J. Chem Ed. 2007, 84, 1056–1061 - Journal of Chemical Education

Aug 1, 2007 - The article “Getting the Weights of Lewis Structures out of Hückel Theory: Hückel–Lewis Configuration Interaction (HL-CI)” has a...
0 downloads 4 Views 56KB Size
Chemical Education Today

Corrections J. Chem. Educ. 2007, 84, 1056–1061 The article “Getting the Weights of Lewis Structures out of Hückel Theory: Hückel–Lewis Configuration Interaction (HL-CI)”, by Stéphane Humbel ( J. Chem. Educ. 2007, 84,

1056–1061), has an incorrectly printed table on p 1059. Table 1 should have appeared as shown below. Readers may find the emended PDF file at JCE Online: http://www.jce.divched.org/Journal/Issues/2007/Jun/ jceSubscriber/p1056.pdf .

Table 1. Tested Examples Type

Structures

Energies

Details

HL-CI

NRT-a

NRT-b

Amide

Etot = 4α + 6.55β

HI-II = +0.71β

(hN:=1.37, kCN:=0.89

EI = 4α + 6.04β

∆EI = –0.51β

66

66

69c

EII = 4α + 5.56β

∆EII = –0.99β

34

34

31

Etot = 4α + 4.47β

HI-II = +1.08β

EI = 4α + 4.00β

∆EI = –0.47β

84

78

82

EII = 4α + 2.00β

∆EII = –2.47β

16

22

18

Acrolein

Etot = 4α + 5.81β

HI-II = +0.97β

(hO.=0.97, kCO.=1.06)

EI = 4α + 5.30β

∆EI = –0.50β

79

85

90

EII = 4α + 3.94β

∆EII = –1.87β

21

15

10

Enamine

Etot = 4α + 5.08β

HI-II = +0.70β

(hN:=1.37, kCN:=0.89)

EI = 4α + 4.74β

∆EI = –0.34β

81

79

83

EII = 4α + 3.62β

∆EII = –1.46β

19

21

17

α-Imino carbonium

Etot = 2α + 3.18β

HI-II = +0.82β

(hN.=0.51, kCN.=1.02)

EI = 2α + 2.61β

∆EI = –0.57β

68

68

73

EII = 2α + 2.00β

∆EII = –1.18β

32

32

27

Formic acid

Etot = 4α + 7.70β

HI-II = +0.51β

(hO.=0.97, kCO.=1.06

EI = 4α + 7.48β

∆EI = –0.22β

85

73

78

hO:=2.09, kCO:=0.66)

EII = 4α + 6.50β

∆EII = –1.20β

15

26

22

Enolate

Etot = 4α + 6.32β

HI-II = +0.50β

(hO:=2.09, kCO:=0.66)

EI = 4α + 6.18β

∆EI = –0.14β

93

60

63

EII = 4α + 4.56β

∆EII = –1.76β

7

40

37

Enol

Etot = 4α + 6.32β

HI-II = +0.50β

(hO:=2.09, kCO:=0.66)

EI = 4α + 6.18β

∆EI = –0.14β

93

86

90

EII = 4α + 4.56β

∆EII = –1.76β

07

14

10

hO.=0.97, kCO.=1.06)

d

Butadiene

a-

c

b-

NRT calculations with B3LYP/6-31+G(d) geometries and wave functions. NRT calculations with B3LYP/6-31+G(d) geometries and HF/6-31+G(d) c d wave functions. Data for resonance structure I is given in the top row and data for structure II in the bottom row. Heteroatoms, X, are incorporated as αX = α + hXβ and βXY = kXYβ, where the default values of the parameters, hX and kXY, are taken from Van–Catledge’s list.

www.JCE.DivCHED.org



Vol. 84 No. 8 August 2007



Journal of Chemical Education

1277