52 Kinetics of Adsorption on A Zeolites. Temperature Effects
Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
JAMES D. EAGAN, BRUNO KINDL, and ROBERT B. ANDERSON Department of Chemical Engineering, McMaster University, Hamilton, Ontario
Maximum temperatures measured in the adsorbent during the adsorption of nitrogen on 4A and propane on 5A zeolite, both at —78°C, were 15° and 50°C above the bath temperature. Finite difference calculations, taking into account the generation and loss of heat and changes in diffusivity and equilibrium adsorption with temperature, reproduced the pertinent features of the rate and temperature data. When the temperature maximum occurs late in the adsorption process, the rate curve is drastically different from that expected for isothermal adsorption. Q o m e rate curves f o r the a d s o r p t i o n of gases o n z e o l i t i c m o l e c u l a r sieves ^
h a v e u n u s u a l shapes (5, 6).
A p o s s i b l e cause of some of these p h e
n o m e n a is the c h a n g i n g t e m p e r a t u r e of the s a m p l e d u r i n g o w i n g to the heat of a d s o r p t i o n ( 5 ) .
adsorption
A g r o u p of experiments has d e m o n
strated t h a t samples o v e r h e a t s u b s t a n t i a l l y d u r i n g k i n e t i c measurements. T e m p e r a t u r e s h i g h e r t h a n 15 ° C a b o v e the b a t h t e m p e r a t u r e h a v e b e e n measured d u r i n g kinetic experiments i n both volumetric and gravimetric apparatuses.
F i n i t e difference c a l c u l a t i o n s , w h i c h
approximate experi
m e n t a l results, i n d i c a t e that these t e m p e r a t u r e differences d o not c h a n g e the shape of the i n i t i a l p a r t of the rate c u r v e s u b s t a n t i a l l y , b u t i n some cases cause m a j o r changes at l o n g e r times. Experimental
and Computing
Methods
C o m m e r c i a l L i n d e 4 A a n d 5 A p o w d e r s w e r e u s e d after e v a c u a t i o n at 4 5 0 ° C f o r 15 h o u r s . E x p e r i m e n t s w i t h N
2
on 4 A powder were made
i n a c o n v e n t i o n a l glass v o l u m e t r i c system e q u i p p e d w i t h a g r a d u a t e d burette and a manostat ( 3 ) .
A 0.675-gram s a m p l e of 4 A p o w d e r w a s
c o n t a i n e d i n a s p h e r i c a l b u l b of i n s i d e d i a m e t e r 12 m m . I n s e r t e d i n the 164
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
52.
EAGAN
E T
AL.
Kinetics
of
165
Adsorption
p o w d e r was a 36-gauge c h r o m e l - a l u m e l t h e r m o c o u p l e that p a s s e d t h r o u g h the top of the s a m p l e t u b e at a p o i n t above the c o l d b a t h b y a c o m m e r c i a l g l a s s - m e t a l seal. T h e r e f e r e n c e j u n c t i o n was i m m e r s e d i n the c o o l i n g bath. Tests w i t h p r o p a n e o n 5 A w e r e p e r f o r m e d i n a C a h n R . G . electrobalance
system.
I n the g r a v i m e t r i c a p p a r a t u s , the i n i t i a l
disturbance
c a u s e d b y i n t r o d u c i n g the gas to the e v a c u a t e d s a m p l e p e r s i s t e d f o r a b o u t 6 seconds a n d a d s o r p t i o n measurements c o u l d not be m a d e i n this p e r i o d . Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
I n separate experiments, 0.3- a n d 4 - m m layers of zeolite o n the b a l a n c e p a n w e r e u s e d a n d respective a d s o r p t i o n rate curves w e r e r e c o r d e d .
For
the t h i c k e r l a y e r i n another e x p e r i m e n t , the b a l a n c e p a n w a s s u p p o r t e d o n a 32-gauge t h e r m o c o u p l e , the j u n c t i o n of w h i c h w a s i m m e r s e d i n the zeolite; the temperatures w e r e d e t e r m i n e d d u r i n g a s i m i l a r a d s o r p t i o n e x p e r i m e n t i n w h i c h w e i g h t changes w e r e not m e a s u r e d .
In both ap
paratuses, the m e a s u r e d t e m p e r a t u r e was p r o b a b l y not e q u a l to the a c t u a l p a r t i c l e t e m p e r a t u r e b u t it seems reasonable to assume that t h e y d i f f e r o n l y s l i g h t l y . I n a l l experiments, the c o o l i n g b a t h was d r y i c e - a c e t o n e t h r o u g h w h i c h a s l o w stream of C 0 p h e r e of C 0
2
2
was b u b b l e d to m a i n t a i n a n atmos
under a l l conditions.
F i n i t e difference c a l c u l a t i o n s w e r e m a d e o n a C D C 6 4 0 0 c o m p u t e r to d e t e r m i n e the effect of the t e m p e r a t u r e rise of the p o w d e r o n the a d s o r p t i o n rate. H e r e the particles w e r e a s s u m e d to b e spheres of 1-mic r o n d i a m e t e r f o r c o n v e n i e n c e ; the a c t u a l s a m p l e consisted l a r g e l y of cubes w i t h w i d e v a r i a t i o n i n size, 0.1 to 6 m i c r o n s .
Calculations indi
c a t e d that the temperatures t h r o u g h o u t the p a r t i c l e c o u l d b e uniform.
H e a t w a s a s s u m e d to b e r e m o v e d f r o m the surface
particle b y natural convection.
assumed of
the
T h e largest heat transfer resistance
re
s u l t e d f r o m s l o w c o n d u c t i o n t h r o u g h the p o w d e r . T h u s , d u r i n g a d s o r p tion, temperature
gradients existed w i t h i n the s a m p l e b e d b u t it w a s
a s s u m e d to h a v e a u n i f o r m average t e m p e r a t u r e w h i c h c o u l d b e c o n s i d e r e d the t e m p e r a t u r e
of a n " a v e r a g e "
particle.
T h e heat
transfer
characteristics of the single p a r t i c l e w e r e m a d e e q u i v a l e n t to those
of
the a c t u a l s a m p l e b e d i n the f o l l o w i n g w a y : T h e t h e r m a l c o n d u c t i v i t y of the p o w d e r w a s a s s u m e d to b e the same as d i a t o m a c e o u s e a r t h a n d the t e m p e r a t u r e response
(4),
of the b e d was c a l c u l a t e d f o r a g i v e n
c h a n g e i n e x t e r n a l t e m p e r a t u r e . T h e heat transfer coefficient of the single p a r t i c l e was c a l c u l a t e d so that its c o o l i n g rate was the same as that of the average p a r t i c l e i n the p o w d e r . T h i s v a l u e , 5.0 Χ 10"
8
cal/sec-cm -°C, 2
was u s e d i n the finite difference c a l c u l a t i o n s . T h e p a r t i c l e w a s d i v i d e d i n t o 30 to 100 shells for the c a l c u l a t i o n a n d F i c k ' s L a w w a s a s s u m e d to h o l d .
H e a t g e n e r a t e d w a s t a k e n as rate of
a d s o r p t i o n times the heat of a d s o r p t i o n , a n d the latter q u a n t i t y was as s u m e d to b e i n d e p e n d e n t of a m o u n t a d s o r b e d .
W i t h i n c r e a s i n g tern-
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
166
M O L E C U L A R
Table I. Data in Figure
Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
1 2 3
SIEVE
ZEOLITES
Π
Parameters for Computed Rate Curves
Heat of Adsorption, Kcal/Mole 5.0 8.0 5.0
Activation Energy, Kcal/Mole 5.5 3.0 5.5
D/R , Min~
H, Cal/Sec-Cm -°C
2
l
2
5.0 Χ 1 0 " 0.4 5.0 X 1 0 ~
3
3
5.0 X 1 0 ~ 5.0 X 1 0 ~ Variable
8 8
Figure 1.
Adsorption of nitrogen on 4A zeolite powder at —78°C and 760 torr. Open circles denote adsorption and solid circles the temperature. Solid lines are computed adsorption and temperature data. p e r a t u r e , t h e d i f f u s i v i t y increases
a c c o r d i n g to t h e A r r h e n i u s e q u a t i o n
b u t t h e e q u i l i b r i u m a m o u n t a d s o r b e d decreases.
T h e change i n e q u i
l i b r i u m a d s o r p t i o n w a s c a l c u l a t e d u s i n g the heat of a d s o r p t i o n a n d the F r e u n d l i c h i s o t h e r m w i t h pressure exponents
f r o m a d s o r p t i o n studies.
T h e e x p o n e n t o f t h e F r e u n d l i c h e q u a t i o n w a s a s s u m e d to v a r y l i n e a r l y w i t h temperature between experimental
temperatures.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
52.
EAGAN
E T
AL.
Kinetics
of
167
Adsorption
T h e c o m p u t e r p r o g r a m calculates i n e a c h t i m e step a n e w c o n c e n t r a t i o n p r o f i l e , t e m p e r a t u r e , d i f f u s i v i t y , a n d a m o u n t a d s o r b e d at e q u i librium.
A t c o n v e n i e n t i n t e r v a l s , the c o n c e n t r a t i o n p r o f i l e is i n t e g r a t e d
u s i n g S i m p s o n s r u l e to g i v e the a m o u n t a d s o r b e d .
This quantity was
d i v i d e d b y the e q u i l i b r i u m a d s o r p t i o n at the b a t h t e m p e r a t u r e to g i v e the a p p r o a c h to e q u i l i b r i u m factor Z . A p p r o p r i a t e values of a c t i v a t i o n energies a n d heats of a d s o r p t i o n
Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
f r o m o u r l a b o r a t o r y or f r o m the l i t e r a t u r e ( 2 ) w e r e c h o s e n , a n d d i f f u s i v i ties at — 78 ° C w e r e e s t i m a t e d f r o m o u r rate curves; these values are g i v e n i n T a b l e I. I n the present c a l c u l a t i o n s , w e h a v e a t t e m p t e d o n l y to o b t a i n rate a n d t e m p e r a t u r e curves r e a s o n a b l y a p p r o x i m a t i n g the e x p e r i m e n t a l d a t a , a n d n o a t t e m p t w a s m a d e to i m p r o v e the p r e d i c t e d results b y adjustment of constants.
Figure 2.
Adsorption of propane on 5A zeolite powder at -78°C. Open squares denote adsorption at 21 ton for an 0.3-mm layer. Open and solid circles denote adsorption and temperatures, respectively, at 30 ton in a 4-mm layer. Solid curves are calculated adsorption and temperatures.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
168
MOLECULAR SIEVE ZEOLITES
Experimental
Π
Results and Discussion
F i g u r e 1 shows t h e rate o f a d s o r p t i o n o f N concurrent temperature
measurements.
2
on 4 A powder a n d
F i g u r e 2 gives t h e rate o f a d
sorption of propane o n 5 A w i t h a thin (0.3-mm) a n d a thick l a y e r o f z e o l i t e o n t h e b a l a n c e p a n ; temperatures
(4-mm)
were measured i n a
separate e x p e r i m e n t i n t h e t h i c k layer. F o r n i t r o g e n o n 4 A , F i g u r e 1, t h e n o n i s o t h e r m a l rate d a t a
despite
Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
the h e a t i n g c o u l d b e r e p r e s e n t e d r e a s o n a b l y b y u s u a l i s o t h e r m a l F i c k ' s l a w equations ( I ) , i f D / R
2
is t a k e n as 7.5 Χ 10" m i n " . T h u s , t h e v a l u e 3
1
of D / R c a l c u l a t e d f r o m t h e i s o t h e r m a l e q u a t i o n w a s 5 0 % l a r g e r t h a n 2
that u s e d to d e r i v e t h e n o n i s o t h e r m a l c u r v e i n F i g u r e 1. H e r e t h e t e m p e r a t u r e m a x i m u m occurs at l o w amounts a d s o r b e d , a n d t h e i n c r e a s e d rate o w i n g to i n c r e a s e d d i f f u s i v i t i e s is n e a r l y c o m p e n s a t e d
b y the de
creased e q u i l i b r i u m a d s o r p t i o n at t h e o b s e r v e d temperatures.
TIME Figure
3.
.(MINT
2
Calculated adsorption data for different heat transfer coefficients
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Propane
52.
Ε A GA N
E T
AL.
Kinetics
of
Adsorption
169
o n 5 A ( F i g u r e 2 ) was chosen as a n e x a m p l e of a r a p i d a d s o r p t i o n , w h e r e the rate a n d heat g e n e r a t i o n w e r e greater.
F o r the t h i c k s a m p l e ,
the
a m o u n t a d s o r b e d a p p r o a c h e d e q u i l i b r i u m s l o w l y c o m p a r e d w i t h the t h i n s a m p l e . T h e t e m p e r a t u r e m a x i m u m f o r the t h i c k s a m p l e o c c u r r e d at 0.7 of the e q u i l i b r i u m a d s o r p t i o n . I n this case, the a d s o r p t i o n is r a p i d at short times because of the i n c r e a s e d d i f f u s i v i t y , a n d e q u i l i b r i u m at the p a r t i c l e t e m p e r a t u r e is a p p r o a c h e d at a b o u t the t i m e c o r r e s p o n d i n g to the m a x i m u m t e m p e r a t u r e .
T h e a m o u n t a d s o r b e d t h e n increases
with
Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
t i m e a n d the c o o l i n g of the samples—i.e., r e f l e c t i n g i n c r e a s i n g e q u i l i b r i u m adsorption. T h e c a l c u l a t e d curves i n F i g u r e s 1 a n d 2 r e p r o d u c e a l l of the p e r t i nent features of the e x p e r i m e n t a l rate a n d t e m p e r a t u r e d a t a , a l t h o u g h there are some q u a n t i t a t i v e differences.
F o r e x a m p l e , at l o n g e r t i m e s ,
e x p e r i m e n t a l measurements of a d s o r p t i o n l i e b e l o w c o m p u t e d curves for the single p a r t i c l e . T h e a c t u a l p o w d e r consisted of particles of different sizes, a n d at large times the s m a l l particles, h a v i n g a l r e a d y e q u i l i b r i u m , no l o n g e r c o n t r i b u t e to the rate.
reached
C a l c u l a t e d rate curves f o r
the same values of d i f f u s i v i t y at the b a t h t e m p e r a t u r e , a c t i v a t i o n e n e r g y , a n d heat of a d s o r p t i o n as for n i t r o g e n , b u t different heat transfer coeffi cients, are g i v e n i n F i g u r e 3. T h e s e curves a p p r o x i m a t e a l l of the types of rate curves d e s c r i b e d i n the present p a p e r . C h a n g i n g the heat transfer coefficient b y a factor of 50 p r o d u c e d p r o f o u n d effects o n the last p a r t of the rate c u r v e b u t has v i r t u a l l y n o effect o n the e a r l y p o r t i o n . O u r d a t a s h o w that large t e m p e r a t u r e measurements
of a d s o r p t i o n k i n e t i c s .
changes
can occur
during
W h e n the t e m p e r a t u r e m a x i m u m
occurs e a r l y i n the process, n o p r o n o u n c e d effect o n the rate c u r v e is o b s e r v e d , a n d the u n w a r y e x p e r i m e n t e r m a y c o n c l u d e that his d a t a w e r e obtained isothermally. Acknowledgment T h e authors are p l e a s e d to a c k n o w l e d g e f e l l o w s h i p a n d o p e r a t i n g f u n d s p r o v i d e d b y T h e N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a .
Literature Cited (1) Anderson, R. B., Bayer, J., Hofer, L. J. E., Ind. Eng. Chem. Process Design Develop. 1965, 4, 167. (2) Eberly, P. E., Jr., Ind. Eng. Chem. Prod. Res. Develop. 1969, 8, No. 2, 140. (3) Harper, R. J., Stifel, G. R., Anderson, R. B., Can. J. Chem. 1969, 47, 4661. (4) Kreith, F., "Principles of Heat Transfer," 2nd ed., p. 594, International Textbook Co., Scranton, Pa., 1965. (5) Satterfield, C. N., Margetts, W. G., 62nd Annual Meeting, A.I.Ch.E., Washington, D. C., Nov. 1969, Reprint 56d. (6) Stifel, G. R., Master's thesis, McMaster University, 1967. RECEIVED February 4, 1970. Resubmitted September 1, 1970.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
170
M O L E C U L A R
SIEVE
ZEOLITES
II
Discussion C . N . Satterfield ( Massachusetts Institute of T e c h n o l o g y , C a m b r i d g e , M a s s . 0 2 1 3 9 ) : R e c e n t e x p e r i m e n t a l results of M a r g e t t s ( S a t t e r f i e l d a n d M a r g e t t s , A.I.Ch.E. 1969)
i n press; p r e p r i n t , A . I . C h . E . M e e t i n g , N o v e m b e r
are consistent w i t h the observations a n d c a l c u l a t i o n s of A n d e r s o n .
M a r g e t t s s t u d i e d the gas phase s o r p t i o n of C H
4
or n - C H i 4
0
on N a -
Downloaded by PENNSYLVANIA STATE UNIV on June 18, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch052
m o r d e n i t e crystals at 25 ° C a n d pressures of a b o u t 10 to 80 torr.
The
c a l c u l a t e d effective diffusivities s h o w e d a m a x i m u m i n the g e n e r a l r e g i o n of Mi/Moo —
0.5.
C a l c u l a t i o n s a n d e x p e r i m e n t a l observations i n d i c a t e d
this was c a u s e d b y a t e m p e r a t u r e increase w i t h i n the s a m p l e , o c c u r r i n g d u r i n g the first f e w seconds. R. B. Anderson: T h a n k s for the s u p p o r t i n g e v i d e n c e . Y . H . M a ( W o r c e s t e r P o l y t e c h n i c Institute, W o r c e s t e r , M a s s . 01609) : W h a t is the d i f f u s i o n coefficient y o u o b t a i n e d ? rise be o w i n g to the a d i a b a t i c
C o u l d the
temperature
compression?
R. B. Anderson: T h e heat of a d s o r p t i o n was the cause of the t e m p e r a t u r e increase.
T h e a d i a b a t i c c o m p r e s s i o n of gas i n t r o d u c e d to the
e v a c u a t e d s a m p l e s h o u l d l e a d to a n e g l i g i b l e t e m p e r a t u r e
increase.
E . F. Kondis ( M o b i l R e s e a r c h & D e v e l o p m e n t C o r p . , P a u l s b o r o , N . J. 08066 ) : W e c o n f i r m e d some of the trends i n n o n i s o t h e r m a l results w h i c h y o u report.
O u r d a t a are i n a flow system a n d h e n c e d i s c o u n t the pos
s i b i l i t y of heat effects c a u s e d b y expansion of gas u s i n g y o u r C a h n instrument. R. B. Anderson: T h a n k s .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.