6
Isotope and Ortho-Para Separations
of the Molecular Hydrogens by
Adsorption at Low Temperatures
1
Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
W. J. HAUBACH, DAVID WHITE
2
P.
RADHAKRISHNA,
A. KATORSKI,
3
R.
WANG,
and
University of Pennsylvania, Philadelphia, Pa.
The
theory of isotope and ortho-para
molecules,
by preferential
is reviewed,
and a comparison
plane
surface
approximation
for
action
coupling
the angular
motions
between
the
mental
geneity
and
factors)
of interaction. on the
and
and
experi-
hydrogens.
In
a molecule-surface
the
inter-
with the center of mass
good
agreement
is
found
separation
factors.
(solely on the basis of the to establish
experi-
the exact form of the
influence
is discussed
reasonable
is obtained
diatomic
temperatures,
theory
calculated
The
separations
isotopic)
and experiment ous
surface,
not possible
separation
potential
(spin
to the
measured
It is, however,
A
between molecular
normal
of
at low
ment is made for the isotopic
vibrations
'T'he
separation
adsorption
agreement
for monolayers
of surface and
hetero-
in both
between on a
cases theory
heterogene-
surface.
s e p a r a t i o n of t h e o r t h o - p a r a n u c l e a r s p i n species
nuclear hydrogens
of t h e h o m o -
( 4 , 5, 18, 2 1 ) b y a d s o r p t i o n at l o w t e m p e r a t u r e s
has g e n e r a t e d a c o n s i d e r a b l e interest i n t h e a n g u l a r d e p e n d e n t s u r f a c e i n t e r a c t i o n s (7, 22).
molecule-
These anisotropic interactions, responsible
f o r t h e o r t h o - p a r a separations p l a y a n i m p o r t a n t r o l e i n t h e t o t a l b i n d i n g e n e r g y of a d i a t o m i c o r p o l y a t o m i c m o l e c u l e t o t h e s u r f a c e
(13)
and
t h e r e f o r e a r e i m p o r t a n t i n i s o t o p i c separations b y p r e f e r e n t i a l a d s o r p t i o n . W h e r e a s , i n t h e case o f a d s o r b e d i s o t o p i c a t o m i c species t h e s u r f a c e
field
c o n s t r a i n s o n l y t h e mass d e p e n d e n t t r a n s l a t i o n a l m o t i o n s , i n t h e case of 'Present address: Mound Laboratory, Monsanto Research Corp., Miamisburg, Ohio. Present address: Atomic Energy Commission, Roskilde, Denmark. Deceased. 2
3
73
Spindel; Isotope Effects in Chemical Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
74
ISOTOPE E F F E C T S IN C H E M I C A L
PROCESSES
d i a t o m i c m o l e c u l e s the same surface field also influences the a n g u l a r motions. T h i s latter effect w h o s e m a g n i t u d e is i n p a r t d e p e n d e n t o n the r o t a t i o n a l constant
(16,
has also b e e n s h o w n to be i m p o r t a n t i n
22)
a c c o u n t i n g for differences i n v a p o r pressures of isotopic h e t e r o n u c l e a r d i a t o m i c s . T h e m o d e l (1,8)
u s e d to a c c o u n t for these differences is v e r y
s i m i l a r , i n m a n y respects, to that u s e d i n the d e s c r i p t i o n of p h e n o m e n a (16,
surface
22).
I n this p a p e r a b r i e f r e v i e w of the t h e o r y of o r t h o - p a r a a n d isotopic separations of
diatomic molecules, b y
a d s o r p t i o n o n surfaces at
temperatures is p r e s e n t e d together w i t h a c o m p a r i s o n b e t w e e n Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
a n d experiment.
A l t h o u g h the m o d e l u s e d to represent the
low
theory surface-
m o l e c u l e interactions is a n o v e r - s i m p l i f i c a t i o n of the p h y s i c a l s i t u a t i o n , it w i l l nevertheless be seen that a l l of the p r e d i c t i o n s of the t h e o r y h a v e , i n d e e d , b e e n v e r i f i e d b y e x p e r i m e n t . T h e g o o d agreement b e t w e e n theory a n d the a v a i l a b l e e x p e r i m e n t a l results, the latter b e i n g e n t i r e l y t h e r m o d y n a m i c i n n a t u r e , is m o r e a result of the i n s e n s i t i v i t y of the d a t a to a p p r e c i a b l e changes i n the parameters d e s c r i b i n g the
surface-molecule
interactions, t h a n the v e r i f i c a t i o n of the p a r t i c u l a r a n a l y t i c a l f o r m u s e d i n the a p p r o x i m a t i o n . It is, h o w e v e r , clear that regardless of the exact f o r m of the p o t e n t i a l of i n t e r a c t i o n , b o t h the a n g u l a r a n i s o t r o p y of the surface field a n d the strong c o u p l i n g of the c o n s t r a i n e d r o t a t i o n a l a n d v i b r a t i o n a l m o t i o n of a n a d s o r b e d m o l e c u l e are the i m p o r t a n t factors i n a c c o u n t i n g for the observations. Model for
Adsorbed Diatomic
Molecules
T h e m o d e l d e s c r i b e d b e l o w is that p r e v i o u s l y g i v e n b y W h i t e a n d Lassettre (22).
T h e adsorbent is r e g a r d e d as a p l a n e - s u r f a c e d s e m i -
infinite s o l i d . T h e forces b e t w e e n the s o l i d adsorbent a n d the a d s o r b e d d i a t o m i c m o l e c u l e s are a s s u m e d to b e c e n t e r e d at the positions of the component
atoms of the m o l e c u l e .
T h e total interaction between
the
m o l e c u l e a n d the surface is s i m p l y the s u m of the atom-surface i n t e r actions (16, 22).
T h e i n t e r a c t i o n p o t e n t i a l for e a c h a t o m of the a d s o r b e d
m o l e c u l e is g i v e n b y f(z- )
w h e r e Z\ is the distance of the i - t h a t o m
x
m e a s u r e d n o r m a l to the surface. L e t the distance f r o m the center of mass to the atoms of mass mi a n d m , r e s p e c t i v e l y b e bi a n d b , as s h o w n i n 2
2
F i g u r e 1. T h e p o t e n t i a l energy, V , of the a d s o r b e d d i a t o m i c m o l e c u l e is then V(z,0)
= / ( « i ) + f(z ) 2
= /(2 + b osO) + f(z - b cosO) lC
2
(1)
w h e r e z is the distance of the center of mass of the m o l e c u l e f r o m the surface a n d 0 the a n g l e the axis of the m o l e c u l e makes w i t h the z axis. A n i m p o r t a n t feature of E q u a t i o n 1, regardless of the f o r m of f
(z ) {
is t h a t the response of h e t e r o n u c l e a r d i a t o m i c m o l e c u l e s to this surface
Spindel; Isotope Effects in Chemical Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
6.
Isotope and Ortho-Para
HAUBACH E T A L .
75
Separations
field c a n n o t be the same as for h o m o n u c l e a r s . T h i s c a n r e a d i l y b e seen b y e x p a n d i n g (1) i n a p o w e r series i n rj = V(z,0)=2f(z)
cos0,
+ (b -b )f(z) + ' 1
2
v
b
2 l
l
b 2 2
f W
+ -
() 2
D e f i n i n g the i n t e r n u c l e a r distance b = foi -\- b a n d A the d i s t a n c e ( a l o n g 2
the b o n d j o i n i n g the t w o a t o m s )
b e t w e e n t h e center of mass of
the
m o l e c u l e a n d the m i d p o i n t b e t w e e n the t w o atoms (see F i g u r e 1 ) , + 2Af'(z) +^-f"(z)
Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
V(z,6)=2f(z)
v
F o r h o m o n u c l e a r d i a t o m i c s , bi =
+ W
2
v
b, A = 2
W
+ • • • •
() 3
0, the p o t e n t i a l is r e p r e s e n t e d
b y even p o w e r s i n 77 a n d a l l terms c o n t a i n i n g A v a n i s h . O n the other h a n d , for heteronuclears the p o t e n t i a l consists of b o t h e v e n a n d o d d p o w e r s of 77 m u l t i p l i e d b y coefficients c o n t a i n i n g A . T h i s A has b e e n r e f e r r e d to as the d i s p l a c e m e n t of the center of i n t e r a c t i o n ( I , 8 ) of the m o l e c u l e f r o m the center of g r a v i t y .
//>////S// Figure 1.
Diatomic molecule adsorbed on plane surface
I n o r d e r to o b t a i n the energy levels of the a d s o r b e d d i a t o m i c m o l e cule, it is necessary to solve the S c h r o e d i n g e r e q u a t i o n for the H a m i l tonion
(13). H = ^ 2M
+
2M
Pi + + JPjL 2M
Pi 21
+ V(z,6)
+ 2Zsin 0 2
Spindel; Isotope Effects in Chemical Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
(4)
76
ISOTOPE E F F E C T S IN C H E M I C A L
PROCESSES
w h e r e M is t h e mass of the m o l e c u l e , 7 t h e m o m e n t of i n e r t i a , a n d
V(z,0)
the p o t e n t i a l energy of i n t e r a c t i o n of t h e m o l e c u l e w i t h t h e surface. Representing the eigenfunction b y the product t = F(x,y)G(4>)R(z,e)
(5)
the S c h r o e d i n g e r e q u a t i o n becomes separable i n the v a r i a b l e s x, y, a n d . F r o m t h e F e q u a t i o n one obtains t h e energy levels of a p a r t i c l e i n a two-dimensional box, from the G equation exp(im),m = 0, ± 1, ± 2
G() = [(2 ) y Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
7r
1/2
i
a n d the R e q u a t i o n is
" ( S ^ M ) J? ~ ( 8 ^ / ) { (5b)
fe [
sin0
+ V(z,$)R
!?]
" (l£?)
R
}
( 6 )
= ER.
T o o b t a i n t h e r o t a t i o n - v i b r a t i o n eigenvalues, E , of E q u a t i o n 6 i t is necessary to specify a p a r t i c u l a r f o r m f o r V(z,0).
Substituting a Morse type
function f(z)
(7)
= °{e-*«*-2e-«*}
w h e r e D a n d a are constants, i n E q u a t i o n 1 gives t h e m o l e c u l e - s u r f a c e p o t e n t i a l energy of i n t e r a c t i o n
' M = 7 - [ - ( ^ f )
-(^)]
+
- -"[«"p(fS) «"(^T)] D
where
P
=
b /b 1
=
2
+
m /m 2
1
^ 1 and y =
a n d L a s s e t t r e (22) d e f i n e d y =
(ab/2) ). 2
( T h e definition y =
ab.
u s e d here is that of K a t o r s k i a n d W h i t e (16).
< 8 )
ab
I n a n earlier p a p e r W h i t e
Thus
Thus [/(Reference 16) —2 y/(/(Reference
22)
It s h o u l d b e n o t e d that e v e n t h o u g h t h e constants, a a n d D, of E q u a t i o n 7 c a n , to a g o o d a p p r o x i m a t i o n , b e a s s u m e d t h e same f o r a series of i s o t o p i c molecules, t h e m o l e c u l e p o t e n t i a l energy of i n t e r a c t i o n g i v e n b y (9)
differentiates
between
t h r o u g h t h e constant p.
homonuclear
a n d heteronuclear
(y is t h e same for isotopic m o l e c u l e s ) .
constant is, i n fact, s i m p l y a f u n c t i o n of A
Spindel; Isotope Effects in Chemical Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
species This
6.
HAUBACH E T A L .
Isotope and Ortho-Para
1 +
77
Separations
2A b
(9)
the d i s p l a c e m e n t of the center of i n t e r a c t i o n f r o m the m o l e c u l a r center of gravity. T h e f o r m of V , E q u a t i o n 8, as a f u n c t i o n of z is d e p e n d e n t o n the m o l e c u l a r o r i e n t a t i o n . B o t h the p o t e n t i a l m i n i m a a n d the
corresponding
distance of the center of mass f r o m the surface at the m i n i m u m change
Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
w i t h m o l e c u l a r o r i e n t a t i o n . T h u s , o n a c o m p l e t e r o t a t i o n , if the m i n i m u m energy is m a i n t a i n e d at each angle, the center of mass is d i s p l a c e d f r o m its e q u i l i b r i u m p o s i t i o n w h i c h is z = 0 at TT/2. F u r t h e r m o r e , the m a x i m u m d i s p l a c e m e n t of the center of mass o n a c o m p l e t e r o t a t i o n increases w i t h i n c r e a s i n g p. T h i s is i l l u s t r a t e d i n F i g u r e 2. T h e p o t e n t i a l , E q u a t i o n 8, is therefore not separable i n z a n d 6 (or
the nature of the c o u p l i n g
b e i n g d e t e r m i n e d b y the p a r a m e t e r p. 0.6
27T
37772
e Figure 2. Distance of molecular center of mass from surface at potential minimum as a function of molecular orientation. = 1, homonuclear molecules; = 2, HD; = 3,HT p
P
P
E v e n t h o u g h the v a r i a b l e s of the differential E q u a t i o n 6 are separable i n the exact sense, a c o n d i t i o n for s e p a r a b i l i t y c a n be
not
imposed
b y a p p l i c a t i o n of the v a r i a t i o n t h e o r e m )uQudr \u d 2
T
Spindel; Isotope Effects in Chemical Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
(10)
78
ISOTOPE E F F E C T S IN C H E M I C A L PROCESSES
w h e r e Q designates the operator o n the left h a n d side of E q u a t i o n 6 a n d u is a f u n c t i o n o b e y i n g the same b o u n d a r y c o n d i t i o n s as R. H e r m i t i a n , the q u a n t i t y E e i g e n f u n c t i o n of Q. u =
0
S i n c e Q is
takes its extreme v a l u e o n l y w h e n u is a n
If the c o n d i t i o n that u is a p r o d u c t - t y p e f u n c t i o n ,
is i m p o s e d , a p p l i c a t i o n of the c a l c u l u s of v a r i a t i o n s shows
S(z)T(rj),
that E
0
is a n extreme w h e n the f u n c t i o n s S, T satisfy the t w o
dependent
differential equations
Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
-
GOT)
S
^
+
D e
-
2 a z
-
2
?
D
e
^
=
s
e
*
s
(
n
)
and
W h e n the f u n c t i o n s S a n d T are n o r m a l i z e d to u n i t y , t h e n the constants a, p, y , & are g i v e n b y
^ X M f f ^ M ^ ) } ™ - ' h
2
D i +
t
x
I n the limit when
(Xi/X ) ->0 2
g
SL2=
a n d as ( X i / X ) 2
S . (D )/(D )dD
/Jf " m
1
2
1
1
(35)
1
—> oo
g
i Si,
=
2
ro, j D min
S
m
1|2
(36)
j(D )dD . l
(Di)
i
T h e c a l c u l a t i o n of t h e m o n o l a y e r s e p a r a t i o n factor f r o m E q u a t i o n 34 d e p e n d s o n a k n o w l e d g e of the S i ( D ) s , w h i c h are g i v e n i n the p r e v i o u s t 2
i
,
section, a n d t h e d i s t r i b u t i o n f u n c t i o n f(D ) {
c h a r a c t e r i s t i c of t h e adsorbent.
T h e latter c a n b e o b t a i n e d f r o m e x p e r i m e n t a l isosteric heats of a d s o r p tion.
A comparison between
experimental a n d calculated
s e p a r a t i o n factors f o r h y d r o g e n s
adsorbed
monolayer
o n y - a l u m i n a is p r e s e n t e d
below. The
isosteric heats o f a d s o r p t i o n , Q , st
of e q u i l i b r i u m
hydrogen
a d s o r b e d o n y - a l u m i n a as a f u n c t i o n of surface coverage are s h o w n i n F i g u r e 7. T h e s e w e r e d e t e r m i n e d f r o m v a p o r pressure measurements i n the t e m p e r a t u r e r a n g e 5 0 ° to 80 °K. u s i n g a c a l o r i m e t e r d e s c r i b e d b y J o h n s t o n a n d K e r r ( 1 5 ) . T h e y - a l u m i n a u s e d i n these e x p e r i m e n t s w a s t h e 2 0 C r A l s a m p l e d e s c r i b e d i n References 4 a n d 5. It w a s i m p r e g n a t e d w i t h 1.1 X 1 0 " moles of C r 0 4
2
: i
to give r a p i d ortho-para e q u i l i b r a t i o n ;
Spindel; Isotope Effects in Chemical Processes Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
6.
Isotope and Ortho-Para
HAUBACH E T A L .
93
Separations
h o w e v e r , its i s o t h e r m a l b e h a v i o r at 20.4°K. ( v o l u m e p e r g r a m a d s o r b e d as a f u n c t i o n of p r e s s u r e ) w a s w i t h i n e x p e r i m e n t a l error i d e n t i c a l w i t h t h e u n i m p r e g n a t e d m a t e r i a l (4, 5 ) .
T h e difference i n e n e r g y b e t w e e n
the gas a n d the a d s o r b e d phase at the absolute zero (E
— E )
g
f u n c t i o n of the moles a d s o r b e d o n the surface N
s
a
( )
as a
is o b t a i n e d f r o m t h e
isosteric heats u s i n g the expression
Downloaded by CORNELL UNIV on August 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch006
( E
' -
= w X "
+
where C
n s