2 Kinetically Inert Complexes of the Siderophores in Studies of Microbial Iron Transport
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
KENNETH N. RAYMOND Department of Chemistry, University of California, Berkeley, CA 94720 The compounds called siderophores (earlier called sidero chromes) are low-molecular weight chelating agents which are manufactured by microbes and are involved in their cellular iron transport. Kinetically inert complexes of the siderophores have been prepared by replacing the native ferric ion, which is kinetically labile in biological systems, with the kinetically inert chromic ion. The metal-substi tuted complexes and related model compounds have then been used as chemical probes, using vis-uv and circular dichroism spectroscopy, to elucidate the coordination geome tries of siderophores, and as biological probes, using the kinetic inertness of the chromic siderophore complexes, to study the mechanisms of cellular iron transport in several microbial species. The siderophores studied include the hydroxamate-containing ferrichromes and ferrioxamines and the catechol-containing compound enterobactin. Hphe preceding and following chapters amply illustrate the reasons why microbial iron transport compounds are worthy of our attention—both from the biochemical and medical points of view. However, one might wonder what this has to do with coordination chemistry. The obvious answer is that these are, after all, coordination compounds. But more than that, when viewed from the perspective of a coordination chemistry, new experiments or new approaches suggest themselves. This is always the exciting potential of interdisciplinary research. This chapter is the result of a research project which has involved extensive collaboration between J. B. Neilands' laboratories and my own. Many of the details of the transport studies of kinetically inert, metal-substituted siderophores in 33 In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
34
BIOINORGANIC CHEMISTRY
II
m i c r o b i a l systems w e r e p r e s e n t e d i n the p r e v i o u s c h a p t e r . I w i l l focus here o n the c o o r d i n a t i o n c h e m i s t r y of these c o m p o u n d s a n d h o w m e t a l s u b s t i t u t e d s i d e r o p h o r e complexes c a n b e u s e d b o t h as c h e m i c a l p r o b e s ( u s i n g spectroscopic t e c h n i q u e s ) for the structures of these m a t e r i a l s , a n d as b i o l o g i c a l probes i n m e m b r a n e t r a n s p o r t studies. T h e c o m p o u n d s c a l l e d siderophores ( e a r l i e r c a l l e d s i d e r o c h r o m e s ) are l o w - m o l e c u l a r w e i g h t m a t e r i a l s w h i c h are m a n u f a c t u r e d b y m i c r o b e s a n d are i n v o l v e d i n t h e i r c e l l u l a r i r o n t r a n s p o r t . T h e b i o c h e m i s t r y of the siderophores has b e e n d i s c u s s e d i n t h e p r e v i o u s p a p e r a n d has
been
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
r e v i e w e d extensively a n d r e c e n t l y ( 1 ). T h e siderophores are a l l c h e l a t i n g l i g a n d s w h i c h f o r m e x t r e m e l y stable o c t a h e d r a l complexes w i t h h i g h - s p i n f e r r i c i r o n . T w o i m p o r t a n t classes of these c o m p o u n d s — t h e f e r r i c h r o m e s and
f e r r i o x a m i n e s — a r e t r i h y d r o x a m i c acids w h i c h
( e x c e p t for
c o n t a i n i n g c h a r g e d substituents ) f o r m n e u t r a l complexes
those
u s i n g three
b i d e n t a t e h y d r o x a m a t e m o n o a n i o n s . T h e s e complexes of F e ( I I I ) are a l l k i n e t i c a l l y l a b i l e . E v e n the l a r g e hexadentate l i g a n d s s u c h as f e r r i c h r o m e , w h i c h c o m p l e t e l y enclose the f e r r i c i o n w i t h a n o c t a h e d r a l c a v i t y , h a v e exchange rates o n t h e o r d e r of several m i n u t e s at p h y s i o l o g i c a l c o n d i t i o n s of p H a n d t e m p e r a t u r e . I n contrast, complexes i n w h i c h c h r o m i c i o n is s u b s t i t u t e d for f e r r i c i o n , a l t h o u g h s t r u c t u r a l l y the same, are k i n e t i c a l l y inert.
T h i s has b e e n d e m o n s t r a t e d f o r m o d e l h y d r o x a m a t e
( 2 ) , desferriferrichromes ( 3 ) , a n d ferrioxamines ( 4 ) .
complexes
S u b s e q u e n t trans
p o r t studies h a v e b e e n c a r r i e d o u t u s i n g s e v e r a l of these k i n e t i c a l l y i n e r t complexes. A n o t h e r c o m m o n l i g a n d f u n c t i o n a l g r o u p f o u n d i n the siderophores is c a t e c h o l ( o - d i h y d r o x y b e n z e n e ).
C a t e c h o l is s i m i l a r to h y d r o x a m a t e s
i n b e i n g a b i d e n t a t e l i g a n d w h i c h coordinates t h r o u g h t w o o x y g e n atoms, b u t is a d i a n i o n . E x c e p t for the o x y g e n s e n s i t i v i t y of the c a t e c h o l c o m plexes ( b e c a u s e of the ease of o x i d a t i o n of the l i g a n d ) , they are v e r y similar
i n kinetic a n d spectroscopic
properties
to
the
hydroxamate
complexes. Structure
and Properties of Ferric
Complexes in Siderophores
General Chemistry of Iron Chelates.
T h e aqueous
c h e m i s t r y of
F e ( I I I ) is d o m i n a t e d b y its L e w i s a c i d i t y . S e v e r a l p H units b e l o w that of p h y s i o l o g i c a l solutions, h y d r o l y s i s a n d p o l y m e r i z a t i o n reactions f e r r i c i o n take p l a c e .
i n s o l u b l e as the h y d r o x i d e . T h e K the K
s p
of
A t p h y s i o l o g i c a l p H f e r r i c i o n is q u a n t i t a t i v e l y s p
for F e ( O H )
3
is 2 Χ 1 0 "
for ferrous h y d r o x i d e , F e ( O H ) , is 8 Χ 1 0 " 2
16
(6).
39
(5) while
The biological
consequences of these n u m b e r s are p r o f o u n d because, since this p l a n e t p r o d u c e d a n o x i d i z i n g a t m o s p h e r e , the u l t i m a t e source of i r o n for a l l b i o l o g i c a l systems has b e e n i n o r g a n i c F e ( I I I ) .
E v e n the complexation
of f e r r i c i o n is not a l w a y s e n o u g h to m a k e i t u s e f u l to b i o l o g i c a l systems,
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
Kinetically Inert Siderophore Complexes
RAYMOND
35
since the h y d r o l y s i s of s u c h c o m p l e x e s often p r o d u c e s s u c h h i g h - m o l e c u l a r w e i g h t h y d r o x y - b r i d g e d p o l y m e r s that t r a n s p o r t across c e l l m e m branes is i m p o s s i b l e ( 7 ) . D u r i n g the last 1 0 - 1 5 years a n u m b e r of
low-molecular
weight
c o m p o u n d s of n a t u r a l o r i g i n h a v e b e e n f o u n d to b i n d F e ( I I I ) s p e c i f i c a l l y a n d t r a n s p o r t i t i n b i o l o g i c a l systems ( J ) .
M o s t i f n o t a l l of t h e c o m
p o u n d s of this t y p e i n c l u d e h y d r o x a m a t e or p h e n o l a t e groups as l i g a n d s . U p o n loss of the p r o t o n , the a n i o n is a v e r y s t r o n g c h e l a t i n g agent w i t h a n a m a z i n g s p e c i f i c i t y for F e . T h e g e n e r a l c h e m i s t r y of the h y d r o x a m i c 3 +
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
acids forms a p a r t of c l a s s i c a l o r g a n i c c h e m i s t r y . T h e r e a c t i o n w i t h f e r r i c i o n is a s t a n d a r d test for t h e h y d r o x a m a t e f u n c t i o n a l g r o u p .
The acid
d i s s o c i a t i o n of the h y d r o x a m i c acids t y p i c a l l y gives p K s o n the o r d e r a
Ο
OH
R _ C _ ] L _ of 9.
0
R
0"
^> R _ C _ N _ R ' + H
+
T h e s u b s e q u e n t r e a c t i o n w i t h f e r r i c i o n gives a v e r y stable
five-
m e m b e r e d r i n g ( F i g u r e 1 ) . A b o v e v e r y a c i d p H , three h y d r o x a m i c acids Fe
3 +
/-\ /
R
\
R'
Figure 1. Ferric hydroxamate complex
w i l l b i n d to f o r m a n e u t r a l , o c t a h e d r a l c o m p l e x of F e . 3 +
T h e formation
constants for e v e n the s i m p l e m o n o h y d r o x a m i c acids are v e r y l a r g e a n d q u i t e specific for F e . 3 +
the p K
a
K, and K
K
1}
F o r acetohydroxamic acid ( R =
C H , R' = 3
H)
is 9.35, a n d the l o g a r i t h m s of the stepwise f o r m a t i o n constants
2
are 11.42, 9.68, a n d 7.2, f o r a n o v e r a l l f o r m a t i o n constant,
3
/? , of the tris c o m p l e x of 2 χ 3
10
28
(8, 9).
I n contrast, t h e o v e r a l l f o r m a
t i o n constant, β , for the b i s c o m p l e x of ferrous i o n is o n l y 3 Χ 10 . T h a t 8
2
this s e n s i t i v i t y is c a u s e d m o r e b y the size of the i o n t h a n its c h a r g e c a n be seen i n the β La
3 +
(8
χ
3
10 ) 11
values for the tris c o m p l e x e s of A l (9).
3 +
T h e great d i s p a r i t y b e t w e e n
s t r e n g t h of the h y d r o x a m i c acids for F e
3 +
and F e
2 +
(3 χ 10 ) 21
the
and
complexing
is p r o b a b l y t h e i r m o s t
i m p o r t a n t p r o p e r t y f o r i r o n t r a n s p o r t , since the r e d u c t i o n of the f e r r i c i o n c o m p l e x w i t h i n the c e l l p r o v i d e s a r e a d y means of r e l e a s i n g t h e c o m p l e x e d i r o n a n d f r e e i n g the l i g a n d for a n o t h e r s h u t t l e t r i p
back
to p i c k u p F e . 3 +
T h e stabilities of the n a t u r a l l y o c c u r r i n g t r i s h y d r o x a m i c a c i d c o m plexes are a m o n g the greatest k n o w n . F o r e x a m p l e , t h e w i d e l y u s e d a n d
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
36
BIOINORGANIC C H E M I S T R Y
II
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
hi
Siderochrome
R'
R"
Ferrichrome
Η
Ferrichrysin
CH 0H
Η CH 0H
Ferricrocin
Η
II
Ferrichrome C
II
CH
Ferrichrome A
CHoOH
2
CH,
2
3
CH 0H
"CH=C(CH )-CH C0 H(/A(7/75y
2
3
2
2
Ferrirhodin
"
-CH=C(CH )-CH CH 0H(^/5)
Ferrirubin
"
-CH=C(CH )-CH CH OH {frons)
Albomycin 8,
-CH 0S0 -lO=0 ?
3
3
CH 0H
?
2
2
CH
2
2
2
3
Figure 2. Structure of the ferrichromes. The basic structural feature is a cyclic hexapeptide with the three hydroxamic acid linkages provided by a tripeptide of 8N-acyl-8N-hydroxyl-l-ornithine. The A-cis coordination isomer is shown in each case. v e r y p o w e r f u l h e x a d e n t a t e c h e l a t e E D T A has a f o r m a t i o n constant l o g Κ o f 25.1 w h i l e t h a t f o r d e s f e r r i f e r r i c h r o m e ( F i g u r e 2 ) is 29.1 a n d f o r d e s f e r r i f e r r i o x a m i n e Ε ( F i g u r e 3 ) is 32.4 ( J O ) . T h e t r i s ( h y d r o x a m a t e ) c o m p l e x e s t y p i c a l l y are w a t e r - s o l u b l e , n e u t r a l c o m p o u n d s . c o m p l e x e s t h e i r o n is h i g h - s p i n F e ( I I I )
t h e h e m e - c o n t a i n i n g p r o t e i n s , is r e a d i l y e x c h a n g e d . course, e x p e c t e d f o r h i g h - s p i n d c o m p l e x e s , 5
I n a l l o f these
a n d , i n contrast t o t h e i r o n i n This lability is, of
a l t h o u g h t h e k i n e t i c s of
e x c h a n g e f o r these h e x a d e n t a t e l i g a n d s is m u c h s l o w e r t h a n , f o r e x a m p l e , tris b i d e n t a t e c o m p l e x e s .
T h e ferric i o n can b e removed from the com
plexes o f t h e t r i h y d r o x a m i c acids b y t r e a t i n g w i t h d i l u t e base o r r e d u c tion of F e ( I I I )
toFe(II).
T h e structure of the simple hydroxamate complex droxamato) iron (III)
tris(benzohy-
(R = φ, R' = Η i n F i g u r e 1 ) has s h o w n t h e m o s t
s t a b l e c r y s t a l l i n e f o r m o f t h e s o l i d t o b e t h e r a c e m i c c i s i s o m e r (11). ( T h e c o n v e n t i o n f o r s y m b o l s o f a b s o l u t e configurations Δ a n d Λ are those of t h e I U P A C P r o p o s a l (12). T h e cis i s o m e r is d e f i n e d as t h e i s o m e r
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
37
Kinetically Inert Siderophore Complexes
RAYMOND
w h i c h has C p o i n t s y m m e t r y .
See R e f . 3 f o r f u r t h e r d i s c u s s i o n ) .
3
Since
b o t h t h e cis a n d trans isomers of the c h r o m i c c o m p l e x h a v e b e e n i s o l a t e d ( 2 ) , t h e s i m i l a r geometries of t h e c h r o m i c a n d f e r r i c c o m p o u n d s
(vide
i n f r a ) w o u l d i n d i c a t e that the cis a n d trans f e r r i c c o m p l e x e s are p r o b a b l y i n s o l u t i o n i n a p p r o x i m a t e l y t h e same p r o p o r t i o n s
( 6 0 % , 4 0 % , respec-
t i v e l y ) , a n d i t is t h e p r e d o m i n a n t cis i s o m e r w h i c h c r y s t a l l i z e s out. I n t h e f e r r i c complexes, the r a p i d i s o m e r i z a t i o n o f t h e c o m p l e x e s i n s o l u t i o n therefore leads e x c l u s i v e l y to c r y s t a l l i z a t i o n o f t h e cis i s o m e r . M o s t of t h e n a t u r a l l y o c c u r r i n g h y d r o x a m i c acids h a v e three h y d r o x -
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
a m i c a c i d groups
p e r molecule.
T h e i r o n c o m p l e x e s o f these
trihy-
d r o x a m i c acids h a v e a c h a r a c t e r i s t i c b r o a d a b s o r p t i o n b a n d at 4 2 0 - 4 0 0 n m , a n d therefore o r i g i n a l l y w e r e g i v e n the g e n e r i c n a m e (J).
siderochromes
T h e three h y d r o x a m a t e g r o u p s are l i n k e d e i t h e r as side arms f r o m
a c y c l i c p e p t i d e (as i n t h e f e r r i c h r o m e s , F i g u r e 2 ) o r as p a r t of a l i n e a r o r c y c l i c c h a i n (as i n the f e r r i o x a m i n e s , F i g u r e 3 ) . T h o s e w i t h g r o w t h -
î
H-N
CONH
CONH
} c H ) ^ C H ) 2 ) b H )
5
2
2
η
π
OC)
ΟΟ
γ
n
η \
.0 0
/
^Fe
R
n
Ferrioxamine Β
H 0
5
R
1
CH — 3
Ferrioxamine Dj
CH d-
5
CH —
Ferrioxamine G
H
5
H0 C(CH ) -
Ferrioxamine A,
H
4
H0 C(CH ) -
5
CH ~
Ferrimycin A,
3
9
/
0
H
3
2
2
2
2
2
2
3
Figure 3. Structure of the linear ferriox amines. The basic structural feature of the ferrioxamines is repeating units of l-amino-5hydroxyaminopentane and succinic acid. Ferri oxamine Ε is cyclic with η = 5 and an amide linkage such that there are no R or R ' substituents, but just a C-N bond.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
38
BIOINORGANIC CHEMISTRY
II
p r o m o t i n g a c t i v i t y w e r e n a m e d s i d e r a m i n e s , a n d those t h a t are a n t i b i o t i c s were named sideromycins. The
Hydroxamate-Containing
Siderophores—Ferrichromes
and
Ferrioxamines. T h e f e r r i c h r o m e s ( F i g u r e 2 ) are a l l t r i h y d r o x a m i c a c i d s p r o d u c e d b y f u n g i s u c h as Ustilago sphaerogena (1). are p r o d u c e d b y several species of Nocardia
T h e ferrioxamines
a n d Streptomyces ( J ) .
In
contrast to the f e r r i c h r o m e s , l i n e a r a n d c y c l i c f e r r i o x a m i n e s ( F i g u r e 3 ) h a v e the three h y d r o x a m a t e groups p a r t of a p o l y a m i d e c h a i n l i k e beads o n a s t r i n g . O n e other m a j o r difference is that the l i g a n d s themselves are
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
not o p t i c a l l y a c t i v e . O n l y if a substituent g r o u p has a n o p t i c a l center, as i n the f e r r i m y c i n s , is there o p t i c a l a c t i v i t y for the m o l e c u l e .
T h e ferri
c h r o m e s h a v e a n a t u r a l o p t i c a l a c t i v i t y associated w i t h the l i g a n d . E x c e p t i n those cases w h e r e the l i g a n d is o p t i c a l l y i n a c t i v e ( i n w h i c h case t h e c o m p l e x e s are r a c e m i c m i x t u r e s ) , t h e p r e v i o u s s i d e r o c h r o m e
com
plexes h a v e b e e n f o u n d to h a v e a Λ-cis absolute c o n f i g u r a t i o n (see
also
F i g u r e 2 i n the p r e v i o u s c h a p t e r ) . T h u s , w h i l e f e r r i o x a m i n e Ε is r a c e m i c ( 1 3 ) , x-ray s t r u c t u r e analyses of f e r r i c h r o m e A (14)
a n d f e r r i c h r y s i n (15)
h a v e s h o w n b o t h to be Λ-cis isomers. A recent s t r u c t u r e analysis of t h e m i x e d hydroxamate-/?-phenol imide siderophore manufactured by mycotic b a c t e r i a , m y c o b a c t i n , has s h o w n that f e r r i c m y c o b a c t i n also has Λ - c i s absolute c o n f i g u r a t i o n (16).
T h e other p h y s i c a l p r o p e r t i e s of the f e r r i
c h r o m e s h a v e b e e n s t u d i e d u s i n g several t e c h i q u e s . T h e N M R spectra of A l ( I I I ) a n d G a ( I I I ) d e r i v a t i v e s , as c o m p a r e d w i t h t h e free l i g a n d , h a v e s h o w n that a p r o f o u n d c o n f o r m a t i o n c h a n g e a c c o m p a n i e s c o m p l e x mation
for
(17).
H o w e v e r , despite large differences i n l i g a n d m o l e c u l a r s t r u c t u r e , a l l of t h e h y d r o x a m a t e s i d e r o p h o r e s w h o s e structures h a v e b e e n d e t e r m i n e d to date h a v e b e e n f o u n d to b e cis c o m p l e x e s w i t h a c o o r d i n a t i o n g e o m e t r y a b o u t t h e f e r r i c i o n w h i c h is s u b s t a n t i a l l y i d e n t i c a l to t h e s i m p l e t r i s (benzhydroxamato)-Fe(III)
complex.
r a c e m i c b u t w i t h a cis g e o m e t r y
(13),
Thus, while ferrioxamine Ε
is
x - r a y s t r u c t u r e analyses of f e r r i
c h r o m e A (14) a n d f e r r i c h r y s i n ( 1 5 ) h a v e s h o w n b o t h to b e Λ-cis isomers. The Catechol-Containing Siderophore—Enterobactin. T h e i s o l a t i o n and
c h a r a c t e r i z a t i o n of
the
cyclic
triester 2,3-dihydroxy-IV-benzoyl-Z-
serine, a t r i c a t e c h o l s i d e r o p h o r e ( F i g u r e 4 ), w e r e i n d e p e n d e n t l y r e p o r t e d b y b o t h P o l l a c k a n d N e i l a n d s (18)
a n d O ' B r i e n a n d G i b s o n (19).
l i g a n d w a s i s o l a t e d f r o m c u l t u r e s of SalmoneUa typhimurium
The
a n d Esche
richia coli a n d g i v e n the n a m e s e n t e r o b a c t i n a n d e n t e r o c h e l i n , r e s p e c tively.
E n t e r o b a c t i n is a n efficient c e l l u l a r t r a n s p o r t agent b u t , u n l i k e
f e r r i c h r o m e , i n t r a c e l l u l a r release of the i r o n i n v o l v e s e n z y m a t i c h y d r o l y s i s of
the
enterobactin
to
the
monomer,
2,3-dihydroxy-N-benzoyl-Z-ser-
ine(J).
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
RAYMOND
Kinetically Inert Siderophore Complexes
39
It c a n b e seen f r o m m o l e c u l a r m o d e l s that t w o diastereoisomers a r e p o s s i b l e f o r t h e f e r r i c e n t e r o b a c t i n c o m p l e x , Λ-cis a n d Δ-cis.
These are
n o t m i r r o r images b e c a u s e o f t h e o p t i c a l a c t i v i t y of t h e l i g a n d . T h e s i m i l a r i t y of t h e roles p l a y e d b y t h e f e r r i c h r o m e s a n d e n t e r o b a c t i n l e n t a d d i t i o n a l s p e c u l a t i v e interest to t h e p r e f e r r e d a b s o l u t e c o n f i g u r a t i o n of t h e i r o n c o m p l e x ( 2 0 ) . T h e s t r u c t u r a l studies of t h e tris c a t e c h o l c o m
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
plexes
(vide infra)
a n d the spectroscopic
/ 0
v
of t h e c h r o m i c
\
0=C HO
properties
HCH
Λ" μ
"C>H
Μ
OH Figure 4.
Structural diagram of enterobactin
e n t e r o b a c t i n c o m p l e x h a v e l e d to a n assignment of g e o m e t r y f o r t h e most stable isomer of t h e f e r r i c e n t e r o b a c t i n c o m p l e x ( F i g u r e 5 ) . Replacement
of Ferric
Hydroxamate
Ion by Chromic
Siderophores.
Ion in Siderophores
GEOMETRIC
ISOMERS.
Many
of
the
questions r e g a r d i n g t h e s t r u c t u r e - f u n c t i o n r e l a t i o n s h i p o f t h e s i d e r o phores c o u l d n o t b e a n s w e r e d i n d e t a i l b e c a u s e of t h e k i n e t i c l a b i l i t y o f these h i g h - s p i n F e ( I I I ) complexes.
T h i s l a b i l i t y a l w a y s left a m b i g u o u s ,
for e x a m p l e , w h e t h e r or n o t m e t a l t r a n s p o r t occurs v i a u p t a k e of t h e intact molecular complex.
S u r p r i s i n g l y , t h e c o o r d i n a t i o n c h e m i s t r y of
t h e s i d e r o p h o r e l i g a n d s w i t h m e t a l ions other t h a n f e r r i c w a s l a r g e l y unknown.
( A b r i e f r e p o r t of t h e C D s p e c t r u m of t h e C r ( I I I )
of d e s f e r r i f e r r i c h r y s i n has a p p e a r e d (21).
complex
However, the complex appar
ently was not isolated, a n d the C D spectrum was not interpreted. ) W e therefore b e g a n to i n v e s t i g a t e t h e c o o r d i n a t i o n geometries of s i d e r o p h o r e l i g a n d s o r t h e i r l i g a n d moieties w i t h k i n e t i c a l l y i n e r t t r i v a l e n t m e t a l ions s u c h as C o ( I I I ) a n d C r ( I I I ) .
S i n c e h y d r o x a m i c acids a r e u n s y m m e t r i c a l
b i d e n t a t e l i g a n d s , there a r e b o t h g e o m e t r i c a n d o p t i c a l isomers i n t r i s -
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
40
BIOINORGANIC
CHEMISTRY
II
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
Ο
Journal of the American Chemical Society
Figure 5. A schematic of the A-cis isomer of chromic and ferric enterobactin. The metal lies at the center of a dis torted octahedron formed by the oxygen atoms of tne three catechol dianions. (hydroxamate)
complexes.
A s n o t e d e a r l i e r for a n o c t a h e d r a l
complex
f o r m e d w i t h three e q u i v a l e n t o p t i c a l l y a c t i v e h y d r o x a m a t e anions, t h e r e are t w o g e o m e t r i c isomers p o s s i b l e — t r a n s a n d cis. E a c h g e o m e t r i c
iso
m e r consists of Δ a n d Λ o p t i c a l isomers (12). O f t e n these are diastereoisomers because o f the l i g a n d o p t i c a l a c t i v i t y , i n w h i c h case there are four possible isomers—Λ-cis, Λ-trans, Δ-cis, and Δ-trans. P r e l i m i n a r y exploratory research was directed t o w a r d p r e p a r i n g a n d c h a r a c t e r i z i n g C r ( I I I ) or C o ( I I I ) complexes. d
6
T h e s e are d a n d l o w - s p i n 3
m e t a l ions, r e s p e c t i v e l y , w h i c h h a v e the greatest p o s s i b l e l i g a n d
field
s t a b i l i z a t i o n energy a n d h e n c e are k i n e t i c a l l y i n e r t t o w a r d l i g a n d s u b s t i t u t i o n a n d i s o m e r i z a t i o n reactions. T h i s is i n contrast to t h e h i g h - s p i n d
s
f e r r i c i o n w h i c h has zero l i g a n d field s t a b i l i z a t i o n e n e r g y (22). T h u s , i n contrast t o the f e r r i c s i d e r o p h o r e complexes, c h r o m i c o r c o b a l t i c - s u b s t i t u t e d c o m p l e x e s s h o u l d be k i n e t i c a l l y i n e r t . MODEL
droxamate)
HYDROXAMATE
COMPLEXES.
complexes of C o ( I I I )
Attempts
to prepare
w i t h benzohydroxamic
tris (hy
acid or its
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
Kinetically Inert Siderophore Complexes
RAYMOND
41
N - m e t h y l d e r i v a t i v e r e s u l t e d i n o x i d a t i o n of t h e l i g a n d w i t h c o n c o m i t a n t r e d u c t i o n of C o ( I I I ) to C o ( I I ) . T h e p r e p a r a t i o n of tris ( b e n z o h y d r o x a mato) chromium ( I I I ) ,
Cr(benz) , 3
w a s successful
a n d resulted i n the
s e p a r a t i o n a n d c h a r a c t e r i z a t i o n of its t w o g e o m e t r i c isomers
(2).
The
h a l f - l i v e s for i s o m e r i z a t i o n of these complexes near p h y s i o l o g i c a l c o n d i tions is o n the o r d e r of h o u r s .
T o f a c i l i t a t e t h e s e p a r a t i o n of a l l f o u r
o p t i c a l isomers of a s i m p l e m o d e l tris ( h y d r o x a m a t e ) c h r o m i u m ( I I I ) c o m p l e x , w e p r e p a r e d ( u s i n g Z-menthol as a s u b s t i t u e n t ) t h e o p t i c a l l y a c t i v e hydroxamic acid, N-methyl-Z-menthoxyacethydroxamic acid ( m e n ) . This
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
r e s u l t e d i n t h e s e p a r a t i o n of t h e t w o cis diastereoisomers of tris ( N - m e t h y l Z - m e n t h o x y a c e t h y d r o x a m a t o ) c h r o m i u m ( I I I ) f r o m t h e trans diastereoiso mers a n d t h e i r c h a r a c t e r i z a t i o n b y e l e c t r o n i c a b s o r p t i o n a n d c i r c u l a r d i c h r o i s m spectra. T h i n layer chromatography
of t h e tris ( b e n z o h y d r o x a m a t o ) c h r o m
i u m ( I I I ) c o m p l e x r e s u l t e d i n t w o green b a n d s , c o r r e s p o n d i n g to t h e cis a n d trans isomers, w h o s e e l u t i o n R
s t
v a l u e s b r a c k e t e d t h a t of t h e one
b r o a d r e d d i s h - b r o w n b a n d of the F e ( I I I ) the g e o m e t r i c isomers of t h e F e ( I I I )
complex.
A s just d e s c r i b e d ,
c o m p l e x are i n r a p i d e q u i l i b r i u m
i n s o l u t i o n , a n d as a result, t h e m i x t u r e of these isomers elutes as one b a n d w i t h an R
s t
v a l u e that is a w e i g h t e d average of t h e t w o i n d i v i d u a l
isomers. T h e tris ( N - m e t h y l - Z - m e n t h o x y a c e t h y d r o x a m a t o ) c h r o m i u m ( I I I ) a n d - i r o n ( I I ) complexes, C r ( m e n ) layer chromatography. b a n d whose elution R
3
a n d F e ( m e n ) , w e r e also p u r i f i e d b y t h i n 3
T h e i r o n c o m p l e x gives one b r o a d r e d d i s h - b r o w n v a l u e is b r a c k e t e d b y t h e b l u i s h - g r e e n b a n d s of
s t
the cis a n d trans isomers of t h e C r ( I I I )
complex
(2).
A s w i t h the
tris ( b e n z o h y d r o x a m a t e ) complexes, this b e h a v i o r is c a u s e d b y t h e r a p i d e q u i l i b r a t i o n of the k i n e t i c a l l y l a b i l e f e r r i c c o m p l e x . T h e isomers of C r ( m e n ) s i m i l a r to t h e C r ( b e n z )
3
3
isomerize w i t h half-lives (several hours)
complex.
T h e rate of i s o m e r i z a t i o n of the t r i s -
( h y d r o x a m a t e ) c o m p l e x e s is therefore n o t p a r t i c u l a r l y sensitive to t h e s u b s t i t u e n t of t h e h y d r o x a m a t e n i t r o g e n a t o m , since t h e m e n l i g a n d c o n tains a n a l k y l a t e d n i t r o g e n a t o m , a n d the b e n z l i g a n d contains a n u n s u b stituted
nitrogen
atom.
I n t h e absence
of
an induced
strain,
the
corresponding siderophore complexes must isomerize m u c h more slowly b e c a u s e of the steric constraints of t h e l i g a n d . A l t h o u g h f o u r diastereoisomers ( Λ - c i s , Λ - t r a n s , Δ - c i s , a n d Δ-trans) a r e e x p e c t e d f o r C r ( m e n ) , t h i n l a y e r c h r o m a t o g r a p h y of t h e c o m p l e x y i e l d e d 3
o n l y three b l u i s h - g r e e n b a n d s . T w o of these are t h e r e s o l v e d Λ - c i s ( 1 0 % ) a n d Δ - c i s ( 2 1 % ) isomers, a n d t h e t h i r d ( 6 9 % ) is a n u n r e s o l v e d m i x t u r e of t h e Λ-trans ( 3 1 % ) a n d Δ - t r a n s ( 3 8 % ) isomers. O n e other k e y difference
between
t h e c h r o m i c a n d f e r r i c ions is
t h e i r spectroscopic p r o p e r t i e s . S i n c e f e r r i c i o n is a h i g h - s p i n d i o n i n t h e 5
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
BIOINORGANIC CHEMISTRY
42
II
s i d e r o p h o r e c o m p l e x e s , t h e r e a r e n o s p i n - a l l o w e d d-d e l e c t r o n i c t r a n s i tions. T h u s t h e v i s - u v a b s o r p t i o n s p e c t r a of t h e siderophores a r e n o t a l l c a u s e d b y m e t a l c h r o m o p h o r e centers b u t r a t h e r are f r o m l i g a n d - m e t a l o r l i g a n d - l i g a n d transitions ( l a r g e l y c h a r g e t r a n s f e r ) w h i c h v a r y e n o r m o u s l y f r o m o n e c o m p o u n d to a n o t h e r , e v e n t h o u g h t h e c o o r d i n a t i o n g e o m e t r y a b o u t t h e F e ( I I I ) m a y b e t h e same.
I n contrast, o c t a h e d r a l ( o r n e a r l y
o c t a h e d r a l ) c o m p l e x e s of C r ( I I I ) h a v e t w o w e l l e s t a b l i s h e d d-d a b s o r p tion bands that are l o c a l i z e d o n the m e t a l chromophore a n d thus are i n s e n s i t i v e to changes i n t h e m e t a l - l i g a n d c o m p l e x w h i c h is o u t s i d e t h e
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
i m m e d i a t e c o o r d i n a t i o n s p h e r e of t h e m e t a l . CHROMIC
FERRICHROME
COMPLEXES.
T h e spectra
for
the
model
c h r o m i c h y d r o x a m a t e c o m p l e x e s are r e p r o d u c e d i n F i g u r e 6. S i n c e t h e v i s i b l e a n d C D s p e c t r a of t h e isomers a r e w h o l l y d o m i n a t e d b y t h e m e t a l c o m p l e x c h r o m o p h o r e , these d a t a c a n b e u s e d to c h a r a c t e r i z e a n d to i d e n t i f y c o o r d i n a t i o n isomers of c o m p l e x e s f o r m e d b y t h e s i d e r o p h o r e s . T h e p r e p a r a t i o n a n d c h a r a c t e r i z a t i o n of t h e c h r o m i c c o m p l e x e s of d e s ferriferrichrome a n d desferriferrichrysin have been reported
(3). A l
t h o u g h a n e x a m i n a t i o n of m o l e c u l a r m o d e l s f o r b o t h c o m p l e x e s shows t w o c o o r d i n a t i o n isomers are p o s s i b l e ( Λ - c i s a n d Δ - c i s ) , b o t h c h r o m i c c o m plexes consist e x c l u s i v e l y of t h e Λ - c i s i s o m e r .
T h e s e results agree w i t h
x-ray crystallographic investigations w h i c h have s h o w n that b o t h ferri c h r y s i n a n d f e r r i c h r o m e A c r y s t a l l i z e as o n l y t h e Λ - c i s i s o m e r (14, 15). B o t h c h r o m i c c o m p l e x e s h a v e i d e n t i c a l C D s p e c t r a w h i c h a r e t h e same as t h e Λ - c i s C r ( m e n ) CHROMIC
3
spectrum (Figure 6 ) .
FERRIOXAMINE
COMPLEXES.
T h e preparation a n d charac
t e r i z a t i o n of c h r o m i c c o m p l e x e s of f e r r i o x a m i n e Β (see F i g u r e 3 ) h a v e b e e n r e p o r t e d (4).
F r o m a n e x a m i n a t i o n of m o l e c u l a r m o d e l s , t h e five
g e o m e t r i c isomers ( one cis a n d f o u r trans ) s h o w n i n F i g u r e 7 are p o s s i b l e . E a c h of these isomers exists as a r a c e m i c m i x t u r e , a n d t h e s e p a r a t i o n of t h e cis g e o m e t r i c a l i s o m e r w a s a c c o m p l i s h e d . A s e c o n d f r a c t i o n w a s i s o l a t e d w h i c h consists of o n e o r m o r e trans isomers. T h e geometries of these isomers w e r e a s s i g n e d o n t h e basis of t h e i r v i s - u v s p e c t r a ( F i g u r e 8 ) w h i c h a r e s u p e r i m p o s a b l e u p o n those of t h e c i s - a n d f r a n $ - C r ( m e n )
3
c o m p l e x e s ( F i g u r e 6 ). B o t h t h e cis a n d trans g e o m e t r i c a l isomers o f c h r o m i c f e r r i o x a m i n e Β i s o m e r i z e to e q u i l i b r i u m solutions w i t h h a l f - l i v e s of s e v e r a l days at r o o m t e m p e r a t u r e . T h i s is c o n s i d e r a b l y s l o w e r t h a n t h a t f o u n d f o r t h e s i m p l e tris h y d r o x a m a t e c o m p l e x e s s u c h as C r ( m e n )
3
a n d is c a u s e d b y
t h e s t e r i c constraints o f t h e f e r r i o x a m i n e Β l i g a n d a n d its h e x a d e n t a t e chelation. Catecholate
Siderophores.
noted earlier, the c o m m o n
SIMPLE
CATECHOL
COMPLEXES.
AS
s i d e r o p h o r e f o r e n t e r i c b a c t e r i a is t h e t r i -
catechol, enterobactin ( F i g u r e 4 ) . I n order to perfect
synthetic a n d
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Kinetically Inert Siderophore Complexes
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
RAYMOND
Figure 6. Absorption spectra of Cr(benz) in 17% CH OH/ CHCl solution and both absorption and CD spectra of Cr(men) in 3% CH OH/CHCl solution. 3
s
3
3
3
3
cis-Cr(benz)sy ( ); trans-Cr(benz) , (- · -); cis-Cr(men) , ( ); tram-Cr(men)s, (· · ·)· The CD spectrum of the mixture of trans isomers (31% Λ, 38% Δ) has multiplied by eight since the net optical activity of the Λ, Δ mixture is small. The CD bands near 415 nm are assigned as the high energy *A -» E transition (point group C ) which come from the *A*„ -» *Ti absorption band in octa hedral symmetry. The large bands near 570 nm are assigned as the low energy *A -> *E transition, and the bands near 670 nm are assigned as the A* -> *At transition. Both of these transitions come from the A» -> *T absorption band in octahedral symmetry. s
s
t
s
4
g
t
4
k
9
tg
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
44
BIOINORGANIC C H E M I S T R Y
Λ - C - trans, trans
Λ-Ν - cis, trans
II
Λ-Ν - trans, cis
Figure 7. The five enantiomeric geometrical isomers of ferrioxamine B. The oxygen donor atoms of each hydroxamate group have been omitted for clarity. The Λ optical isomer is shown in each case. See Ref. 4 for nomenclature of these geometncal isomers. s e p a r a t i o n t e c h n i q u e s to b e u s e d w i t h t h e s m a l l a m o u n t s of e n t e r o b a c t i n a v a i l a b l e , s i m p l e c a t e c h o l complexes w e r e p r e p a r e d as m o d e l c o m p o u n d s . S p e c t r o s c o p i c d a t a of t h e s i m p l e m o d e l c o m p o u n d s t h e n c o u l d b e u s e d i n a s s i g n i n g geometries f o r e n t e r o b a c t i n isomers.
T h e previous chemical
l i t e r a t u r e of tris ( c a t e c h o l ) complexes o f t r a n s i t i o n m e t a l ions is sparse.
λ
(nm)
Figure 8. Absorption spectra of the cis isomer and trans isomers of chromic desferriferrioxamine Β in aqueous solution. Cis, ( ); trans, ( ).
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
45
Kinetically Inert Siderophore Complexes
RAYMOND
T h e o n l y reference to a c h r o m i c c o m p l e x r e p o r t e d t h a t i t w a s r a p i d l y h y d r o l y z e d i n d i l u t e aqueous s o l u t i o n ( 2 3 ) . T h i s , of course, w o u l d p r e c l u d e s e p a r a t i o n of o p t i c a l isomers of t h e tris chelates.
Nevertheless,
these complexes w e r e r e i n v e s t i g a t e d b e f o r e p r e p a r i n g the c h r o m i c e n t e r o bactin complex.
I t w a s f o u n d that t h e complexes a r e v e r y stable i n t h e
absence of o x y g e n
( 2 4 ) . T h e usual oxygen sensitivity of the catechol
d i a n i o n w a s f o u n d to b e s u b s t a n t i a l l y i n c r e a s e d i n t h e c h r o m i u m c o m plex.
( T h e ease o f o x i d a t i o n of c o o r d i n a t e d c a t e c h o l a n d r e l a t e d l i g a n d s
has b e e n d e m o n s t r a t e d f o r a series of m e t a l complexes
(Ni , Cu , Zn , 2 +
2 +
2 +
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
etc.) b y H o l m et a l . i n r e l a t i o n to the 1,2-benzenedithiolato analogs It is this o x i d a t i o n of t h e c h r o m i u m c o m p l e x
that causes
(25)).
the green-
t o - r e d c o l o r changes r e p o r t e d p r e v i o u s l y as h y d r o l y s i s . A l l p r e p a r a t i o n s a n d h a n d l i n g of t h e c h r o m i u m c a t e c h o l c o m p l e x w e r e therefore c a r r i e d out under inert atmosphere conditions. A l t h o u g h o n l y p a r t i a l r e s o l u t i o n of solutions of [ C r ( c a t ) ] " w a s 3
3
a c h i e v e d at n e u t r a l p H , c o m p l e t e r e s o l u t i o n w a s a t t a i n e d at p H 13 a n d 5°C.
T h e rate of loss of o p t i c a l a c t i v i t y f o r r e s o l v e d [ C r ( c a t ) ] ' w a s 3
3
f o u n d to d e p e n d s t r o n g l y o n h y d r o g e n i o n c o n c e n t r a t i o n s , v a r y i n g f r o m h a l f - t i m e s of s e v e r a l m i n u t e s to several h o u r s b e t w e e n p H 7 a n d p H 13 (24). COMPARISON WITH CHROMIC ENTEROBACTIN. The
visible and
l a r d i c h r o i s m spectra of [ C r ( c a t ) ] " a n d [ C r ( e n t e r o b a c t i n ) ] " 3
3
circu
complexes
3
are s h o w n i n F i g u r e s 9 a n d 10. T h e a b s o r p t i o n s p e c t r a a r e s i m i l a r e x c e p t that t h e l i g a n d - l o c a l i z e d t r a n s i t i o n occurs at l o w e r e n e r g y i n t h e entero b a c t i n c o m p l e x , thus m a s k i n g t h e A 4
2 g
—» T 4
lg
(for D
h
symmetry)
d-d
t r a n s i t i o n , w h i c h appears as a s h o u l d e r o n t h e e d g e of t h e m o r e intense π —» 7Γ* l i g a n d transitions. T h i s is a p p a r e n t l y c a u s e d b y t h e f a c t t h a t e n t e r o b a c t i n contains o r t h o - a c y l - s u b s t i t u t e d c a t e c h o l r i n g s . T h u s t h e v i s - u v spectra of [ C r ( c a t ) ] " 3
3
and [Cr(enterobactin)] " 3
are too d i s s i m i l a r to a l l o w d e t a i l e d c o m p a r i s o n s a n d confident p r e d i c t i o n of s t r u c t u r e b a s e d o n s u c h c o m p a r i s o n s . H o w e v e r , there is a d r a m a t i c a l l y different s i t u a t i o n f o u n d i n c o m p a r i n g t h e C D s p e c t r a of
[Cr(cat) ] " 3
3
a n d [ C r ( e n t e r o b a c t i n ) ] " , w h i c h are f o u n d to b e substantially i d e n t i c a l 3
( F i g u r e 1 0 ) . T h i s is b e c a u s e t h e i n t e r f e r i n g c h a r g e transfer b a n d is n o t associated w i t h t h e c h i r a l center a n d h e n c e does n o t c o n t r i b u t e to t h e optical activity. T h e c r y s t a l a n d m o l e c u l a r s t r u c t u r e of a salt of [ C r ( c a t ) ] " a n d t h e 3
3
k n o w n [ C r ( c a t ) ] " absolute configurations g i v e the f o l l o w i n g a s s i g n m e n t : 3
3
the p r e d o m i n a n t i s o m e r of t h e c h r o m i c e n t e r o b a c t i n m o n o m e r i c has a Δ-cis absolute c o n f i g u r a t i o n ( F i g u r e 5 ) .
complex
T h e s i m i l a r i t y of t h e
c h r o m i c a n d f e r r i c complexes a l l o w s this assignment to b e m a d e f o r t h e f e r r i c c o m p l e x as w e l l . T h i s is t h e opposite absolute c o n f i g u r a t i o n of t h e other o p t i c a l l y a c t i v e siderophores c h a r a c t e r i z e d to date.
T h e opposite
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
BIOINORGANIC C H E M I S T R Y
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
46
II
50
I
I
400
I
I
I
500
I
600
λ
ι
1
500
'
I
10
700
(nm) Γ
600
'
700
x(nm)
Figure 9. (a) (top) Visible absorption spectrum of K [Cr(cat) ] in water, (bottom) Circular dichroism spectra of Δ - and Λ K [Cr(cat) ] solutions. 3
3
3
3
a b s o l u t e configurations of c h r o m i c e n t e r o b a c t i n a n d c h r o m i c f e r r i c h r o m e c a n b e seen c l e a r l y i n c o m p a r i n g t h e i r C D s p e c t r a ( F i g u r e 1 0 b ) . r o l e o f the siderophores
as c e l l u l a r permeases
for ferric i o n
The
therefore
does n o t d e p e n d o n the c o m p l e x a l w a y s h a v i n g a Λ - c i s c o n f i g u r a t i o n , a l t h o u g h t h i s c o n f i g u r a t i o n or others m a y b e s p e c i f i c a l l y t r a n s p o r t e d i n i n d i v i d u a l m i c r o b i a l - l i g a n d systems. T h e m o l e c u l a r s t r u c t u r e of e n t e r o b a c t i n has not as y e t b e e n
estab
l i s h e d b y d i f f r a c t i o n t e c h n i q u e s a n d , a l t h o u g h c o o r d i n a t i o n of f e r r i c i o n
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
RAYMOND
47
Kinetically Inert Siderophore Complexes
600
500
1400
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
300
200
Figure 10. (a) (left) Visible absorp tion spectrum of [NHJ [C^entero bactin)]. (b) (below) Circular dichroism spectra of A-[NH\] [Cr(enterobactin)] ( ) and chromic ferri chrome (—) (the latter from Ref. 3). 3
550
3
650
x(nm)
Ο Δε
400
500
600
700
Anericart^eraical Society Library 1155 16th St. N. W.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Society: Washington, DC, 1977. Washington, D.Chemical C. 20036
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
48
BIOINORGANIC C H E M I S T R Y
II
Figure 11. A perspective drawing of the [M(0 C H^sl ' anions. M = Cr, Fe, as viewed down the molecular threefold axis. 2
6
3
b y e n t e r o b a c t i n p r e v i o u s l y h a d b e e n a s s u m e d to b e a n o c t a h e d r a l c o m p l e x w h i c h i n v o l v e s o n l y the c a t e c h o l m o i e t i e s of the l i g a n d , n o
firm
s t r u c t u r a l e v i d e n c e f o r this w a s a v a i l a b l e . F u r t h e r m o r e , the use of C r ( I I I ) i n p l a c e of F e ( I I I ) to e n a b l e t r a n s p o r t studies of o p t i c a l l y a c t i v e Table I.
Structural Parameters pa
Charge, η
1
=
Average M - 0 distance (Â) A v e r a g e r i n g O - M - 0 angle ( ° ) A v e r a g e 0 - 0 r i n g distance (Â) Ligand bite T r i g o n a l t w i s t angle ( ° ) P l a n e - t o - p l a n e d i s t a n c e (Â) ' e
1
a 6 0 d 9
1.723(4) 91.4(2) 2.466(6) 1.431 58.9 1.940
Ref. 27. Ref. 28. Ref. 29. Ref. 26. Ratio of the 0-0 ring distance to M - 0 distance. See Ref. 80.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
49
Kinetically Inert Siderophore Complexes
RAYMOND
siderochrome
complexes
has b e e n
justified here a n d i n t h e p r e v i o u s
c h a p t e r o n the basis that s u c h complexes w o u l d b e i s o s t r u c t u r a l . H i g h s p i n F e ( I I I ) a n d C r ( I I I ) are w i t h i n 0.03 A i n i o n i c r a d i u s of o n e another, b u t the c r y s t a l field s t a b i l i z a t i o n energy ( C F S E ) f o r the c h r o m i c c o m p l e x (12 D q ) is c o n s i d e r a b l y greater t h a n that f o r h i g h - s p i n f e r r i c i o n ( 0 D q ) . A n y shift b y the c h r o m i c c o m p l e x t o w a r d s o c t a h e d r a l f r o m t r i g o n a l p r i s m a t i c c o o r d i n a t i o n , as e v i d e n c e d
b y t h e t r i g o n a l t w i s t angle, m a y b e
a t t r i b u t e d to this c r y s t a l field effect. GEOMETRY
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
geometries
OFMETAL
CATECHOL
of [Fe(cat) ] ~ 3
COMPLEXES.
and [Cr(cat) ] "
3
3
s i n g l e c r y s t a l studies o f t h e salts K [ M ( c a t ) ] - 1 . 5 3
T h e coordination
have been determined b y
3
3
H
2
0 (M = C r , F e )
i n o r d e r to explore the c r y s t a l field effect o f c h r o m i c i o n o n the c o o r d i n a t i o n geometry a n d , i n d i r e c t l y , t o d e t e r m i n e the c o o r d i n a t i o n g e o m e t r y o f e n t e r o b a c t i n itself (26). T h e [ M ( c a t ) ] " complexes ( F i g u r e 1 1 ) are d i s t o r t e d f r o m o c t a h e d r a l 3
3
geometry w i t h approximately D
3
molecular point symmetry.
t u r a l parameters o f t h e tris ( c a t e c h o l ) complexes
T h e struc-
r e p o r t e d t o date a r e
c o m p a r e d i n T a b l e I . T h e l i g a n d b i t e ( r a t i o of t h e O - O r i n g d i s t a n c e to the M - O d i s t a n c e ) , the t r i g o n a l t w i s t a n g l e , a n d the t r i g o n a l p l a n e - t o p l a n e distance v a r y s m o o t h l y across the t a b l e as i o n i c r a d i i increase. T h e final
g e o m e t r y represents a b a l a n c e b e t w e e n distortions o f t h e O - M - O
a n g l e a n d O - O r i n g distance a n d v a r i a t i o n s o f t h e t w i s t a n g l e
from
octahedral to trigonal prismatic. I n comparing the chromic a n d ferric c a t e c h o l structures, the difference i n M - O b o n d l e n g t h is not large e n o u g h to cause t h e n e a r l y six-degree difference i n t w i s t angle.
This must b e
a t t r i b u t e d to t h e difference i n c r y s t a l field s t a b i l i z a t i o n e n e r g y ( A C F S E ) b e t w e e n o c t a h e d r a l a n d t r i g o n a l - p r i s m a t i c geometries.
A l t h o u g h signif-
i c a n t i n terms of the p r e c i s i o n o f t h e s t r u c t u r e d e t e r m i n a t i o n s , t h e f e r r i c a n d c h r o m i c complexes are close e n o u g h i n g e o m e t r y to r e g a r d s i m i l a r for
[M(cat) ] 3
Si
n _
Complexes (26) As
b
c
2 1.784(18) 88.7(2) 2.490(6) 1.396 55.9(5) 2.093
1 1.843(5) 88.2(5) 2.565(7) 1.392 55.2(10) 2.194
Cr*
Fe*
8
3
1.986(4) 83.56(14) 2.646(6) 1.333 50.5(6) 2.247
2.015(6) 81.26(7) 2.625(2) 1.303 44.7(10) 2.303
T h i s angle is defined b y v i e w i n g t h e c o m p l e x i n p r o j e c t i o n d o w n t h e m o l e c u l a r t h r e e - f o l d axis. I t is t h e n t h e r o t a t i o n r e q u i r e d t o b r i n g t h e t o p a n d b o t t o m planes (of three o x y g e n a t o m s each) i n t o c o i n c i d e n c e . T h i s angle is 6 0 ° f o r o c t a h e d r a l a n d 0 ° for t r i g o n a l p r i s m a t i c c o o r d i n a t i o n . P l a n e - t o - p l a n e distance f o r t h e t w o t r i g o n a l o x y g e n a t o m planes d e s c r i b e d i n . r
9
1
Journal of the American Chemical Society
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
50
BIOINORGANIC C H E M I S T R Y
c h r o m i c - s u b s t i t u t e d s i d e r o p h o r e complexes
II
as s t r u c t u r a l l y i d e n t i c a l to
t h e n a t u r a l f e r r i c complexes f o r b i o l o g i c a l purposes. FERRIC-CATECHOLATE
CONSTANTS.
FORMATION
The
very
high
affinity for f e r r i c i o n w h i c h a l l siderophores d i s p l a y is essential to t h e i r r o l e i n o b t a i n i n g i r o n f o r the m i c r o o r g a n i s m u s i n g t h e l i g a n d . T h i s is a l w a y s a c c o m p l i s h e d i n a n e n v i r o n m e n t w h i c h also contains m a n y other s t r o n g c o m p l e x i n g agents f o r f e r r i c i o n . constant f o r the s i d e r o p h o r e
complex
Hence a very high formation
is essential for s u r v i v a l i n the
c o m p e t i t i v e w o r l d of the m i c r o o r g a n i s m . A s d e s c r i b e d e a r l i e r a n d r e
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
v i e w e d elsewhere
( J ) , t h e h y d r o x a m a t e siderophores
have
formation
constants for reactions of the t y p e :
Fe
3 +
+
Ο"
I
Ο—Ν
0
II
Fe
•N—C"
Ό—C
w h i c h r a n g e b e t w e e n 1 0 a n d 1 0 . T h e s e values are o n l y t w o to three orders of m a g n i t u d e greater t h a n the o v e r a l l f o r m a t i o n constant, β , for t h e s i m p l e tris ( m o n o h y d r o x a m a t e ) complexes. 30
32
3
I n contrast to the h y d r o x a m a t e siderophores, l i t t l e or n o t h i n g is k n o w n a b o u t the s t a b i l i t y constant for t h e c a t e c h o l s i d e r o p h o r e , entero b a c t i n . P r i o r to d e t e r m i n i n g t h e f o r m a t i o n constant of e n t e r o b a c t i n ( f o r w h i c h h y d r o l y s i s of the l i g a n d presents s p e c i a l p r o b l e m s ) , the r e a c t i o n of c a t e c h o l itself w i t h f e r r i c i o n has b e e n i n v e s t i g a t e d (31). C a t e c h o l is a v e r y w e a k a c i d a n d h e n c e at l o w p H is a p o o r l i g a n d . T h e k i n e t i c s a n d e q u i l i b r i a of its reactions w i t h f e r r i c i o n u n d e r a c i d i c c o n d i t i o n s h a v e b e e n i n v e s t i g a t e d (32). U n d e r such conditions, even w i t h excess c a t e c h o l , f e r r i c i o n forms o n l y a transient 1:1 c o m p l e x w h i c h e v e n t u a l l y u n d e r g o e s a r e d o x r e a c t i o n to g i v e ferrous i o n a n d o r t h o q u i n o n e as p r o d u c t s . T h i s r e a c t i o n has a r e d o x p o t e n t i a l just greater t h a n z e r o at p H 1. A t h i g h e r p H ' s the e x t r e m e l y l a r g e f o r m a t i o n constant of the tris c a t e c h o l f e r r i c c o m p l e x s t r o n g l y reverses the p o t e n t i a l , s u c h t h a t ferrous i o n w i l l r e d u c e o r t h o q u i n o n e to f o r m t h e tris c a t e c h o l f e r r i c c o m p l e x . I n the absence of a i r , b o t h t h e c h r o m i c a n d f e r r i c tris c a t e c h o l complexes are stable i n d e f i n i t e l y i n basic aqueous s o l u t i o n (24). T h e e q u i l i b r i u m constants i n v o l v e d i n the r e a c t i o n F e + 3 c a t " ^ F e ( c a t ) ~ w e r e d e t e r m i n e d as f o l l o w s . A n aqueous s o l u t i o n of F e (5.5 X 1 0 M ) a n d c a t e c h o l (1.48 X 1 0 M ) , i n i t i a l l y m a d e b a s i c w i t h the a d d i t i o n of K O H , w a s t i t r a t e d w i t h 1 . 2 4 M H C 1 u n d e r a n oxygen-free a t m o s p h e r e at 22° a n d i o n i c s t r e n g t h ( K C 1 ) 0 . 1 6 - 0 . 2 2 M ( F i g u r e 1 2 ) . T h e a c i d d i s s o c i a t i o n constants for c a t e c h o l w e r e d e t e r m i n e d i n d e p e n d e n t l y ( u n d e r s i m i l a r e x p e r i m e n t a l c o n d i t i o n s ) to b e p K i = 9.38 a n d 3 +
3
_ 3
3
2
3 +
_ 2
a
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
Kinetically Inert Siderophore Complexes
RAYMOND
pK
=
a 2
13.28.
51
( A l l s t a b i l i t y a n d association constants m e n t i o n e d
are
c o r r e c t e d to i o n i c s t r e n g t h of 0 . 1 M . ) U s i n g these constants a n d l i t e r a t u r e values for the h y d r o l y s i s constants Fe (OH) 2
2
4 +
of
Fe(III)
(FeOH
2 +
, Fe(OH
) , a c l a s s i c a l B j e r r u m η vs. p L p l o t p r o d u c e d
values of the m e t a l - l i g a n d s t a b i l i t y constants.
2
+
),
approximate
L e a s t squares refinement
of the c u m u l a t i v e s t a b i l i t y constants c o n v e r g e d at the v a l u e s l o g βχ
=
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
13,
I 1 2 UDLUME DF
3 4 5 6 TITRANT (HL)
?
Β
9
10
11
12
I
I
13
14
I
15
1
1
16
17
Figure 12. Titration curve. An initially basic aqueous solution (5.5 X 10~ M) and catechol (1.84 X 10~ M) is titrated with 1.24M 22° under an oxygen-free atmosphere. ( ), least squares fit to served data (discrete points). Data past pH 10 were given zero 3
21.5, l o g β
2
2
=
36.6, a n d l o g β
=
3
1 IB
of Fe HCl at the ob weights. 3+
45.9. T h e i n c l u s i o n of i r o n h y d r o l y s i s
i n the refinement m o d e l p r i m a r i l y affected the c a l c u l a t e d v a l u e of β χ. T h e d i s t r i b u t i o n of the v a r i o u s species i n s o l u t i o n as a f u n c t i o n of p H is s h o w n i n F i g u r e 13. T h e w e a k a c i d i t y of c a t e c h o l makes its effective f o r m a t i o n constant m u c h less t h a n 1 0 · near p h y s i o l o g i c a l p H . H o w e v e r , a n y chelate effect 45
9
s h o u l d t e n d to m a k e the f o r m a t i o n constant f o r e n t e r o b a c t i n i n l a r g e r than β
3
for catechol.
the r e a c t i o n F e
3 +
+
Thus 10
45
c a n b e r e g a r d e d as a l o w e r b o u n d
for
e n t ' *± F e ( e n t ) " . 6
3
Summary T h i s p a p e r has f o c u s e d o n the c o o r d i n a t i o n c h e m i s t r y of the s i d e r o phores. A t this stage i n o u r studies of m e t a l - s u b s t i t u t e d siderophores have established the f o l l o w i n g :
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
we
BIOINORGANIC C H E M I S T R Y
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
52
2
3
4
5
6
7
B
9
10
II
11
PH Figure
13.
Distribution
curve,
as a function
of pH,
of the
various
species
formed in the ferric-catechol titration experiment. (A) free Fe *; (B) Fe(cat) ; (C) Fe(cat)f; (D) Fe(cat) ~; (E) H cat; (F) (H cat)~; (G) feme hydrolysis products (FeOH' , Fe,(OH) , Fe(OH) ). Cat, catecholate dianion; ALPHA, concentration of the particular species divided by the total iron concentration. 3
+
s
3
+
i+
s
2
+
t
( 1 ) T h e c h r o m i c - s u b s t i t u t e d s i d e r o p h o r e complexes c a n b e p r e p a r e d a n d , i n contrast to the n a t u r a l l y o c c u r r i n g f e r r i c complexes, are k i n e t i c a l l y i n e r t to i s o m e r i z a t i o n or l i g a n d s u b s t i t u t i o n . ( 2 ) T h e v i s i b l e a n d c i r c u l a r d i c h r o i s m s p e c t r a of the c h r o m i c s i d e r o p h o r e complexes are closely r e l a t e d to the c o r r e s p o n d i n g s p e c t r a of s i m p l e m o d e l complexes of h y d r o x a m a t e or catecholate l i g a n d s . T h i s p r o v i d e s a s p e c t r o s c o p i c p r o b e f o r s t r u c t u r e i n a s s i g n i n g t h e geometries of the s i d e r o p h o r e complexes. (3) T h e s t r u c t u r e a n d b o n d i n g of the c h r o m i c a n d f e r r i c c o m p l e x e s ( d e s p i t e t h e i r differences i n k i n e t i c p r o p e r t i e s ) are sufficiently a l i k e to r e g a r d t h e m as i d e n t i c a l for b i o l o g i c a l systems. ( 4 ) T h e c h r o m i c - s u b s t i t u t e d siderophores c a n b e u s e d to s t u d y the m e c h a n i s m s of m i c r o b i a l i r o n transport. T h e s e studies r e l y o n t h e k i n e t i c inertness of t h e c h r o m i c c o m p l e x a n d w o u l d b e i m p o s s i b l e to c a r r y out u s i n g other t e c h n i q u e s or probes.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2. RAYMOND
Kinetically Inert Siderophore Complexes 53
Acknowledgment I am pleased to acknowledge my co-workers, past and present, whose efforts have been summarized here. They are John Leong, Stephan Isied, Alex Avdeef, Frank Fronczek, Leo Brown, Jim McArdle, Hunter Nibert, and Gilbert Kuo. The collaboration of J. B. Neilands continues to be a seminal influence. This research has been supported by USPHS grant AI-11744.
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
Literature Cited
1. Neilands, J. B., Ed., Microbial Iron Metabolism, Academic Press, New York, N.Y. 1974. 2. Leong, J., Raymond, Κ. N.,J.Am. Chem. Soc. (1974) 96, 1757. 3. Ibid. (1974) 96, 6628. 4. Ibid. (1975) 97, 293. 5. Biedermann, G., Schindler, Acta Chem. Scad. II (1957) 731. 6. Leussing, D. L., Kolthoff, I. M.,J.Am. Chem. Soc. (1953) 75, 2476. 7. Spiro, T.G.,Saltman, P., Struct. Bonding (1969) 6, 116. 8. Schwarzenbach, G., Schwarzenbach, K., Helv. Chim. Acta (1963) 46, 1390. 9. Anderegg, G., L'Eplattenier, F., Schwarzenbach,G.,Helv. Chim. Acta (1963) 46, 1400. 10. Ibid. (1963) 46, 1409. 11. Lindner, Von H. J., Gottlicher, S., Acta Cryst. (1969) B25, 832. 12. Inorg. Chem. (1970) 9, 1. 13. Poling, M., Van der Helm, D., Book of Abstracts, American Crystallo graphic Association, Spring Meeting, Berkeley, 1974, abstract Q7, p. 111. 14. Zalkin, Α., Forrester, J. D., Templeton, D.H.,J.Am. Chem. Soc. (1966) 88, 1810. 15. Bränden, C. I., private communication, 1974. 16. Hough,E.,Rogers, D., Biochem. Biophys. Res. Commun. (1974) 57, 7 17. Llinás, M., Struct. Bonding (1973) 17, 135. 18. Pollack, J. R., Neilands, J. B., Biochem. Biophys. Res. Commun. (1970) 38, 989. 19. O'Brien, I. G., Gibson, F., Biochim. Biophys. Acta (1970) 215, 393. 20. Neilands, J. B., "Structure of Microbial Iron Transport Compounds" in "Structure and Function of Oxidation Reduction Enzymes,"Å.Akeson andÅ.Ehrenberg, Eds., pp. 541-547, Pergamon, Oxford, 1972. 21. Buerer, T., Gulyas,E.,Proc. 9th Int. Conf. Coord. Chem., St. Morit (1966) 512. 22. Basolo, F., Pearson, R. G., "Mechanisms of Inorganic Reactions," 2nd ed., Wiley, New York, 1967. 23. Weinland, R., Walter, Ε., Z. Anorg. Allg. Chem. (1923) 126, 141. 24. Isied, S. S., Kuo, G., Raymond, Κ. N.,J.Am. Chem. Soc. (1976) 98, 1763. 25. Röhrscheid, F., Balch, A. L., Holm, R. Α., Inorg. Chem. (1966) 5, 1542. 26. Raymond, Κ. N., Isied, S. S., Brown, L. D., Fronczek, F. R., Nibert, J. H., J. Am. Chem. Soc. (1976) 98, 1767. 27. Allcock, H. R., Bissell, E.C.,J.Am. Chem. Soc. (1973) 95, 3154. 28. Flynn, J.J.,Boer, F. P.,J.Am. Chem. Soc. (1969) 91, 5767. 29. Kobayashi, Α., Ito, T., Marumo, F., Sacto, Y., Acta Crystallogr., Sect. Β (1972) 28, 3446. 30. Wentworth, R. A. D., Coor. Chem. Rev. (1972) 9, 171.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
54
BIOINORGANIC CHEMISTRY-II
Downloaded by UNIV OF MINNESOTA on April 30, 2013 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0162.ch002
31. Avdeef, Α., Sofen, S. R., Bregante, T. L., Raymond, Κ. N., unpublished data. 32. Mentasti, E., Pelizzetti, E., Saini, G., J. Chem. Soc., Dalton Trans. (1973) 2605, 2609. RECEIVED July 26, 1976.
In Bioinorganic Chemistry—II; Raymond, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.