Lysine
Figure
2
Asparagine
Aspartic acid
j
+HC-(CH2)4-NH2
NH
or HC-CH2-CONH2
2
NH
2
Glutamine
Glutamic acid
COOH
COOH
COOH HC-CC^-CONHz
NH
COOH
2
É - ( - β - A S P A R T I C ) LYSINE scheme for the formation heated proteins.
of ω - e isopeptides
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
in
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
0.80
9.70 14.70
10.50
121
27
muscle
Chicken
0.40
9.70 14.70
10.50
121
8
muscle
Chicken
0.30
9.70 14.70
10.50
121
4
muscle
Chicken
0.14
7.88 19.99
6.80
115
27
Casein
0
0.43 5.75
4.92
16.80
121
27
Lysozyme
0.74
1.04
10.37 15.46
10.07
115
57
Lactalbumin
0.06
0.04 10.37
15.46
10.07
85
27
Lactalbumin
0
0.11
0.05
22.16
5.06
115
57
Zein
0.27
6.82
9.24
115
albumen
57
Egg
0.90
0.40
0.20
0.48
0.12
0.44
13.05
0.25
7.56
9.16
9.62
high temperature
0.32
B l o o d meal
0.33
8.92
9.20
9.50
0.19
0.75
9.85
G-L
A-L
7.14
Lysine
low temperature
9.73
121
27
Bovine haemoglobin
Glutamic
gN)
B l o o d meal
Aspartic
Temp. °C
Time o f Heating (h)
Protein
I s o p e p t i d e s i n H e a t e d P r o t e i n s (g/16
Table 2
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
X E N O B I O T I C S IN F O O D S A N D
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
228
FEEDS
t o t h e t y p e o f c r o s s l i n k most l i k e l y t o be f o r m e d . Weder e t a l . (43) have r e c e n t l y shown a s i m i l a r example w i t h r i b o n u c l e a s e where t h e y showed t h a t i n t e r m o l e c u l a r b o n d i n g o c c u r r e d between d i m e r s and o l i g o m e r s o f r i b o n u c l e a s e . T h e a b s o l u t e v i n d i c a t i o n o f t h i s argument a w a i t s more work b e i n g c a r r i e d o u t on p r o t e i n s w i t h known s e c o n d a r y s t r u c t u r e s . The p r e s e n c e o f r e d u c i n g s u g a r s and l i p i d s m i l i t a t e s a g a i n s t t h e f o r m a t i o n o f i s o p e p t i d e s : i n t h e f o r m e r c a s e , b e c a u s e o f com p e t i t i v e M a i l l a r d r e a c t i o n s , a n d i n t h e l a t t e r , by c o m p e t i t i o n t o f o r m e s t e r s o r by a c t i n g a s a h y d r o p h o b i c b a r r i e r between t h e l y s y l and g l u t a m y l o r a s p a r t y l r e s i d u e s ( 4 4 ) . T h u s t h e r e i s now c o n s i d e r a b l e e v i d e n c e t h a t i s o p e p t i d e s a r e f o r m e d d u r i n g t h e h e a t i n g o f p r o t e i n s , t h e amounts f o r m e d d e p e n d i n g o n t h e p u r i t y o f t h e s t a r t i n g m a t e r i a l and t h e s e v e r i t y o f heating. N u t r i t i o n a l Consequences o f Isopeptide
Formation
I t has been known f o r some t i m e t h a t h e a t i n d u c e s c h a n g e s i n t h e p h y s i c a l p r o p e r t i e s o f p r o t e i n s and t h a t such c h a n g e s i n f l u e n c e t h e p r o t e i n s d i g e s t i b i l i t y and hence i t s n u t r i t i o n a l v a l u e a s a f o o d (45, 4 6 ) . T h e n u t r i t i o n a l v a l u e o f h e a t s t e r i l i z e d p r o t e i n s was i n v e s t i g a t e d by C a r p e n t e r e t a l . (47) and o t h e r s (48, 4 9 ) . T h i s work e s t a b l i s h e d t h a t t h e d e c r e a s e i n n u t r i t i o n a l v a l u e was r e l a t e d t o t h e i n v o l v e m e n t o f r e a c t i v e l y s i n e g r o u p s . From t h i s work i t became a p p a r e n t t h a t t h e ε-amino g r o u p o f t h e l y s i n e r e s i d u e s were b e i n g b l o c k e d by p h y s i c a l i n h i b i t i o n o r chem i c a l c o m b i n a t i o n (40, 50) t o f o r m m o i e t i e s w h i c h were u n a t t a c k e d by enzymes i n t h e g u t , t h u s e f f e c t i v e l y r e d u c i n g t h e i n t a k e o f l y s i n e by t h e a n i m a l . B j a r n a s o n and C a r p e n t e r (51^, 52) showed t h a t s i m p l e a c y l a t i o n o f t h e ε-amino g r o u p was i n i t s e l f i n s u f f i c i e n t t o c a u s e t h e e f f e c t . I n d e e d , a c y l a t e d l y s i n e was shown t o have g r o w t h p r o m o t i n g p r o p e r t i e s when f e d t o y o u n g r a t s on a l y sine d e f i c i e n t d i e t . T h e s e o b s e r v a t i o n s l e d t o t h e s p e c u l a t i o n t h a t t h e ε-amino g r o u p o f l y s i n e was i n v o l v e d i n c r o s s l i n k f o r m a t i o n w h i c h e i t h e r prevented o r i n h i b i t e d the d i g e s t i v e p r o c e s s e s . The p o s s i b l e c r o s s l i n k s were t h e i s o p e p t i d e s and l y s i n o a l a n i n e . T h i s l a t t e r c r o s s l i n k can be f o r m e d v i a a M i c h a e l a d d i t i o n r e a c t i o n o f t h e ε-amino g r o u p o f l y s i n e a c r o s s t h e d o u b l e bonds o f d e h y d r o a l a n i n e , t h e l a t t e r b e i n g t h e d e g r a d a t i o n p r o d u c t o f a l k a l i o r heat d e g r a d e d c y s t i n e ( 5 3 - 5 5 ) . L y s i n o a l a n i n e i s known t o be s t a b l e t o a c i d and e n z y m i c h y d r o l y s i s and was s u b s e q u e n t l y i d e n t i f i e d i n heated p r o t e i n s (40). The c o n c e n t r a t i o n o f l y s i n o a l a n i n e i n c r e a s e s c o n s i d e r a b l y i n a l k a l i / h e a t c o m b i n a t i o n s (55). The b i o l o g i c a l s t a b i l i t y o f t h e i s o p e p t i d e s has a l s o been i n v e s t i g a t e d . Thus O t t e r b u r n e t a l . (44) showed t h a t G-L was s t a b l e t o t h e r e d u c t i o n / b l o c k i n g and enzyme s y s t e m s u s e d t o i s o l a t e t h e com pound i n p r o t e i n s . C a r p e n t e r and W a i b l e (56) i n v e s t i g a t e d t h e s t a b i l i t y and u t i l i z a t i o n o f f r e e i s o p e p t i d e s a s a s o u r c e o f
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
13.
OTTERBURN
Natural
and Xenobiotic
Crosslinks
in
Proteins
229
l y s i n e . They were a b l e t o show w i t h c h i c k s t h a t t h e f r e e i s o p e p t i d e G-L was m e t a b o l i z e d and had some growth p r o m o t i n g e f f e c t . T h e s e w o r k e r s a l s o showed t h a t none o f t h e f r e e i s o p e p t i d e c o u l d be d e t e c t e d i n t h e u r i n e , a l t h o u g h t r a c e s were f o u n d i n t h e p l a s ma. T h i s o b s e r v a t i o n i n d i c a t e d t h a t some i s o p e p t i d e had been a b s o r b e d t h r o u g h t h e i n t e s t i n a l w a l l a l t h o u g h n o t a l l t h e G-L was a c c o u n t e d f o r . R a c z y n s k i e t a l . (57) o b s e r v e d t h a t t h e s u p e r n a t a n t f r a c t i o n o f k i d n e y homogenates c a u s e d g r e a t e s t e n z y m i c h y d r o l y s i s o f G-L. However, O t t e r b u r n and H e a l y (58, 59) f o u n d t h a t s u p e r n a t a n t f r a c t i o n s o f s m a l l i n t e s t i n a l homogenates e x h i b i t e d maximum e n z y m i c a c t i v i t y t o w a r d s t h e i s o p e p t i d e s . T h e s e r e s u l t s were s u b s t a n t i a t e d by r e s u l t s o b t a i n e d i n s t u d y i n g t h e t r a n s f e r e n c e o f G-L a c r o s s the wall o f the small i n t e s t i n e s o f r a t s using the e v e r t e d s a c - t e c h n i q u e ( 5 9 ) . T h e s e l a t t e r r e s u l t s showed t h a t G-L was h y d r o l y z e d t o a c o n s i d e r a b l e d e g r e e (71.03%) i n t h e j e j u n a l r e g i o n o f t h e gut and t o a l e s s e r e x t e n t (24.4%) i n t h e d u o d e n a l a n d i l e a l (8.72%) r e g i o n s . A g a i n , t h e s e r e s u l t s a r e a t v a r i a n c e w i t h t h o s e o f R a c z y n s k i e t a l . (57) whose i n v i t r o s t u d i e s w i t h e v e r t e d i n t e s t i n a l s a c s showed t h a t r a d i o l a b e l l e d G-L p a s s e d a c r o s s t h e gut w a l l u n c h a n g e d . The r e s u l t s o f O t t e r b u r n and H e a l y , however, a g r e e w i t h t h e s u g g e s t i o n s o f W a i b l e and C a r p e n t e r (56) t h a t h y d r o l y s e s o f i n g e s t e d G-L can o c c u r w i t h i n t h e i n t e s t i n a l w a l l a s a c o n s e q u e n c e o f which o n l y t r a c e s o f G-L a r e f o u n d i n t h e b l o o d p l a s m a . V e r y l i t t l e work has been c a r r i e d o u t on t h e n u t r i t i o n a l s i g n i f i c a n c e o f s e v e r e l y h e a t e d p r o t e i n s w h i c h a r e known t o c o n t a i n i s o p e p t i d e c r o s s l i n k s . One such s t u d y was c a r r i e d o u t b y H u r r e l l e t a l . (42) u s i n g s e v e r e l y h e a t e d c h i c k e n m u s c l e p r o t e i n fed a s p a r t o f the d i e t t o r a t s . These workers a n t i c i p a t e d t h a t t h e i n a c c e s s i b l e l y s i n e and l y s i n e r e s i d u e s i n v o l v e d w i t h i s o p e p t i d e s w o u l d have s i g n i f i c a n t l y r e d u c e d d i g e s t i b i l i t y v a l u e s comp a r e d w i t h the o v e r a l l p r o t e i n . Thus i t was e x p e c t e d t h a t such h i g h l y s i n e f r a c t i o n s w o u l d a c c u m u l a t e i n t h e i l e a l and f a e c a l c o n t e n t s . However, i t was f o u n d t h a t a l t h o u g h p r o t e i n d i g e s t i b i l i t y was g r e a t l y r e d u c e d a f t e r h e a t t r e a t m e n t , t h e i s o p e p t i d e s t h e m s e l v e s were a t l e a s t a s d i g e s t i b l e a s t h e t o t a l p r o t e i n comp o n e n t , t o t a l l y s i n e and FDNB r e a c t i v e l y s i n e . T h e r e d u c t i o n i n i l e a l p r o t e i n d i g e s t i b i l i t y o n l y p a r t l y a c c o u n t e d f o r t h e much l a r g e r r e d u c t i o n i n n u t r i t i v e v a l u e a s m e a s u r e d by t h e Net P r o t e i n R a t i o (NPR). One e x p l a n a t i o n f o r t h i s r e s u l t may be f o u n d i n t h e f a c t t h a t i f i s o p e p t i d e s are not absorbed through the ileum they w i l l p a s s t o t h e c o l o n where i n t e s t i n a l b a c t e r i a and m i c r o f l o r a a r e a b l e t o h y d r o l y z e them ( 4 4 ) . T h u s t h e r e i s e v i d e n c e t o show t h a t b o t h G-L and A-L a r e f o u n d i n p r o t e i n s w h i c h have been s u b j e c t e d t o h e a t t r e a t m e n t s the q u a n t i t y o f i s o p e p t i d e s formed being r e l a t e d t o the s e v e r i t y of treatment. F u r t h e r , i t seems t h a t t h e i s o p e p t i d e s a r e i m p l i c a t e d t o some e x t e n t i n t h e r e s u l t i n g f a l l i n n u t r i t i o n a l v a l u e a s m o n i t o r e d by NPR.
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
230
X E N O B I O T I C S IN F O O D S A N D
FEEDS
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
Conclusion The p r e s e n c e o f i s o p e p t i d e c r o s s l i n k s i n h e a t e d p r o t e i n s i s i n t e r e s t i n g f r o m a s c i e n t i f i c v i e w p o i n t a s i t i s a r a r e example o f t h e formation o f a x e n o b i o t i c substance which i s a l s o found i n n a t i v e p r o t e i n s . Other examples a r e l a n t h i o n i n e and l y s i n o a l a n i n e w h i c h c a n be f o r m e d x e n o b i o t i c a l l y a n d have been shown by Gross t o occur n a t u r a l l y i n cinnamycin ( 6 0 ) . To date t h e r e i s no e v i d e n c e t h a t t h e i s o p e p t i d e s have any t o x i c o l o g i c a l manifestations i n heated foods, although l i t t l e o r no work h a s been c a r r i e d o u t i n t h i s a r e a . The o n l y e v i d e n c e o f any d e l e t e r i o u s e f f e c t s o f t h e x e n o b i o t i c s i s t h e r e d u c t i o n t h e y c a u s e i n n u t r i t i o n a l v a l u e a s measured by NPR. In o r d e r t o f u l l y understand the r o l e and importance o f t h e i s o p e p t i d e s i n p r o t e i n f o o d s t u f f s a n d n u t r i t i o n , more work s h o u l d be u n d e r t a k e n i n t o t h e i r n u t r i t i o n a l and t o x i c o l o g i c a l p r o p e r t i e s .
Literature Cited 1. Speakman, J . B.; Hirst, M. C. Nature 1931, 128, 1073. 2. Mirsky, A. E.; Pauling, L. Proc. Nat. Acad. Sci. (U.S.A.) 1936, 22, 439. 3. Pimentel, G. C . ; McClellan, A. L. "The Hydrogen Bond"; W. H. Freeman: San Francisco, 1960. 4. Klotz, I. M. Brookhaven Symp. Biol. 1960, 13, 25. 5. Zahn, H. Palette 1965, 21, 19. 6. Crewther, W. G.; Fraser, R. D. B.; Lennox, F. G.; Lindley, H. Adv. Protein Chem. 1965, 20, 191. 7. Friedmann, M. "The Chemistry and Biochemistry of the Sulfhydral Group in Amino Acids, Peptides and Proteins"; Pergamon Press, 1973. 8. Asquith, R. S.; Leon, Ν. H. "Chemistry of Natural Protein Fibres"; Asquith, R.S., Ed.; Plenum Press, New York, 1977, Chap. 5. 9. Piez, K. A. Annu. Rev. Biochem. 1968, 37, 547. 10. Traub, W.; Piez, K. A. Adv. Protein Chem. 1971, 25, 243. 11. Feeney, R. E.; Blankenhorn, G.; Dixon, H. B. F. Adv. Protein Chem. 1975, 29, 135. 12. Weis-Fogh, T. J. Exp. Biol. 1960, 37, 889. 13. Andersen, S. O. Biochim. Biophys. Acta 1964, 93, 213. 14. Fischer, E. Ber. Desch. Chem. Ges. 1906, 39, 510. 15. Astbury, W. T.; Woods, H. J. Phil. Trans. Roy. Soc. (London) Series A 1934, 232, 333. 16. Pauling, L.; Niemann, C. J . Am. Chem. Soc. 1939, 61, 1860. 17. Loewy, A. G. "Fibrinogen"; Laki, E., Ed.; Dekker, New York, 1968, p. 185. 18. Pisano, J . J.; Finlayson, J . S.; Peyton, M. P. Thromb. Diath. Haemorrh. Suppl. 1970, 39, 113. 19. Finlayson, J . S. Sem. Thromb. Haemostasis 1974, 1, 33.
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
13.
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.
OTTERBURN
Natural
and Xenobiotic
Crosslinks
in Proteins
231
Asquith, R. S.; Otterburn, M. S.; Sinclair, W. J. Angew. Chem. Internat. Edit. 1974, 13, 514. Matacic, S. S.; Loewy, A. G. Biochem. Biophys. Res. Commun. 1968, 30, 356. Pisano, J . J.; Finlayson, J . S.; Peyton, M. P. Science 1968, 160, 892. Loewy, A. G.; Matacic, S. S.; Showe, M. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1971, 30, 1275. Folk, J. E.; Finlayson, J . S. Adv. Protein Chem. 1977, 31, 1. Asquith, R. S.; Otterburn, M. S.; Buchanan, J . H.: Cole, M.; Fletcher, J . C.; Gardner, K. L. Biochim. Biophys. Acta 1970, 221, 342. Asquith, R. S.; Otterburn, M. S.; Gardner, K. L. Experientia 1971, 27, 1388. Harding, H. W. J.; Rogers, G. E. Biochim. Biophys. Acta 1972, 257, 37. Harding, H. W. J.; Rogers, G. E. Biochemistry 1972, 11, 2858. Loewy, A. G.; Matacic, S. S. Biochim. Biophys. Acta 1981, 668, 167. Abernethy, J . L.; H i l l , R. L.; Goldsmith, L. A. J. Biol. Chem. 1977, 252, 1837. Lorand, L.; Siefring, G. E.; Lowe-Kilentz, L. J . Supramol. Struct. 1978, 9, 279. Haugland, R. B.; Lin, T. I.; Dowben, R. M.; Birckbichler, P. J . Biophys. J. 1982, 37, 191. Klostermeyer, H.; Rabbel, K.; Reimerdes, E.-H. HoppeSeyler's Z. Physiol. Chem. 1976, 357, 1197. Cole, M.; Fletcher, J . C.; Gardner, K. L.; Corfield, M. C. Appl. Polym. Symp. 1971, 18, 147. Schmitz, I.; Baumann, H.; Zahn, H. Proc. 5th Inter. Wolltextil-Forschungskonf., Aachen 1975, 2, 313. Otterburn, M. S.; Sinclair, W. J. J. Sci. Food Agric. 1976, 27, 1071. Griffin, M.; Wilson, J.; Lorand, L. Anal. Biochem. 1982, 124, 406. Weder, J . K. P.; Scharf, U. Z. Lebensm. Unters-Forsch. 1981, 172, 9. Sugawara, K.; Ouchi, T. Agric. Biol. Chem. 1982, 46, 1085. Asquith, R. S.; Otterburn, M. S. Appl. Polym. Symp. 1971, 18, 277. Schmitz, I.; Zahn, H.; Klostermeyer, H.; Rabbel, K.; Watanabe, Κ. Z. Lebensm. Unters-Forsch. 1976, 160, 377. Hurrell, R. F . ; Carpenter, K. J.; Sinclair, W. J.; Otterburn, M. S.; Asquith, R. S. Br. J. Nutr. 1976, 35, 383. Weder, J. K. P.; Scharf, U. Z. Lebensm. Unters-Forsch. 1981, 172, 104. Otterburn, M. S.; Healy, M. G.; Sinclair, W. J. Adv. Exp. Med. Biol. 1977, 86B, 239.
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF ARIZONA on April 25, 2017 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch013
232
45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60.
X E N O B I O T I C S IN F O O D S A N D
FEEDS
Mecham, D. K.; Olcott, H. S. Ind. Eng. Chem. 1947, 39, 1023. Beuk, J . F.; Chornock, F. W.; Rice, E. E. J. Biol. Chem. 1948, 60, 291. Carpenter, K. J . Biochem. J. 1960, 77, 604. Lea, C. H.; Hannah, R. S. Biochim. Biophys. Acta 1950, 4, 1950. Asquith, R. S.; Chan, D. K.; Otterburn, M. S. J . Chromatogr. 1969, 43, 312. Asquith, R. S.; Speakman, J. B.; Tolgyesi, A. Nature 1957, 180, 502. Bjarnason, J.; Carpenter, K. J. Br. J. Nutr. 1969, 23, 859. Bjarnason, J.; Carpenter, K. J. Br. J. Nutr. 1970, 24, 313. Bohak, Z. J. Biol. Chem. 1964, 239, 2878. Ziegler, K. J . Biol. Chem. 1964, 239, P.C. 2713. Asquith, R. S. "Fibrous Proteins: Scientific, Industrial and Medical Aspects"; Parry, D. A. D.; Creamer, L. K., Eds.; Academic Press, 1979, I, p. 371. Waible, P. E.; Carpenter, K. J. Br. J. Nutr. 1972, 27, 509. Raczynski, G.; Snochowski, K.; Buraczewski, S. Br. J. Nutr. 1975, 34, 291. Otterburn, M. S.; Healy, M. G. Unpublished Results. Healy, M. G. M.Sc. Thesis, The Queen's University of Belfast, 1980. Gross, E. Adv. Exp. Med. Biol. 1977, 86B, 131.
RECEIVED
June 21, 1983
Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.