Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX
pubs.acs.org/jced
Isothermal Vapor−Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane Fouzia Amireche,*,†,‡ Farid Brahim Belaribi,† Ilham Mokbel,§ and Jacques Jose§ †
Crystallography and Thermodynamics Laboratory, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, PO Box 32 El Alia, 16111 Bab Ezzouar, Algiers, Algeria ‡ Higher National Veterinary School of Algiers. PO Box 161 El Alia, 16111 Algiers, Algeria § Laboratory of Thermodynamics and Analytical Chemistry, Claude Bernard University (Lyon I), 43, Boulevard du 11 Novembre 1918, 9622 Villeurbanne, France ABSTRACT: Isothermal vapor−liquid equilibria (VLE) are measured for three binary systems containing cyclic ethers: 1,3-dioxolane, 1,4-dioxane, or tetrahydropyran in mixture with 1,2-dichloroethane at 10 temperatures ranging from 273.15 to 353.15 K. A laboratory apparatus using the static method was employed to carry out the vapor pressures of the pure components and the mixtures. The VLE data were reduced by the Redlich−Kister equation and used to calculate activity coefficients then excess molar Gibbs free energies GE. The nonideality of the vapor pressure was considered in terms of the second molar virial coefficient. Both the mixtures formed by tetrahydropyran or 1,3-dioxolane with 1,2-dichloroethane show a minimum boiling point azeotrope. The experimental data were compared with the results provided for the modified UNIFAC (Do) and the DISQUAC models.
1. INTRODUCTION Cyclic ethers such as 1,3-dioxolane, tetrahydrofuran, and 1,4-dioxane are used as aprotic solvents for a variety of practical applications as well as in the laboratory. They are totally miscible in water because of the more exposed oxygen atom for hydrogen bonding as compared to aliphatic ethers.1 Recently, the tetrahydrofuran found application as a solvent in 3D printing when using plastics. It is used to clean clogged 3D printer parts, as well as when finishing prints to remove extruder lines and add a shine to the finished product.2 On the other side, the highest use of 1,2-dichloroethane is in making chemicals involved in plastics, rubber, and synthetic textile fibers. It is also used as a solvent for resins and fats, photography, photocopying, cosmetics, drugs, and as a fumigant for grains and orchards.3 Despite of the number of works that have involved the study of the thermodynamic properties of these systems, the literature search reveals that there is always a lack of experimental data that must be completed to improve the performance of predictive thermodynamic models such as group contribution methods, which contribute to the development of software tools used in the synthesis and separation processes. The present work fits into this context with two complementary objectives, one experimental and the other theoretical. In this investigation, we carry on our previous reported measurements on both thermodynamic behavior of liquid mixtures containing chloroalkanes and ethers,4,5 with a focus on the binary mixtures of cyclic ethers: 1,3-dioxolane (1,3-DOXO), 1,4-dioxane (1,4-DOXA) or tetrahydropyran (THP) with 1,2- dichloroethane (1,2-DCE) in the temperature range of © XXXX American Chemical Society
(273 to 354) K. We used the static-analytic method for performing all the measurements. The Modified UNIFAC (Do)6−8 was applied to correlate the VLE data and was compared with the DISQUAC model. As far as we know, only the (1,2-DCE + 1,4-DOXA) system was found in the literature.9
2. EXPERIMENTAL SECTION 2.1. Chemicals. 1,3-DOXO (>99%), 1,4-DOXA (>99%), THP (>99%), and 1,2-DCE (>99.8%) were purchased from Acros Organics. The chemical purities were checked by comparison of measured vapor pressures and densities with literature values10−14 as reported in Table 1. All the chemicals were used without any additional purification. However, to obtain high quality phase equilibrium data, these chemicals have been thoroughly degassed before performing the static vapor pressure measurements. 2.2. Apparatus and Procedure. The densities (ρ) of the pure components were measured at T = 298.15 K and atmospheric pressure using a DMA 5000 densimeter (Anton Paar, Austria) with an accuracy of 5.10−6 g·cm−3. The density determination is based on measuring the period of oscillation of a vibrating U-shaped tube filled with the liquid sample. During the operation, the temperature of the apparatus was maintained constant to within ±0.01 K. The vapor pressures p measurements, for the pure compounds and for binary mixtures were carried out using a static apparatus. The description of the Received: December 16, 2017 Accepted: March 30, 2018
A
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 1. Chemical Names, Formula, CASRN, Supplier, Purity, Densities ρ (kg m−3) at p = 101.3 kPa, and Vapour Pressures pi* (kPa), of the Pure Compounds at 298.15 K Compared with Literature Valuesa
a
Standard uncertainties u are u(T) = 0.01 K, u(p) = 1 kPa, ur(ρi) = 0.01 and ur(ρ) = 0.001. References cited for literature data: ref 10, Hernandez, V. G. (2005); ref 11, Brocos, P. (1998); ref 12, Giner, B. (2007); ref 13, Inglese, A. (1983); ref 14,Barhala, A. (2006).
Table 2. Experimental T−p Data for the Pure Components 1,2-Dichloroethane (1,2-DCE), 1,3-Dioxolane (1,3-DIOXO), 1,4-Dioxane (1,4-DIOXA), and Tetrahydropyrane (THP)a 1,2-DCE
a
1,3-DIOXO
1,4-DIOXA
THP
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
284.87 294.83 294.84 304.82 314.81 314.83 324.83 334.82 344.81 354.89
5.38 8.97 8.96 14.34 22.19 22.18 33.27 48.47 67.97 94.96
275.00 284.94 294.82 304.79 314.76 324.90 334.85 344.82 350.77
3.86 6.74 11.33 18.26 28.28 43.07 62.99 89.85 109.39
284.59 294.82 304.81 314.76 324.92 334.92 344.89 354.92
2.23 3.92 6.58 10.54 16.71 25.52 37.55 54.11
275.59 285.53 295.42 305.37 315.36 325.65 335.60 345.59 355.49
2.85 4.91 8.07 12.85 19.90 29.99 43.81 61.17 84.29
Standard uncertainties u are u(T) = 0.01 K and ur(pi) = 0.01.
naphthalene. This equipment gives consistent measurements within a large pressure range (27- 200 × 103) Pa and at temperatures from (258.15 to 468.15) K. The pressure standard uncertainties are estimated to σ(p) = 0.15 (p/Pa) for p < 13.3 Pa, σ(p) = 0.05 (p/Pa) for (13.3< p < 200) Pa, σ(p) = 0.005 (p/Pa) for (200 < p < 1000) Pa, σ(p) = 0.002 (p/Pa) for (1000 < p < 200 × 103) Pa. The equilibrium temperatures were measured to ±0.01 K and estimated uncertainty in mole fraction is σ(xi) = 0.0002. After each measurement, the samples are then analyzed by gas chromatography to determine compositions.
apparatus and the experimental procedure can be found elsewhere,15,16 therefore only the main features are given here. The apparatus is equipped with a differential manometer from MKS, model 616 A. The pressure measurement consisted of applying the vapor pressure of the sample on the measurement side of the gauge. The reference side was submitted to a permanent dynamic pumping. The residual pressure was 10−4 Pa and therefore can be neglected. Temperature measurements were carried out using a copper-constantan thermocouple calibrated against a 25 Ω platinum resistance standard thermometer (T = ±0.001 K, IPTS 90) and a Leeds & Northrup bridge (±10−4 Ω). The differential pressure gauge was calibrated against a U-manometer filled with mercury or Apiezon oil depending on pressure range. The levels in both arms of the U-shaped manometer were read by a cathetometer (reference 70,298, from Bouty France) to the nearest 0.001 mm. The calibration was then checked by measuring the vapor and the sublimation pressures of water and
3. RESULTS The experimental results (T, p, xi) for the pure components are listed in Table 2. The vapor pressures were well correlated with Antoine equation, and the constants compared with the available literature data17,18 are given in Table 3. The experimental results (T, p, xi) for the binary mixtures are set in Table 4 to B
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 3. Constants of Antoine’s Equation for the Vapour Pressures of the Pure Compounds log(p) (kPa) = A − B/(C + t) (t Is Expressed in °C) A
a
B
C
pure component
exp.
lit.
exp.
lit.
exp.
lit.
1,2-DCE 1,3-DIOXO 1,4-DIOXA THP
7.01747 7.22128 7.70336 6.97862
7.02530a
1248.73 1292.48 1673.35 1279.6
1271.25a
218.5 222.5 246.7 224.1
222.9a
7.43155b
1554.68b
240.3b
Reference 17, Pearce, J. N. (1973). bReference 18, Crenshaw, J. L. (1938).
Table 4. Experimental T−p Data for 1,2-DCE (1) + 1,3-DIOXO (2) Binary Mixtures, At Five Constant Experimental 1,2-DCE Liquid Phase Composition, x1a x1 = 0.1408
a
x1 = 0.3357
x1 = 0.5042
x1 = 0.6326
x1 = 0.8927
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
274.94 284.89 294.80 304.69 314.72 324.83 334.85 344.80 351.77
3.59 6.27 10.60 17.02 26.57 40.35 59.19 84.27 106.34
274.94 284.87 294.77 304.66 314.69 324.83 334.8 344.8 354.72
3.32 5.80 9.92 15.77 24.76 37.49 55.00 78.50 109.41
275.02 284.94 294.85 304.76 314.79 324.9 334.85 344.8 354.74
3.16 5.53 9.25 15.06 23.54 35.81 52.52 74.86 104.54
274.94 284.87 294.8 304.74 314.69 324.85 334.85 344.78 354.76
3.06 5.35 8.94 14.56 22.72 34.56 50.70 72.47 101.09
274.92 284.82 294.77 304.71 314.67 324.81 334.83 344.8 354.72
2.99 5.21 8.67 14.20 21.94 33.33 48.87 69.71 96.88
Standard uncertainties u are u(T) = 0.01 K, ur(pi) = 0.01 and u(x1) = 0.0002.
Table 5. Experimental T−p Data, for 1,2-DCE(1) + 1,4-DIOXA (2) Binary Mixtures, At Five Constant Experimental 1,2-DCE Liquid Phase Composition x1a x1 = 0.1437
a
x1 = 0.3347
x1 = 0.4800
x1 = 0.6316
x1 = 0.8892
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
275.23 284.92 294.82 304.81 314.76 324.9 334.92 344.91 354.9
1.41 2.52 4.36 7.25 11.54 18.09 27.58 40.53 57.77
274.94 284.89 294.8 304.76 314.74 324.9 334.89 344.91 354.85
1.63 2.93 5.03 8.33 13.20 20.66 30.76 44.69 63.52
274.94 284.84 294.8 304.76 314.72 324.9 334.89 344.89 354.81
1.87 3.34 5.68 9.27 14.63 22.66 33.73 48.86 68.94
274.89 284.84 294.77 304.76 314.72 324.9 334.85 344.85 354.81
2.20 3.88 6.54 10.58 16.63 25.46 37.39 53.97 75.54
274.94 284.89 294.85 304.74 314.74 324.76 334.76 344.78 354.69
2.77 4.83 8.06 13.01 20.16 30.64 44.86 64.02 89.47
Standard uncertainties u are u(T) = 0.01 K, ur(pi) = 0.01 and u(x1) = 0.0002.
Table 6. Experimental T−p Data for 1,2-DCE(1) + THP (2) Binary Mixtures, at Five Constant Experimental 1,2-DCE Liquid Phase Composition x1a x1 = 0.1496
a
x1 = 0.3610
x1 = 0.4993
x1 = 0.6479
x1 = 0.8961
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
T (K)
p (kPa)
273.37 285.32 295.24 305.17 315.17 325.27 335.21 345.25 355.36
2.60 4.85 7.93 12.36 19.12 28.91 42.33 60.75 85.43
275.41 285.35 295.27 305.63 315.71 325.86 335.65 345.54 355.43
2.62 4.56 7.58 12.27 19.28 29.19 42.42 60.30 83.06
275.46 285.4 295.32 305.17 315.26 325.39 335.37 345.07 355.01
2.68 4.67 7.77 12.46 19.36 29.38 43.10 61.22 84.89
275.1 285.05 294.97 304.86 314.91 325.04 335.03 344.98 354.7
2.75 4.79 7.98 12.73 19.87 30.20 44.23 63.28 87.25
274.97 284.89 294.8 304.76 314.74 324.88 334.87 344.85 354.79
2.95 5.14 8.53 13.76 21.34 32.51 47.44 67.37 93.83
Standard uncertainties u are u(T) = 0.01 K, ur(pi) = 0.01 and u(x1) = 0.0002.
Table 6. Estimation of the adjustable parameters was based on the minimization of the following objective function, F, in terms of experimental and calculated pressure values:
n
F=
i=1
C
⎛p
∑ ⎜⎜ ⎝
exp
− pcal ⎞ ⎟ pexp ⎟⎠
(1) DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 7. Molar Volumes, Vi* (10−6 m3 mol−1),a,b and second molar virial coefficients, Bii (10 −6m3 mol−1) estimated using the Tsonopoulos methodc,d for pure compounds THP
a
1,3-DIOXA
1,4-DIOXO
T/K
Vi*
−Bii
−Bij
Vi*
−Bii
−Bij
Vi*
−Bii
−Bij
273.15 283.15 293.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15
944 954 963 970 975 987 999 1011 1024 1038
3130 2682 2330 2181 2047 1817 1628 1470 1336 1223
2718 2336 2035 1908 1794 1597 1435 1299 1184 1085
763 771 780 785 789 799 809 819 830 842
2929 2515 2187 2049 1924 1710 1533 1385 1260 1153
2594 2232 1946 1825 1716 1528 1373 1244 1133 1039
824 832 841 846 850 859 869 879 890 901
3134 2670 2308 2165 2021 1789 1599 1441 1309 1196
2745 2352 2043 1913 1797 1597 1433 1296 1180 1085
Reference 21; Reid, R.C. (1987). bReference 22; TRC, TRC Thermodynamic Tables (1986). cReference 23; Tsonopoulos, C. (1974). Reference 24; Tsonopoulos, C. (1975).
d
Table 8. Calculated 1,2-DCE Vapour Phase Composition y1,calc, Experimental Total Vapour Pressure p, Relative Deviations Δp = 100(p − pcal)/p, Calculated Activity Coefficients γ1 and γ2 and Excess Molar Gibbs Energies GE, against Experimental 1,2-DCE Liquid Phase Composition x1, in the Temperature Range from 273.15 to 353.15 Ka T (K)
x1
y1, cal
273.15
0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927
0.0904 0.2661 0.4494 0.5976 0.8912 0.0930 0.2673 0.4386 0.5851 0.9049 0.0925 0.2851 0.4484 0.5793 0.9010 0.0941 0.2670 0.4396 0.5858 0.8995 0.0944 0.2672 0.4403 0.5862 0.8974 0.0950 0.2679 0.4421 0.5872 0.8931 0.0955 0.2690 0.4443 0.5883 0.8884 0.0961 0.2705 0.4467 0.5895 0.8837
283.15
293.15
298.15
303.15
313.15
323.15
333.15
Δp (%)
p (kPa)
1,2-Dichloroethane (1) + 1,3-DIOXO (2) 3.215 −0.22 2.974 0.20 2.817 −0.01 2.739 −0.11 2.680 0.10 5.730 0.08 5.307 0.02 5.023 −0.21 4.875 0.22 4.760 −0.12 9.431 −1.25 9.024 1.34 8.544 −0.34 8.289 −0.50 8.065 0.53 12.479 −0.01 11.579 0.05 10.966 −0.10 10.622 0.08 10.334 −0.04 15.843 −0.03 14.710 0.06 13.937 −0.06 13.494 0.04 13.111 −0.01 24.846 −0.08 23.096 0.07 21.907 0.01 21.198 −0.05 20.545 0.04 37.691 −0.13 35.074 0.08 33.320 0.08 32.227 −0.14 31.157 0.09 55.501 −0.16 51.700 0.09 49.204 0.15 47.579 −0.22 45.888 0.13 D
γ1
γ2
GE ( J mol−1)
0.7712 0.8771 0.9363 0.9660 0.9970 0.7719 0.8620 0.8939 0.9185 0.9863 0.7600 0.9168 0.9246 0.9244 0.9821 0.7912 0.8740 0.9091 0.9337 0.9896 0.7973 0.8788 0.9150 0.9394 0.9908 0.8092 0.8895 0.9280 0.9514 0.9932 0.8207 0.9012 0.9419 0.9640 0.9956 0.8319 0.9139 0.9565 0.9769 0.9979
0.9895 0.9514 0.9080 0.8716 0.7879 0.9862 0.9554 0.9309 0.8974 0.6899 0.9714 0.9231 0.9194 0.9188 0.7143 0.9888 0.9605 0.9337 0.9009 0.7295 0.9895 0.9616 0.9340 0.9019 0.7446 0.9906 0.9631 0.9343 0.9038 0.7769 0.9915 0.9639 0.9340 0.9058 0.8115 0.9921 0.9642 0.9333 0.9079 0.8480
−103.7 −175.1 −184.0 −164.3 −64.2 −113.9 −188.6 −216.7 −220.2 −122.8 −155.0 −200.6 −197.9 −197.1 −127.3 −105.7 −178.5 −203.5 −202.7 −107.0 −103.2 −174.9 −198.1 −195.4 −100.6 −98.7 −167.4 −185.9 −178.8 −86.4 −94.5 −159.4 −172.1 −160.0 −70.9 −90.8 −150.9 −156.9 −139.3 −54.2
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 8. continued T (K)
x1
y1, cal
343.15
0.1408 0.3357 0.5042 0.6326 0.8927 0.1408 0.3357 0.5042 0.6326 0.8927
0.0967 0.2723 0.4494 0.5908 0.8788 0.0973 0.2743 0.4522 0.5920 0.8738
0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892 0.1437 0.3347 0.4800 0.6316 0.8892
0.2344 0.5125 0.6856 0.8242 0.9670 0.2327 0.5034 0.6747 0.8155 0.9651 0.2297 0.4945 0.6643 0.8069 0.9629 0.2279 0.4901 0.6592 0.8027 0.9616 0.2259 0.4858 0.6543 0.7984 0.9603 0.2213 0.4773 0.6449 0.7901 0.9575 0.2162 0.4690 0.6359 0.7819 0.9545 0.2107 0.4610 0.6273 0.7739 0.9512 0.2049 0.4535 0.6195 0.7664 0.9477 0.1988 0.4459 0.6117 0.7587 0.9438
353.15
273.15
283.15
293.15
298.15
303.15
313.15
323.15
333.15
343.15
353.15
Δp (%)
p (kPa)
1,2-Dichloroethane (1) + 1,3-DIOXO (2) 79.580 −0.19 74.203 0.10 70.761 0.21 68.421 −0.29 65.830 0.16 111.402 −0.21 103.971 0.10 99.361 0.26 96.083 −0.36 92.227 0.19 1,2-Dichloroethane (1) + 1,4-DIOXA (2) 1.238 0.07 1.459 −0.14 1.683 −0.12 1.982 0.67 2.490 −1.65 2.270 −0.10 2.659 0.03 3.030 −0.12 3.533 0.61 4.399 −1.74 3.972 −0.19 4.617 0.13 5.209 −0.13 6.017 0.53 7.429 −1.62 5.171 −0.20 5.986 0.16 6.724 −0.13 7.730 0.49 9.508 −1.50 6.666 −0.20 7.684 0.17 8.596 −0.14 9.837 0.45 12.055 −1.34 10.777 −0.17 12.315 0.17 13.676 −0.14 15.511 0.35 18.875 −0.96 16.854 −0.10 19.083 0.13 21.059 −0.15 23.679 0.24 28.628 −0.50 25.579 0.01 28.693 0.06 31.492 −0.15 35.115 0.11 42.198 0.00 37.786 0.14 41.983 −0.02 45.864 −0.16 50.732 −0.04 60.622 0.52 54.467 0.29 59.941 −0.11 65.218 −0.15 71.582 −0.20 85.091 1.05 E
γ1
γ2
GE ( J mol−1)
0.8428 0.9271 0.9715 0.9898 1.0001 0.8535 0.9409 0.9866 1.0026 1.0023
0.9925 0.9640 0.9325 0.9102 0.8858 0.9927 0.9635 0.9317 0.9127 0.9246
−87.3 −142.0 −140.4 −117.1 −36.8 −84.0 −132.6 −123.0 −93.7 −18.8
0.7289 0.8077 0.8685 0.9266 0.9923 0.7531 0.8177 0.8720 0.9268 0.9920 0.7743 0.8285 0.8776 0.9289 0.9921 0.7838 0.8341 0.8810 0.9306 0.9922 0.7927 0.8399 0.8847 0.9326 0.9924 0.8084 0.8516 0.8931 0.9374 0.9930 0.8216 0.8636 0.9025 0.9433 0.9937 0.8325 0.8757 0.9127 0.9501 0.9946 0.8407 0.8874 0.9233 0.9573 0.9955 0.8475 0.8998 0.9351 0.9655 0.9966
0.9939 0.9617 0.9146 0.8431 0.6751 0.9957 0.9695 0.9271 0.8585 0.6874 0.9969 0.9750 0.9368 0.8718 0.7024 0.9973 0.9771 0.9406 0.8776 0.7107 0.9976 0.9787 0.9439 0.8830 0.7195 0.9979 0.9809 0.9489 0.8924 0.7384 0.9979 0.9816 0.9520 0.9001 0.7586 0.9975 0.9812 0.9533 0.9062 0.7801 0.9969 0.9797 0.9531 0.9107 0.8019 0.9960 0.9773 0.9518 0.9142 0.8257
−115.1 −221.3 −259.1 −252.2 −114.5 −104.6 −207.1 −247.4 −245.4 −114.6 −96.0 −194.5 −235.6 −236.8 −112.6 −92.4 −188.7 −229.8 −231.9 −111.0 −89.3 −183.2 −223.9 −226.7 −109.0 −84.2 −173.4 −212.4 −215.5 −103.8 −80.7 −165.0 −201.1 −203.2 −97.3 −78.9 −158.1 −190.3 −190.1 −89.7 −78.7 −153.0 −180.4 −176.9 −81.2 −79.8 −148.6 −170.1 −162.1 −71.2
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 8. continued T (K)
x1
y1, cal
273.15
0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961 0.1496 0.3610 0.4993 0.6479 0.8961
0.1335 0.3548 0.5134 0.6833 0.9252 0.1314 0.3560 0.5205 0.6959 0.9334 0.1302 0.3645 0.5315 0.7027 0.9312 0.1301 0.3681 0.5358 0.7049 0.9300 0.1304 0.3713 0.5392 0.7065 0.9289 0.1320 0.3766 0.5438 0.7077 0.9265 0.1347 0.3805 0.5459 0.7067 0.9240 0.1383 0.3832 0.5456 0.7039 0.9216 0.1427 0.3848 0.5436 0.6995 0.9191 0.1478 0.3856 0.5400 0.6939 0.9167
283.15
293.15
298.15
303.15
313.15
323.15
333.15
343.15
353.15
a
Δp (%)
p (kPa)
1,2-Dichloroethane (1) + THP (2) 2.568 6.02 2.292 −3.34 2.341 −1.39 2.455 1.49 2.649 2.44 4.358 3.19 4.042 −2.23 4.134 −0.47 4.324 1.32 4.676 0.10 7.148 1.71 6.815 −1.32 6.979 −0.15 7.285 0.80 7.886 −0.16 9.048 1.21 8.715 −1.00 8.931 −0.05 9.314 0.59 10.085 −0.20 11.370 0.86 11.041 −0.76 11.323 0.02 11.800 0.43 12.774 −0.20 17.586 0.51 17.266 −0.48 17.731 0.08 18.455 0.20 19.960 −0.07 26.515 0.55 26.158 −0.46 26.900 0.05 27.971 0.09 30.206 0.19 39.054 0.90 38.519 −0.64 39.668 −0.05 41.218 0.09 44.418 0.55 56.304 1.47 55.290 −0.98 57.018 −0.20 59.213 0.16 63.654 1.00 79.592 2.21 77.547 −1.44 80.081 −0.40 83.132 0.29 89.116 1.51
γ1
γ2
GE ( J mol−1)
0.8035 0.8686 0.9108 0.9513 0.9951 0.7566 0.8326 0.8844 0.9359 0.9935 0.7422 0.8465 0.9033 0.9513 0.9957 0.7396 0.8538 0.9120 0.9580 0.9966 0.7398 0.8613 0.9201 0.9639 0.9974 0.7478 0.8767 0.9345 0.9738 0.9987 0.7649 0.8925 0.9467 0.9811 0.9995 0.7899 0.9084 0.9569 0.9862 0.9999 0.8218 0.9243 0.9651 0.9893 1.0001 0.8600 0.9399 0.9717 0.9908 0.9999
0.9955 0.9686 0.9343 0.8808 0.7538 0.9947 0.9617 0.9185 0.8507 0.6917 0.9906 0.9470 0.9017 0.8411 0.7209 0.9891 0.9421 0.8965 0.8393 0.7358 0.9880 0.9386 0.8932 0.8394 0.7506 0.9869 0.9356 0.8920 0.8445 0.7803 0.9869 0.9374 0.8970 0.8556 0.8094 0.9880 0.9430 0.9072 0.8718 0.8379 0.9898 0.9519 0.9217 0.8921 0.8655 0.9924 0.9634 0.9398 0.9160 0.8920
−83.1 −161.8 −183.2 −174.9 −76.6 −108.8 −214.4 −244.5 −235.0 −104.0 −128.2 −231.4 −250.0 −227.3 −92.3 −134.9 −236.0 −249.7 −221.9 −86.5 −139.4 −237.9 −247.4 −215.4 −80.9 −142.4 −234.4 −237.0 −199.7 −70.2 −137.8 −221.4 −219.7 −180.6 −60.2 −126.3 −200.0 −196.1 −158.8 −51.0 −108.5 −171.0 −167.1 −134.5 −42.7 −85.4 −135.7 −133.4 −108.3 −35.1
Standard uncertainties u are u(T) = 0.01 K, ur(pi) = 0.01 and u(x1) = 0.0002.
The overall relative deviations in pressure are situated between 0.02% and 0.1%. The isothermal VLE data were reduced to the Barker’s method19 to get values of the activity coefficient γi, of component i in the liquid phase. The calculated pressure is obtained taking into consideration both the nonideality of the vapor phase and the variation of the Gibbs function of the pure compounds with pressure, following Scatchard and Ticknor:20
⎡ (V ° − B )(P − p° ) − (1 − y )2 P ⎤ i ii ij i i ⎥ ⎥⎦ RT ⎣
2
∑ xiγipi° exp⎢⎢
(2)
δij = 2Bij − Bii − Bjj
(3)
pcal =
i=1
yi ,calc = F
xiγipi* p
exp[− (Bii − V i*)(p − pi*) − pδ12(1 − yi )2 ]
(4)
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
total pressure, p°i is the vapor-pressures of the pure compound, Bii is the second virial coefficient, Bij is the cross second virial coefficient. Vi° is the molar volume of the saturated liquids, T is the temperature, and R is the gas constant. The values of Vi°, calculated from literature density data,21,22 along with the values of Bij, estimated with Tsonopoulos method,23,24 for the pure components, at several temperatures from 273.15 to 354.15 K, are set in Table 7. The molar excess Gibbs energies were estimated from a second order Redlich−Kister equation:25
Table 9. Coefficients Ai and Standard Deviations σ(p) (kPa) for Least-Squares Representation by eq 5 T/K 273.15 283.15 293.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15 273.15 283.15 293.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15 273.15 283.15 293.15 298.15 303.15 313.15 323.15 333.15 343.15 353.15
A1
A2
σ(p)/kPa
A3
1,2-DCE (1) + 1,3-DIOXO (2) −0.32 0.06 −0.02 −0.36 −0.08 −0.17 −0.32 0.01 −0.37 −0.33 −0.05 −0.12 −0.31 −0.04 −0.11 −0.28 −0.01 −0.07 −0.25 0.01 −0.04 −0.23 0.05 −0.02 −0.19 0.08 0.01 −0.17 0.11 0.02 1,2- DCE (1) + 1,4-DIOXA (2) −0.46 −0.07 −0.42 −0.09 −0.39 −0.01 −0.37 −0.10 −0.36 −0.10 −0.33 −0.09 −0.30 −0.08 −0.28 −0.06 −0.25 −0.04 −0.23 −0.01 1,2- DCE (1) + THP (2) −0.32 −0.05 −0.41 −0.07 −0.41 0.01 −0.40 0.03 −0.39 0.06 0.22 −0.19 −0.32 0.11 −0.28 0.10 −0.23 0.09 −0.18 0.07
0.002 0.002 0.014 0.001 0.001 0.001 0.089 0.002 0.003 0.003
i=3
GE = x1(1 − x1) ∑ A(2x1 − 1)i − 1 RT i=1
The calculated values at chosen temperatures (273.15−363.15 K), for the pure components and for the binary mixtures at constant compositions, along with the relative deviations, Δp = 100(p − pcalc)/p, the calculated activity coefficients, γ1 and γ2, and excess molar Gibbs energies, GE, are reported in Table 8. The coefficients Ai of eq 5 were determined by regression through minimization of the sum of deviations in the pressure, all points weighted equally. The values of these coefficients are reported in Table 9 with the standard deviations in pressure σ(p). The Modified UNIFAC (Do) model6−8 was used in order to model the vapor−liquid equilibrium of the mixtures, and molar excess Gibbs energies. The total molecular volumes, Rk, surfaces, Qk of the compounds present in the mixture are calculated additively on the basis of the group volumes RG and surfaces QG recommended by Bondi.26 The geometrical parameters for the groups referred are given in Table 10 and the interaction parameters anm, bnm and cnm are given in Table 11. The Disquac group contribution model,27 has been used in order to model the molar excess Gibbs energies GE. These molecules are regarded as possessing the following four types of surface: (i) type a, aliphatic (>CH2 group), in 1, 2-DCE; (ii) type c, cyclic (c-CH2 group) in the three cyclic ethers; type e, oxygene (−O−) in 1,3-DIOXO; 1,4- DIOXA and in THP); (iii) type d, chlore (−Cl) in 1,2-DCE. As the (a, c) contact is neglected,28,29 only three types of surfaces a, e, d, are considered generating three pairs of contacts: (a,d), (e,d), (a,e). The equations used to calculate GE, can be found in other publications.30,31 The geometrical parameters for the groups referred are given in Table 12. The dispersive and the quasichemical interchange energy coefficients32 for the three types of contacts occurring in the mixtures are presented in Table 13. The VLE data for binary mixtures are represented graphically in the conventionnel diagrams as illustrated in Figures 1, 2, and 3, in which values and shapes are well shown.
0.010 0.010 0.009 0.009 0.008 0.006 0.003 0.001 0.003 0.006 0.043 0.023 0.013 0.009 0.007 0.065 0.004 0.007 0.011 0.017
Table 10. UNIFAC (Do) Areas and Surfaces Rk, Total Surface Q k main group
subgroup (k)
Rk
Qk
CCl c-CH2O c-CH2O c-CH2
CH2Cl c-CH2O THF c-CH2
0.9919 1.4046 1.7023 0.7136
1.3654 1.4000 1.8784 0.8635
(5)
where xi and yi are respectively the liquid and vapor phase compositions (mole fractions), γi is the activity coefficient, p is the
Table 11. UNIFAC (Do) Interaction Parameters anm, bnm, and cnm n
m
anm
amn
bnm
bmn
cnm
cmn
c-CH2 CCl CCl
c-CH2O c-CH2 c-CH2O
242.49 −31.42 −325 0.77
20.83 370.60 70.08
−0.04 −0.25 2.04
−0.35 −0.32 −1.15
0.00 0.00 0.00
0.00 0.00 0.00
Table 12. Total Relative Molecular Volume ri, Total Surface qi, and Molecular Surface Fractions αai (CH3, CH2, C Goups), αei (O Group), αci (Cyclic CH2 Group), αdi (Cl Group) Calculated from Group Increments in DISQUAC Model pure component
ri
qi
αai
αei
αci
αdi
1,2-DCE 1,3-DIOXO 1,4-DIOXA THP
2.5526 2.1916 2.7780 3.1484
2.1724 1.8276 2.1440 2.3708
0.4286 0 0 0
0 0.2264 0.1929 0.0873
0 0.7736 0.8071 0.9127
0.5714 0 0 0
G
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
quac Table 13. Dispersive Cdis st,i and Quasichemical Cst,i Interchange Coefficients in the DISQUAC Model
dispersive pairs of contact a
(a, e) (a, d)a (d, e) (this work) a
mixture also presents a real behavior, with a negative deviation from ideality, but without azeotrope (Figure 2a and Figure 2b). The exces molar free energies, GE, of these three systems are quite close (Figure 1c, Figure 2c, and Figure 3c). For the (1,2DCE + 1,4-DOXA) system, a difference of about 7% has been estimated between our experimental data and those published previously by J. Nath9 where the theory of ideal associated mixtures was used (Figure 3c). The experimental (GE, x1,2‑DCE) curves are almost symmetric in all the systems and negative over the entire composition range. The minimum values of GE, at T = 298.15 K, are equal to −204, −232, and −250 J·mol−1, respectively, for the mixtures 1,3-DOXO + 1,2-DCE, 1,4-DOXA + 1,2-DCE, and THP + 1,2-DCE, of the respective compositions of 1,2-DCE equal to 0.50, 0.63, and 0.50. The excess molar GE values follow the sequence 1,3-DIOXO < 1,4-DIOXA < THP. This result shows
quasichemical
Cdis st,1
Cdis st,2
Cquac st,1
Cquac st,2
11.7 0.093 4.31
19.0 0.18 5.40
5.4 1.67 1.71
7.2 3.20 2.24
Reference 30; Kehiaian, H. V.; Marongiu, B. (1988).
4. DISCUSSION Real negative azeotropic behavior is observed for the two mixtures 1,3-DOXO and THP with 1,2-DCE (see Figure 1a, Figure 1b, Figure 3a, and Figure 3b). The respective azeotropes are approximatively situated at (paz = 1011 Pa, x1az = y1az = 0.85) and(paz = 8985 Pa, x1az = y1az = 0.41). The (1,4-DOXA + 1,2-DCE)
Figure 1. VLE of the binary mixture:{1,2-DCE (1) + 1,3-DIOXO (2)} at 298.15 K. (a) (y1,x1); (b) (p, y1,x1); (c) (GE, x1). (○, ●) experimental results; (− · − ·) modified UNIFAC (Do) model; (−) Disquac model.
Figure 2. VLE of the binary mixture:{1,2-DCE(1)+1,4-DIOXA(2)} at 298.15 K: (a) (y1,x1); (b) (p, y1,x1); (c) (GE, x1). (○, ●) experimental results; (− · − ) modified UNIFAC (Do) model; (−) Disquac model; (···) literature.9 H
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Figure 3. VLE of the binary mixture:{1,2-DCE (1)+THP (2)} at 298.15 K: (a) (y1,x1); (b) (p, y1,x1); (c) (GE, x1). (○, ●) experimental results; (− · − ·) modified UNIFAC (Do) model; (−) Disquac model.
■
a relation between excess Gibbs energies GE and the number of carbon atoms in the cyclic ether: as the number of carbon increases, the GE decreases. The same trend was observed for excess molar enthlpies HE5. A comparison of experiment with Unifac (Do) model calculations, for VLE and for the excess function GE, of the three binary systems, are represented in a graphical way. (GE, x1,2‑DCE) figures show that the UNIFAC model correctly predicts the sign of GE for the studied systems but the quantitative agreement is poor exept for the (y,x) curves wherein the agreement is reasonable. The UNIFAC model predicts comparatively larger values for the binary mixtures containing 1,4-DIOXA. This however is probably due to the effect of cycle as previously mentioned by Wu and co-workers,33 where they gave limitations of the applicability of these group contribution models, although Kehiain34−36 pointed out that intramolecular effects are important factors frequently ignored in group contribution methods. In particular, the proximity effect in the behavior change of a group, and hence its interaction parameters with other groups, is a result of the presence of other groups on the same molecule. However, with the DISQUAC model, the prediction conforms accurately to the experimental results (see GE graphics). The proximity effect of − O− groups produces a regular decrease, and the ring strain produces a regular increase, in both the quasi-chemical and the dispersive interaction parameters.
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. Tel/fax: +213 21 24 80 08. Mobile: +213 0550 08 15 84. ORCID
Fouzia Amireche: 0000-0002-7403-1112 Notes
The authors declare no competing financial interest.
■
LIST OF SYMBOLS A = adjustable coefficients of eq 1,, B = second virial coefficient (10−6 m3 mol−1) C = interchange coefficient in DISQUAC G = molar Gibbs energy (J mol−1) p = pressure (kPa) Q = relative van der Waals surface area of group q = relative molecular area of component r = relative molecular volume of component R = relative van der Waals volume of group T = absolute temperature (K) V = molar volume (10−6 m3 mol−1) of component x = mole fraction of component in the liquid phase y = mole fraction of component in the vapor phase
Greek Letters
α = molecular surface fraction δ = differences of the second virial coefficients γ = activity coefficient σ = standard deviation
5. CONCLUSION In this work, isothermal vapor−liquid equilibria have been investigated for three binary systems containing cyclic ethers with 1,2-dichloroethane at 10 temperatures and over the entire composition range. All mixtures exibit a real behavior with the presence of an azeotrope for the mixture holding 1,3-DOXO or THP. Experimental data were compared with those obtained by two group contribution models (modified Unifac and Disquac models). The data sets of VLE provide required information for the design of industrial separation processes as well as for environmental engineering and for more accurate theoretical correlations
Superscripts
E = excess properties * = pure component Subscripts
a, c, e, d type of contact surface: a, aliphatic CH2; c, cyclic CH2; e, O; d, Cl in DISQUAC calc calculated value exp experimental value G group increment i index of the coefficient A in the eq 1 I
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
■
Article
(22) TRC, TRC Thermodynamic Tables Hydrocarbons. Thermodynamic Research Center; Texas A&M University College Station; TX, USA, 1986. (23) Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients. AIChE J. 1974, 20, 263−272. (24) Tsonopoulos, C. Second Virial Coefficients of Polar Haloalkanes. AIChE J. 1975, 21, 827−829. (25) Redlich, O.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345−348. (26) Bondi, A. Physical Properties of Molecular Crystals, Liquids and Gases; Wiley; New York, 1968; p 502. (27) Kehiaian, H. V. Thermodynamics of binary liquid organic mixtures. Pure Appl. Chem. 1985, 57, 15−30. (28) Kehiaian, H. V.; Tine, M. R.; Lepori, L.; Matteoli, E.; Marongiu, B. Thermodynamics of binary mixtures containing oxaalkanes. Part 3. Monoethers, polyethers, acetals, orthoesters and cyclicmonoethers + n-alkanes or cyclohexane. Fluid Phase Equilib. 1989, 46, 131−177. (29) Kehiaian, H. V.; Tine, M. R. Thermodynamic of binary mixtures containing oxaalkanes. Part 4. Cyclic diethers and acetals + n-alkanes or + cyclohexane. Fluid Phase Equilib. 1990, 59, 233−245. (30) Kehiaian, H. V.; Marongiu, B. A comparative study of thermodynamic properties and molecular interactions in mon- and polychloroalkane + n-alkane or + cyclohexane mixtues. Fluid Phase Equilib. 1988, 40, 23−78. (31) Gonzalez, J. A.; Garcia de la Fuente, I.; Cobos, J. C. Proximity effects and cyclization in oxaalkanes + CCl4 mixtures DISQUAC characterization of the Cl−O interactions. Comparison with Dortmund UNIFAC results. Fluid Phase Equilib. 1999, 154, 11−31. (32) Kechavarz, R.; Guigue, J. Ph.; Tachoire, H.; Kenz, A.; Sbai, K. Thermodynamic properties of binary mixtures of tetrachloromethane + n-alcohol by application of the Dispersive Quasi Chemical Model. Fluid Phase Equilib. 1998, 143, 41−63. (33) Wu, H. S.; Sandler, S. I. Proximity Effect on the Predictions of the UNIFAC Model: I. Ethers. AIChE J. 1989, 35, 168−172. (34) Kehiaian, H. V. Group contribution methods for liquid mixtures: A critical review. Fluid Phase Equilib. 1983, 13, 243−252. (35) Kehiaian, H. V.; Tiné, M. R. A comparative study of thermodynamic properties of n-alkane or cycloalkane mixtures with aliphatic, linear or heterocyclic, molecules containing the same functional groups. Fluid Phase Equilib. 1987, 32, 211−248. (36) Marongiu, B.; Porcedda, S.; Piras, A.; Falconieri, D.; Tiné, M. R. The DISQUAC model. Rev. Roum. Chim. 2011, 56, 453−464.
REFERENCES
(1) Clayden, J.; Greeves, N.; Warren, S. Organic chemistry; Oxford University Press, 2001; p 129. (2) Cai, C.; Zhang, T.; Kumar, R.; Wyman, C. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 2013, 15, 3140−3145. (3) Field, J. A.; Sierra-Alvarez, R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev. Environ. Sci. Bio/Technol. 2004, 3, 185−254. (4) Amireche, F.; Boukais-Belaribi, G.; Jakob, A.; Mokbel, I.; Belaribi, F. B. Isothermal vapour−liquid equilibria of binary systems of 1, 2dichloroethane with ethers. Fluid Phase Equilib. 2008, 268, 39−44. (5) Amireche, F.; Richon, D.; Belaribi, F. B. Excess molar enthalpies for binary mixtures of 1, 2-dichloroethane with ethers at 298.15 K and atmospheric pressure. Fluid Phase Equilib. 2013, 337, 255−258. (6) Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, hE. Ind. Eng. Chem. Res. 1987, 26, 1372−1381. (7) Gmehling, J.; Li, J.; Schiller, M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 1993, 32, 178−193. (8) Lohmann, J.; Joh, R.; Gmehling, J. From UNIFAC to Modified UNIFAC (Dortmund). Ind. Eng. Chem. Res. 2001, 40, 957−964. (9) Nath, J. Thermodynamic behaviour of binary systems of 1,4dioxane with 1,2-dichloroethane, dichloromethane, trichloroethene, tetrachloroethene and cyclohexane. Vapour pressures and excess Gibbs energies. J. Chem. Soc., Faraday Trans. 1991, 87, 1345−1350. (10) Hernandez, G.; Garcıa-Gimenez, P.; Otin, S.; Artal, M.; Velasco, I. (Vapour + liquid) equilibria for the binary mixtures (1-propanol + dibromomethane, or + bromochloromethane, or + 1,2-dichloroethane or + 1-bromo-2-chloroethane) at T = 313.15 K. J. Chem. Thermodyn. 2005, 37, 7887−1028. (11) Calvo, E.; Brocos, P.; Amigo, A.; Bravo, R.; Pintos, M.; Amigo, A.; Roux, A. H.; Roux-Desgranges, G. Heat Capacities, Excess Enthalpies, and Volumes of Mixtures Containing Cyclic Ethers. 1. Binary Systems 1, 4-Dioxane + n-Alkanes. J. Chem. Eng. Data 1998, 43, 105−111. (12) Giner, B.; Villares, A.; Martın, S.; Lafuente, C.; Royo, F. Isothermal vapour−liquid equilibrium for cyclic ethers with 1chloropentaneFluid. Fluid Phase Equilib. 2007, 251, 8−16. (13) Inglese, A.; Grolier, J. P. E.; Wilhelm, E. Excess Volumes of Mixtures of Oxolane, Oxane, 1,3-Dioxolane, and 1,4-Dioxane with nAlkanes at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1983, 28, 124−127. (14) Barhala, A.; Dragoescu, D.; Teodorescu, M.; Wichterle, I. Isothermal (vapour+liquid) equilibria in the binary mixtures (1,2dichloroethane and 1,1,1-trichloroethane with cyclopentanone) within the temperature range (298.15 to 313.15)K. J. Chem. Thermodyn. 2006, 38, 617−623. (15) Blondel-Telouk, A.; Loiseleur, H.; Barreau, A.; Jose, J.; Behar, E. Determination of the average molecular weight of petroleum cuts by vapor pressure depression. Fluid Phase Equilib. 1995, 110, 315−339. (16) Chorazewski, M.; Dergal, F.; Sawaya, T.; Mokbel, I.; Grolier, J. P.; Jose, J. Thermophysical properties of normafluid (ISO 4113) over wide pressure and temperature ranges. Fuel 2013, 105, 440−450. (17) Pearce, J. N.; Peters, P. E. J. Phys. Chem. 1929, 33, 873. In The vapour pressures of pure substances; Elsevier Scientific Publishing Compagny: Netherlands, 1973; p 84. . (18) Crenshaw, J. L.; Cope, A. C.; Finkelstein, N.; Rogan, R. The Dioxanates of the Mercuric Halides. J. Am. Chem. Soc. 1938, 60, 2308− 2311. (19) Barker, J. A. Determination of activity coefficients from total pressure measurements. Aust. J. Chem. 1953, 6, 207−210. (20) Scatchard, G.; Ticknor, L. B. Vapor-liquid equilibrium. IX. Themethanol-carbon tetrachloride-benzene system. J. Am. Chem. Soc. 1952, 74, 3724−3729. (21) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids; McGraw-Hill: New York, 1987. J
DOI: 10.1021/acs.jced.7b01091 J. Chem. Eng. Data XXXX, XXX, XXX−XXX