19 Unusually Volatile and Soluble Metal
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
Chelates: Lanthanide N M R Shift Reagents R. E. SIEVERS, J. J.BROOKS, J. A. CUNNINGHAM, and W. E. RHINE 1
2
3
3
Aerospace Research Laboratories, ARL/LJ, Wright-Patterson Air Force Base, Ohio 45433 4
Novel lanthanide β-diketonate complexes have been synthe sized. Their properties include thermal, hydrolytic and oxidative stabilities, volatility, Lewis acidity, and unusually high solubility in nonpolar organic solvents. Various combi nations of these properties make lanthanide complexes useful as NMR shift reagents and fuel antiknock additives and in other applications. NMR spectral studies revealed that the Pr(III), Yb(III), and Eu(III) complexes of 1,1,1,2,2,3,3,7,7,7decafluoro-4,6-heptanedione have sufficient Lewis acidity to induce appreciable shifts in the proton resonances of weak Lewis bases such as anisole, acetonitrile, nitromethane, and p-nitrotoluene. Data from single-crystal structure determi nations indicate that the NMR shift reagent-substrate com plexes are not stereochemically rigid and that effective axial symmetry may exist by virtue of rapid intramolecular re arrangements. T y j ~ e t a l β-diketonate c o m p l e x e s d i s p l a y u n u s u a l properties. dative
a v a r i e t y of i n t e r e s t i n g a n d
A m o n g these are t h e r m a l , h y d r o l y t i c , a n d o x i
stabilities, v o l a t i l i t y , L e w i s
n o n p o l a r o r g a n i c solvents.
acidity,
and unusual solubility i n
I n general, i t is a p a r t i c u l a r c o m b i n a t i o n
of
these properties r a t h e r t h a n a n y single o n e that m a k e s possible t h e use of these c o m p l e x e s i n a diverse range of a p p l i c a t i o n s .
F o r example, be-
Present address: Dept. of Chemistry, University of Colorado, Boulder, Colo. 80302. 'Present address: Monsanto Research Corp., Dayton Laboratory, Dayton, Ohio 45407. 'Present address: Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433. * On June 30, 1975, The Aerospace Research Laboratories were abolished; con sequently, all correspondence should be directed to the first author at his present address. 1
222
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
19.
siEVERS ET AL.
Lanthanide
NMR
Shift
223
Reagents
cause of the v o l a t i l i t y a n d t h e r m a l s t a b i l i t y of c e r t a i n of these
complexes,
t h e a p p l i c a t i o n of gas c h r o m a t o g r a p h y to u l t r a t r a c e m e t a l analysis b e c a m e feasible
(J).
B e c a u s e of other c o m b i n a t i o n s of p r o p e r t i e s , these
p o u n d s are u s e d as N M R shift reagents (2,3,4), ( 5 , 6 ) , h o m o g e n e o u s catalysts stereochemical phases
studies
(8),
(7),
model
a n d selective
com
fuel antiknock additives c o m p o u n d s for
gas
gas
chromatographic
phase liquid
(9).
P e r h a p s the most w i d e l y r e c o g n i z e d use of l a n t h a n i d e β-diketonates Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
is as N M R shift reagents.
T h i s a p p l i c a t i o n takes a d v a n t a g e n o t o n l y of
the i n t r i n s i c p a r a m a g n e t i c n a t u r e of c e r t a i n of the l a n t h a n i d e ions, b u t also of t h e L e w i s a c i d i t y , h y d r o l y t i c s t a b i l i t y , a n d h i g h s o l u b i l i t y i n n o n p o l a r o r g a n i c solvents of t h e i r complexes.
T h i s p a p e r describes o u r recent
studies of the use of these u n u s u a l chelates as N M R shift reagents. V o l a t i l e , stable r a r e e a r t h complexes w e r e o r i g i n a l l y s y n t h e s i z e d w i t h the h o p e that differences i n v o l a t i l i t y w o u l d p r o v i d e a means of s e p a r a t i n g a n d p u r i f y i n g t h e r a r e earths.
E a r l y c l a i m s that the l a n t h a n i d e a c e t y l -
acetonates w e r e v o l a t i l e w e r e later s h o w n to b e incorrect. T h e tris c o m plexes g e n e r a l l y o c c u r as h y d r a t e s , a n d t h e y d o n o t e x h i b i t the necessary s t a b i l i t y for f r a c t i o n a l s u b l i m a t i o n or gas c h r o m a t o g r a p h i c The
hydrated
l a n t h a n i d e acetylacetonates
h e a t i n g , a n d the r e a c t i o n p r o d u c t s
undergo
separation.
self-hydrolysis
on
are n o longer a p p r e c i a b l y v o l a t i l e .
T h e synthesis a n d c h a r a c t e r i z a t i o n of t h e a n h y d r o u s , s t e r i c a l l y h i n d e r e d Ln(thd)
complexes r e p r e s e n t e d a m a j o r a d v a n c e m e n t i n t h e s e a r c h for
3
v o l a t i l e , stable l a n t h a n i d e c o m p l e x e s ( 1 ). T a b l e I lists the l i g a n d s s t u d i e d most extensively i n o u r l a b o r a t o r y . Table I.
S t r u c t u r e s a n d A b b r e v i a t i o n s of / ? - D i k e t o n e s Θ Ο
Ο
R—C—CH—C—R R
CH C(CH ) CF CF CF CF CF CF 2
2
3
2
2
acac thd fod dfhd
3
3
3
Abbreviation
- C H -C(CH ) -C(CH ) -CF
3
3
2
R*
1
3
3
3
3
3
A n extension of this r e s e a r c h l e d to t h e p r e p a r a t i o n of
fluorinated
β-diketones w h i c h f o r m stable a n d even m o r e v o l a t i l e r a r e e a r t h c o m plexes.
D e t a i l e d studies
Ln(dfhd)
3
(13,
14)
of
the
Ln(thd)
3
(J),
Ln(fod)
3
(12),
and
c o m p l e x e s r e v e a l e d t h a t the v o l a t i l i t y of the tris
c o m p l e x is d i r e c t l y p r o p o r t i o n a l to the degree of fluorine s u b s t i t u t i o n a n d
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
224
INORGANIC
COMPOUNDS
WITH
i n v e r s e l y p r o p o r t i o n a l to the i o n i c r a d i u s ( 1 5 )
UNUSUAL
PROPERTEES
of the m e t a l a t o m for a
g i v e n series of chelate complexes. I n 1969 (16) of E u ( t h d ) terol.
3
i t was r e p o r t e d that a d d i t i o n of the b i s - p y r i d i n e a d d u c t
i n d u c e d l a r g e shifts i n t h e p r o t o n N M R s p e c t r u m of choles
Subsequently, it was reported that the unsolvated E u ( t h d )
e v e n m o r e effective
as a n N M R shift reagent
was
3
S i n c e these
(17).
first
reports a p p e a r e d , m o r e t h a n 400 papers h a v e b e e n p u b l i s h e d (2, 3,
4)
i n this field o n subjects r a n g i n g f r o m s p e c t r a l c l a r i f i c a t i o n to the selection Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
of the best shift reagent for a g i v e n a p p l i c a t i o n . T h e reagents m o s t w i d e l y u s e d i n the e a r l y studies w e r e the t r i s - t h d complexes of E u ( I I I ) , P r ( I I I ) , a n d Y b ( I I I ) . I n general, E u ( t h d ) whereas P r ( t h d ) Yb(thd)
3
3
3
and Y b ( t h d )
3
i n d u c e d o w n f i e l d shifts
i n d u c e s u p f i e l d shifts. A l t h o u g h the shifts i n d u c e d b y
are u s u a l l y greater t h a n those i n d u c e d b y the P r a n d E u a n a
logs, m u c h of t h e fine s t r u c t u r e i n the N M R spectra is often lost because of s i g n a l b r o a d e n i n g . D e s p i t e the successes a c h i e v e d w i t h the L n ( t h d )
complexes
3
used
as shift reagents, they h a v e l i m i t e d s o l u b i l i t y i n the u s u a l N M R solvents ( 1 8 , 1 9 ) s u c h as c h l o r o f o r m a n d c a r b o n t e t r a c h l o r i d e , a n d t h e y are n e a r l y i n s o l u b l e i n solvents s u c h as a c e t o n i t r i l e , n i t r o m e t h a n e , a n d I n a d d i t i o n , the i n t e r a c t i o n b e t w e e n
the L n ( t h d )
3
p-dioxane.
chelates a n d
weak
n u c l e o p h i l e s is often not s t r o n g e n o u g h to result i n complexes
which
e x h i b i t l a r g e i n d u c e d shifts. D u r i n g the course of o u r research o n v o l a t i l e r a r e e a r t h complexes, w e f o u n d t h a t the f o d chelates w e r e m o r e soluble i n a w i d e r a n g e of solvents t h a n either the acetylacetonates or the t h d complexes.
W e postu
l a t e d that the presence of the electronegative fluorine atoms increases the L e w i s a c i d i t y of the m e t a l w h i c h results i n a stronger i n t e r a c t i o n w i t h v a r i o u s n u c l e o p h i l e s (20). t i v e to E u ( t h d )
3
T h e greater L e w i s a c i d i t y of E u ( f o d )
3
rela
was d e m o n s t r a t e d b y the r e s o l u t i o n of resonances i n a
m i x t u r e of i s o m e r i c azoxybenzenes
(21).
This phenomenon
d e m o n s t r a t e d i n d e p e n d e n t l y b y gas c h r o m a t o g r a p h y
was
(GC)
also
(9)—fluori-
n a t e d β-diketonate complexes i n t e r a c t m o r e s t r o n g l y w i t h o r g a n i c n u c l e o p h i l e s t h a n d o n o n f l u o r i n a t e d ones. A s i m i l a r G C s t u d y that c o n c e n t r a t e d on E u ( f o d )
3
(10)
r e l a t e d the strengths of these interactions to the d o n a t
i n g abilities of the o r g a n i c n u c l e o p h i l e s a n d to steric constraints. T h e f o d complexes
are n o w the most w i d e l y u s e d class of N M R shift reagents
b e c a u s e of greater c o n v e n i e n c e i n use a n d w i d e r a p p l i c a b i l i t y to w e a k nucleophiles. F u r t h e r s u b s t i t u t i o n of
fluorine
atoms i n the β-diketone s i d e c h a i n s
has l e d to the synthesis a n d c h a r a c t e r i z a t i o n of the L n ( d f h d ) as N M R shift reagents.
A l t h o u g h the h y d r a t e d L n ( f o d )
m o r e s o l u b l e i n c h l o r o f o r m t h a n the h y d r a t e d L n ( d f h d )
3
3
3
complexes
complexes
are
complexes, t h e
l a n t h a n i d e d f h d complexes h a v e s u p e r i o r s o l u b i l i t y i n d i o x a n e a n d aceto-
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
19.
siEVERS E T A L .
Table II.
Lanthanide
NMR
225
Shift Reagents
S o l u b i l i t y o f Some L a n t h a n i d e β - D i k e t o n a t e S h i f t R e a g e n t s * Solvent
Complex
Acetonitrile
Ln(dfhd) -xH 0 Ln(fod) -xH 0 Ln(thd) 3
3
2
2
Dioxane
>1 0.8 insoluble
6
6
3
Chloroform
>1 0.03 0.03
0.08 0.5 0.03
° Solubility is given in g/g. Drying the shift reagent over P4O10 increases its solubility in chloroform.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
6
nitrile (Table I I ) .
I t is i m p o r t a n t to h a v e shift reagents t h a t are s o l u b l e
a n d t h a t c a n f u n c t i o n w e l l i n solvents s u c h as a c e t o n i t r i l e a n d d i o x a n e b e c a u s e m a n y c o m p o u n d s of b i o l o g i c a l i m p o r t a n c e are s o l u b l e o n l y i n solvents s u c h as these. T h e d f h d c o m p l e x e s a p p e a r to b e v e r y p r o m i s i n g for s u c h a p p l i c a t i o n s . T h e h i g h d e g r e e of s o l u b i l i t y of the d f h d c o m p l e x e s i n d e u t e r a t e d a c e t o n i t r i l e m a k e s i t p o s s i b l e to m e a s u r e e x p e r i m e n t a l l y the d e g r e e o f h y d r a t i o n of these complexes.
T h e i n t e g r a t e d i n t e n s i t y of t h e H 0 p r o t o n 2
resonance c o m p a r e d w i t h t h a t of the m e t h i n e p r o t o n of the shift reagent p r o v i d e s a measure of the r e l a t i v e a m o u n t of w a t e r present. T h e c h e m i c a l shift of the w a t e r protons d e p e n d s o n the c o n c e n t r a t i o n , b u t i t is o b s e r v e d d o w n f i e l d f r o m the m e t h i n e p r o t o n resonance of the s h i f t reagent. T y p i c a l r e s i d u a l w a t e r after d r y i n g 3 days in vacuo o v e r P4O10 is 0.5
mole/mole
e u r o p i u m chelate. T h i s a m o u n t of w a t e r does n o t seriously i n t e r f e r e w i t h t h e a b i l i t y of t h e c o m p l e x to f u n c t i o n effectively as a shift reagent. T h e i n c r e a s e d L e w i s a c i d i t y of the L n ( d f h d )
complexes relative to
3
the t h d a n d the f o d c o m p o u n d s is d e m o n s t r a t e d b y a c o m p a r i s o n of t h e i n d u c e d shifts i n C D C 1
solutions of s u c h w e a k bases as a c e t o n i t r i l e ,
3
n i t r o m e t h a n e , a n d anisole ( T a b l e I I I ) . m e t h y l protons of e a c h c o m p o u n d .
T h e i n d u c e d shifts are for
Although P r ( d f h d )
3
and
the
Yb(dfhd)
3
i n d u c e the largest shifts, l i n e b r o a d e n i n g is a p p r e c i a b l e ; i n fact, i n e x p e r i T a b l e I I I . C o m p a r i s o n of S h i f t s I n d u c e d i n the S p e c t r a of W e a k L e w i s B a s e s α
Anisole Complex
Acetonitrile
0.1 R:S
0.1 R:S
0.3 R:S
0.1 R:S
0.3
-1.58 2.03 0.68 0.22 0.35
-1.50 2.28 0.77 0.40 0.38
-3.45 5.67 1.92 0.85 0.75
-1.20 1.50 0.45 0.20 0.20
-2.27 3.00 0.88 0.23 0.23
b
Pr(dfhd) Yb(dfhd) E u (dfhd), E u (fod) E u (thd) 3 3
3
3
Nitromethane R:S
Shifts are given in ppm. Data obtained at 60 M H z with 10~ mole shift reagent dissolved in 0.5 g C D C 1 . R:S—the mole ratio of shift reagent to substrate. 0
4
3
6
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
226
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
ments w i t h t e t r a h y d r o f u r a n ( T H F ) , no fine structure w a s o b s e r v e d i n the T H F p r o t o n resonances.
I n s i m i l a r experiments w i t h
Eu(dfhd) , 3
there was no d i s c e r n i b l e b r o a d e n i n g . T h e greater L e w i s a c i d i t y of the L n ( d f h d )
shift reagents is also
3
d e m o n s t r a t e d b y the fact that a d d u c t s are f o r m e d a n d r e l a t i v e l y l a r g e shifts are i n d u c e d e v e n w i t h w e a k L e w i s bases s u c h as
nitrobenzene
d e r i v a t i v e s . T h e i n d u c e d shifts are p e r h a p s best i l l u s t r a t e d b y the p a r a s u b s t i t u t e d d e r i v a t i v e s s u c h as p - c h l o r o n i t r o b e n z e n e Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
T h e d a t a for i n d u c e d shifts w i t h E u ( d f h d ) Table I V .
3
and p-nitrotoluene.
are s u m m a r i z e d i n T a b l e I V .
N M R Shifts i n /r-Chloronitrobenzene and ^ - N i t r o t o l u e n e I n d u c e d b y A d d i t i o n of E u ( d f h d ) 3
p-Nitrotoluene
p-Chloronitrobenzene ortho-H meta-H methyl-H
a
1.9 1.2 0.33
1.5 0.5
° Shifts are given in ppm. Data obtained at 60 M H z with 10~ mole complex dissolved in C D C 1 ; mole ratio of shift reagent to substrate, 0.3. 4
3
T h e e l e c t r o n - w i t h d r a w i n g c h l o r o g r o u p reduces
the L e w i s b a s i c i t y of
the n i t r o g r o u p , a n d therefore the i n d u c e d shifts f o r
p-chloronitrobenzene
are s m a l l e r , as m i g h t b e e x p e c t e d f r o m c o n s i d e r a t i o n of t h e H a m m e t t s i g m a f u n c t i o n . P l o t s of c h e m i c a l shift vs. m o l e r a t i o of shift r e a g e n t - t o substrate for each p r o t o n are l i n e a r over the range of 0 . 0 - 0 . 5 m o l e r a t i o . It is a s s u m e d that the slopes of these lines give the m a g n i t u d e s of the i n d u c e d shifts w h i c h c o n t a i n i n f o r m a t i o n a b o u t the geometry
of
the
complex. I n order to a p p r o x i m a t e the c o n f o r m a t i o n of the c o m p l e x i n s o l u t i o n , a c a l c u l a t i o n of the t y p e d e s c r i b e d b y W i l l c o t t et al. (22)
(assuming
effective a x i a l s y m m e t r y ) was m a d e o n the p - n i t r o t o l u e n e c h e m i c a l shift d a t a (see
Ref. 2, p . 1 4 3 ) . B e c a u s e a x i a l s y m m e t r y is a s s u m e d , the s i m p l i -
fied M c C o n n e l l - R o b e r t s o n e q u a t i o n c a n b e used. I n several c a l c u l a t i o n s the p r i n c i p a l m a g n e t i c axis w a s v a r i e d so t h a t i t w a s d i r e c t e d f r o m the e u r o p i u m a t o m to various points a l o n g t h e l i n e b i s e c t i n g the
O-N-O
angle. A b r o a d m i n i m u m was o b t a i n e d ; therefore, w i t h i n the a b o v e c o n straints, t h e o r i e n t a t i o n of the p r i n c i p a l m a g n e t i c axis does n o t a p p e a r to affect seriously the c a l c u l a t e d gross g e o m e t r y of the c o m p l e x .
T h e best
fit of the N M R d a t a w a s o b t a i n e d w h e n the E u a t o m w a s p o s i t i o n e d 2.2
±
0.2 A a b o v e the p l a n e of the n i t r o g r o u p a n d c o p l a n a r i t y of the n i t r o g r o u p a n d the b e n z e n e r i n g was a s s u m e d . T h e c a l c u l a t i o n i n w h i c h t h e p r i n c i p a l m a g n e t i c axis was a s s u m e d to b e c o l i n e a r w i t h t h e E u - N v e c t o r is i l l u s t r a t e d i n F i g u r e 1. R e l a t i v e to e i t h e r the L n ( t h d ) Ln(dfhd)
3
3
or the L n ( f o d )
3
chelates, use of t h e
complexes offers a n a d d i t i o n a l a d v a n t a g e since t h e /?-diketone
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
19.
siEVERS E T A L .
Lanthanide
NMR
Shift
227
Reagents
Figure 1. Calculated coordination geometry of the europiump-nitrotoluene interaction has o n l y the m e t h i n e p r o t o n resonance w h i c h c a n p o s s i b l y c o i n c i d e w i t h the substrate p r o t o n resonances.
I n the d f h d complexes there are o n l y
3 m e t h i n e protons i n the chelate s h e l l whereas there are 3 m e t h i n e a n d 27 Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
teri-butyl
protons i n the L n ( f o d )
b u t y l protons i n the L n ( t h d ) very unlikely i n E u ( d f h d )
3
3
complexes a n d 3 m e t h i n e a n d 54 tert-
complexes.
3
F u r t h e r m o r e , i n t e r f e r e n c e is
complexes since t h e m e t h i n e p r o t o n resonance
experiences a shift i n the opposite d i r e c t i o n f r o m t h a t of the substrate resonances; for E u ( d f h d )
3
d r i e d over P4O10, this resonance appears u p -
field f r o m T M S . C o n s e q u e n t l y , o n e c a n a c c o m p l i s h the same objective of e l i m i n a t i n g i n t e r f e r i n g p r o t o n peaks b y s u b s t i t u t i n g f l u o r i n e atoms
for
m e t h y l groups i n the f o d l i g a n d as w a s d o n e p r e v i o u s l y b y d e u t e r a t i o n . M a n y questions c o n c e r n i n g t h e i n t e r p r e t a t i o n of N M R shift reagent data remain unanswered. H o p e f u l l y , single-crystal structural determinations of shift r e a g e n t - s u b s t r a t e complexes
w i l l allow basic
structural
p r i n c i p l e s to b e d e d u c e d . T h e structures of E u ( t h d ) ( D M F ) , E u ( t h d ) 3
2
3
( D M S O ) , Eu(thd) (l,10-phenanthroline), and Y b ( t h d ) ( D M S O ) 3
3
were
r e c e n t l y d e t e r m i n e d ( 2 3 ) . T h e s e structures, i n c o n j u n c t i o n w i t h structures d e t e r m i n e d i n other laboratories (see
Ref. 2, p p . 3 6 8 - 3 6 9 ) , l e a d to s e v e r a l
generalizations c o n c e r n i n g the stereochemistry of shift reagent complexes. I n the s i n g l e - c r y s t a l s t r u c t u r e of E u ( t h d ) ( D M S O ) , t w o c o n f o r m a 3
tions of the c o m p l e x o c c u p y the same u n i t c e l l . T h e t w o c o n f o r m a t i o n s h a v e the same gross stereochemistry, b u t t h e y differ s i g n i f i c a n t l y i n d e t a i l . T h e r e f o r e , this i n d i c a t e s t h a t t h e N M R shift reagent complexes are n o t s t r u c t u r a l l y r i g i d , b u t r a t h e r t h a t the c o o r d i n a t i o n p o l y h e d r o n a n d t h e l i g a n d s c a n b e easily d i s t o r t e d b y p a c k i n g effects. example.
The
same
Eu(thd) (DMF) 3
2
phenomenon
was
also
T h i s is n o t a n i s o l a t e d
observed
i n crystalline
w h i c h also contains t w o n o n - e q u i v a l e n t m o l e c u l e s i n
the u n i t c e l l . A c o m p a r i s o n of Y b ( t h d ) ( D M S O ) a n d E u ( t h d ) ( D M S O ) reveals 3
3
that these c o m p o u n d s c r y s t a l l i z e i n different space groups a n d t h a t t h e r e are significant differences structures.
i n the stereochemistry of
t h e i r s o l i d state
T h e c o o r d i n a t i o n g e o m e t r y of t h e Y b c o m p l e x c a n best b e
d e s c r i b e d as a t r i g o n a l b a s e - t e t r a g o n a l base p o l y h e d r o n whereas t h e E u c o m p l e x c a n best b e d e s c r i b e d as a d i s t o r t e d p e n t a g o n a l b i p y r a m i d . I n t r a m o l e c u l a r a n d i n t e r l i g a n d contacts b e t w e e n
terf-butyl
groups
indicate
that there are no serious steric interactions. T o date, the p r e f e r r e d stereoc h e m i s t r y of
h i g h e r coordinate
complexes
has n o t b e e n
successfully
c o r r e l a t e d w i t h factors s u c h as c r y s t a l field s t a b i l i z a t i o n , l i g a n d - l i g a n d
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
228
INORGANIC
COMPOUNDS WITH
UNUSUAL PROPERTIES
interactions, a n d s o l v a t i o n energies, a n d the c r y s t a l l a t t i c e energy appears to b e the most i m p o r t a n t factor that d e t e r m i n e s the s o l i d state s t r u c t u r e (24).
W e c o n c l u d e that the o b s e r v e d differences b e t w e e n the s o l i d state
structures of Y b ( t h d ) ( D M S O ) a n d E u ( t h d ) ( D M S O ) m a y b e c a u s e d 3
3
p r e d o m i n a n t l y b y p a c k i n g considerations. T h e b u l k y tert-butyl
g r o u p s o n the t h d l i g a n d d o not a p p e a r to b e
the d o m i n a n t factor i n d e t e r m i n i n g or l i m i t i n g the c o o r d i n a t i o n g e o m e t r y to a n y one c o n f i g u r a t i o n . I n t h e o c t a c o o r d i n a t e c o m p l e x E u ( t h d ) ( D M F ) , 3
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
t h e l i g a n d s f o r m a d i s t o r t e d square a n t i p r i s m w i t h t w o of the t h d moieties f o r m i n g one s q u a r e face a n d one t h d a n d the t w o D M F l i g a n d s (cis to e a c h o t h e r ) f o r m i n g the other face. Eu(thd)
3
and E u ( a c a c )
tures (25).
T h e 1,10-phenanthroline a d d u c t s of
also h a v e s q u a r e a n t i p r i s m a t i c s o l i d state s t r u c
3
Differences
between
the latter t w o
a t t r i b u t e d to the presence of b u l k y
terf-butyl
structures c a n n o t
groups.
be
I n fact, i t is the
t h d c o m p l e x w h i c h has the most c o m p a c t c o o r d i n a t i o n p o l y h e d r o n , a n d the β-diketonate r i n g i n closest p r o x i m i t y to the 1,10-phenanthroline g r o u p has a s m a l l e r f o l d angle a b o u t the o x y g e n - o x y g e n
vector.
Perhaps the
greater e l e c t r o n - d o n a t i n g a b i l i t y of t h e t h d l i g a n d m a y a c c o u n t f o r t h e s h o r t e n i n g of t h e L n - O b o n d lengths i n the t h d c o m p l e x .
I n contrast to
the a b o v e p a t t e r n , the n u c l e o p h i l e s i n E u ( t h d ) ( p y r i d i n e ) 3
Ho(thd) (picoline) 3
(27)
2
2
(26)
and
are b o n d e d to opposite faces of a s q u a r e a n t i -
p r i s m a n d are as far a p a r t f r o m e a c h other as possible. A n a l y s e s of these structures i m p l y that several arrangements of t h e l i g a n d s about the c e n t r a l m e t a l a t o m are possible. I f one wishes to extract s t e r e o c h e m i c a l i n f o r m a t i o n a b o u t substrates i n s o l u t i o n f r o m the data o b t a i n e d i n the N M R experiments, t w o p h y s i c a l mathematical models
are a v a i l a b l e .
F o r shifts i n d u c e d b y a d i p o l a r
( p s e u d o c o n t a c t ) m e c h a n i s m , the M c C o n n e l l - R o b e r t s o n e q u a t i o n ( E q u a t i o n 1) (28, 29)—where
u, 0 , a n d φ are the s p h e r i c a l p o l a r coordinates {
t
of the i t h r e s o n a t i n g nucleus i n the c o o r d i n a t e system of the p r i n c i p a l m a g n e t i c axes—relates the d i r e c t i o n a n d m a g n i t u d e of the shift to t h e geometry
of
AHi/H
the substrate—chelate c o m p l e x . = Κ (3 cos Bi -
substrate-chelate
l ) / r \ + K' (sin θ cos 2 φ,·) M
2
c o m p l e x has a x i a l s y m m e t r y ( a C
I f the 2
3
{
(1)
or h i g h e r axis of r o t a t i o n ) , E q u a t i o n 1
m a y b e s i m p l i f i e d to the m o r e m a n a g e a b l e f o r m of E q u a t i o n 2 w e r e Si is the angle b e t w e e n the p r i n c i p a l m a g n e t i c axis a n d the vector f r o m t h e l a n t h a n i d e i o n to t h e i t h r e s o n a t i n g nucleus. AHi/H B r i g g s et al. (30)
= Κ (3 cos Bi 2
l)/r\
(2)
h a v e s h o w n that a n e q u a t i o n s i m i l a r i n f o r m to
E q u a t i o n 2 c a n b e d e r i v e d a n d t h a t i t s h o u l d b e v a l i d w h e n the substrate
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
19.
siEVERS ET AL.
l i g a n d undergoes
Lanthanide
NMR
Shift
229
Reagents
free r o t a t i o n a b o u t a n axis p a s s i n g t h r o u g h the l a n
t h a n i d e i o n as w e l l as w h e n the s u b s t r a t e - c h e l a t e c o m p l e x forms three or m o r e i n t e r c o n v e r t i n g rotamers that are e q u a l l y p o p u l a t e d . S i g n i f i c a n t l y , i n this d e r i v a t i o n no a priori m e t r y of the c o m p l e x .
assumptions are m a d e c o n c e r n i n g the s y m
I n the B r i g g s et al. e q u a t i o n , θι n o w denotes the
a n g l e b e t w e e n t h e r o t a t i o n axis a n d the vector f r o m the p a r a m a g n e t i c l a n t h a n i d e i o n to the i t h resonating n u c l e u s . A l t h o u g h almost a l l the r e p o r t e d c r y s t a l structures of l a n t h a n i d e Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
NMR
shift reagent
complexes
are d e v o i d
of
any symmetry
element
greater t h a n the t r i v i a l C i r o t a t i o n axis, this n e e d n o t e l i m i n a t e t h e p o s s i b i l i t y of effective a x i a l s y m m e t r y i n s o l u t i o n . T h e c o o r d i n a t i o n
geometry
e x h i b i t e d b y h i g h e r c o o r d i n a t e l a n t h a n i d e ions i n a c r y s t a l l i n e a r r a n g e m e n t a p p a r e n t l y is affected b y p a c k i n g considerations. A d i r e c t c o m p a r i son of s o l i d state a n d s o l u t i o n s t r u c t u r e as d e t e r m i n e d f r o m N M R e x p e r i ments m a y not b e v a l i d b e c a u s e of the great difference i n the t i m e scales of the t w o t e c h n i q u e s .
A v e r a g i n g of several d i s s y m e t r i c arrays, s u c h as
those f o u n d i n t h e c r y s t a l s t r u c t u r e of E u ( t h d ) ( D M S O ) , leads to a n 3
e q u i v a l e n t a n d p o s s i b l y a n a x i a l l y s y m m e t r i c d e s c r i p t i o n for the t h a n i d e shift r e a g e n t - s u b s t r a t e c o m p l e x .
lan
L o w p o t e n t i a l energy b a r r i e r s
b e t w e e n the i d e a l i z e d h i g h e r c o o r d i n a t e p o l y h e d r a m i g h t also p e r m i t the t i m e - a v e r a g e d s o l u t i o n c o n f i g u r a t i o n to b e s i g n i f i c a n t l y different f r o m t h a t d i s p l a y e d i n the c r y s t a l . T h i s a v e r a g i n g process, w h a t e v e r the details, m u s t be r a p i d w i t h respect to the N M R t i m e scale s i n c e shift r e a g e n t studies at a m b i e n t temperatures a l w a y s r e v e a l a single N M R s p e c t r u m that is the average of free a n d c o m p l e x e d substrate a n d of a l l i n t e r m e d i a t e species i n s o l u t i o n . C r y s t a l s t r u c t u r e d e t e r m i n a t i o n s , h o w e v e r , i n d i c a t e d that, i n the seven-coordinate s u b s t r a t e - l a n t h a n i d e shift reagent
complex,
steric c r o w d i n g is not as serious as w a s once b e l i e v e d , a n d t h a t free r o t a t i o n a b o u t the L n - X b o n d is possible.
C o n s e q u e n t l y there m a y b e t w o
processes o p e r a t i n g i n s o l u t i o n that a l l o w successful a p p l i c a t i o n of t h e s i m p l i f i e d e q u a t i o n : ( a ) free r o t a t i o n of the substrate a n d ( b ) r a p i d i n t e r c o n v e r s i o n of g e o m e t r i c isomers to p r o d u c e a n effective a x i a l l y s y m m e t r i cal complex. L a n t h a n i d e complexes
w i t h o p t i c a l l y a c t i v e β-diketones h a v e
u s e d to d e t e r m i n e the p u r i t y of o p t i c a l isomers (see
been
c h a p . 4, p. 87 of
R e f . 2 for a r e v i e w ) . T h e most w i d e l y u s e d c h i r a l shift reagents are b a s e d o n 3-trifluoroacetyl-ci-camphor, the a n i o n of w h i c h is d e s i g n a t e d f a c a m . T h e c r y s t a l structure d e t e r m i n a t i o n of the D M F a d d u c t of fluoroacetyl-d-camphorato)
reagent, has b e e n c o m p l e t e d dimer,
tris(3-tri-
p r a s e o d y m i u m ( I I I ) , t h e first of a c h i r a l shift (31).
T h e a s y m m e t r i c u n i t contains the
( facam ) P r ( D M F ) P r ( facam ) , w i t h the D M F oxygen 3
3
3
f o r m i n g b r i d g e s b e t w e e n the t w o P r ( f a c a m )
3
moieties.
atoms
Therefore, each
P r ( I I I ) i o n is n i n e - c o o r d i n a t e w i t h a g e o m e t r y best d e s c r i b e d as a c a p p e d
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
230
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
Figure 2. A stereoscopic drawing of the dimer (facam) Pr(DMF) Pr(facam) . Average bond distances and angles: Pr-O(facam), 2.46(3) A; Pr-O(DMF), 2.60(2) A; Pr-Pr, 4.078(9) A; and Pr-0(DMF)-Pr, 103.6(1.8) A. 3
square a n t i p r i s m (see
s
s
F i g u r e 2 ) . B y ignoring the ring backbones a n d
f o c u s i n g only o n t h e P r O i core, one c a n see t h a t there is a p s e u d o - m i r r o r 2
5
p l a n e c o n t a i n i n g t h e three b r i d g i n g D M F o x y g e n atoms. T h e presence of the a s y m m e t r i c centers i n t h e f a c a m b a c k b o n e prevents t h e e n t i r e d i m e r from having mirror symmetry.
E v e n i n this m o l e c u l e , w h i c h contains
l a r g e f a c a m l i g a n d s , there is s t i l l sufficient space i n t h e c o o r d i n a t i o n sphere of P r ( I I I ) to a c c o m m o d a t e three D M F groups. the u n s o l v a t e d complexes,
O n e m a y conclude that
p a r t i c u l a r l y f o r the e a r l y m e m b e r s
of t h e
l a n t h a n i d e series, s h o u l d b e a b l e to b i n d l a r g e n u c l e o p h i l e s w i t h l i t t l e difficulty.
N o w t h a t x - r a y d a t a are a v a i l a b l e , i t is a p p a r e n t that steric
c r o w d i n g is not as severe as w a s o r i g i n a l l y b e l i e v e d .
I t is also
note-
WOrthy that i n a l l structures d e t e r m i n e d , the L n - X b o n d lengths a r e i n the e x p e c t e d ranges b u t t h a t m a j o r r e o r g a n i z a t i o n s of t h e l i g a n d s a b o u t the m e t a l atom are o b s e r v e d .
Literature Cited 1. Eisentraut, K. J., Sievers, R. E., J. Am. Chem. Soc. (1965) 87, 5254. 2. Sievers, R. E., Ed., "Nuclear Magnetic Resonance Shift Reagents," Aca demic, New York, 1973. 3. Cockerill, A. F., Davies, G. L. O., Harden, R.C.,Rackham, D. M., Chem. Rev. (1973) 73, 553. 4. Reuben, J., Prog. Nucl. Magn. Reson. Spectrosc. (1973) 9, 1. 5. Tischer, R. L., Eisentraut, K. J., Scheller, K., Sievers, R. E., Bausman, R. C., Blum, P. R., "New Rare Earth Antiknock Additives that Are Potential Substitutes for Tetraethyl Lead," Aerospace Res. Lab., Wright-Patterson Air Force Base, Ohio (1974) Rep. ARL TR-74-0170 (Nat. Tech. Inf. Ser. Rep. AD/A-006, 151/5 WP). 6. Eisentraut, K. J., Tischer, R. L., Sievers, R. E., "Rare Earth β-Ketoenolate Antiknock Additives in Gasoline," U.S. Patent 3,794,473 (1974). 7. Sievers, R. E., et al., unpublished data.
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1976 | doi: 10.1021/ba-1976-0150.ch019
19. SIEVERS ET AL. Lanthanide NMR Shift Reagents
231
8. Kutal,C.,Sievers, R. E., Inorg. Chem. (1974) 13, 897. 9. Feibush, B., Richardson, M. F., Sievers, R. E., Springer, Jr., C. S.,J.Am. Chem. Soc. (1972) 94, 6717. 10. Brooks, J. J., Sievers, R. S.,J.Chromatogr. Sci. (1973) 11, 303. 11. Sicre, J. E., Dubois, J. T., Eisentraut, K. J., Sievers, R. E., J. Am. Chem. Soc. (1969) 91, 3476. 12. Springer, C. S., Meek, D. W., Sievers, R. E., Inorg. Chem. (1967) 6, 1105. 13. Richardson, M. F., Sievers, R. E., Inorg. Chem. (1971) 10, 498. 14. Scribner, W. G., Smith, B. H., Moshier, R. W., Sievers, R. E., J. Org. Chem. (1970) 35, 1969. 15. Sievers, R. E., in "Coordination Chemistry," S. Kirschner, Ed., p. 270, Plenum, New York, 1969. 16. Hinckley, C.C.,J.Am. Chem. Soc. (1969) 91, 5160. 17. Sanders, J. K. M., Williams, D. H., Chem. Commun. (1970) 422. 18. Demarco, P. V., Elzey, T. K., Lewis, R. B., Wenkert, E., J. Am. Chem. Soc. (1970) 92, 5734. 19. Ibid. (1970) 92, 5737. 20. Rondeau, R. E., Sievers, R. E.,J.Am. Chem. Soc. (1971) 93, 1522. 21. Rondeau, R. E., Sievers, R. E., Anal. Chem. (1973) 45, 2145. 22. Willcott, M. R., Lenkinski, R. E., Davis, R. E., J. Am. Chem. Soc. (1972) 94, 1742. 23. Cunningham, J. Α., Sievers, R. E., Proc. 10th Rare Earth Res. Conf., Carefree, Ariz., April-May 1973. 24. Blight, D. G., Kepert, D. L., Theor. Chim. Acta (1968) 11, 51. 25. Watson, W. H., Williams, R. J., Stemple, N. R., J. Inorg. Nucl. Chem. (1972) 34, 501. 26. Cramer, R. E., Seff, K., Chem. Commun. (1972) 400. 27. Horrocks, Jr., W. De W., Sipe, J. P., Luber, J. R.,J.Am. Chem. Soc. (1971) 93, 5258. 28. McConnell, H. M., Robertson, R.E.,J.Chem. Phys. (1958) 29, 1361. 29. Horrocks, Jr., W. DeW.,J.Am. Chem. Soc. (1974) 96, 3022. 30. Briggs, J. M., Moss, G. P., Randall, E. W., Sales, K. P., J. Chem. Soc. Chem. Commun. (1972) 1180. 31. Cunningham, J. Α., Sievers, R. E., J. Am. Chem. Soc. (1975) 97, 1586. RECEIVED February 26, 1975.
In Inorganic Compounds with Unusual Properties; King, R. Bruce; Advances in Chemistry; American Chemical Society: Washington, DC, 1976.