6 Laser-Enhanced Ionization for Trace Metal Analysis in Flames Downloaded via TUFTS UNIV on July 9, 2018 at 14:20:10 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
J. C. TRAVIS and G. C. TURK Center for Analytical Chemistry, U.S. National Bureau of Standards, Washington, D.C. 20234 R. B. GREEN Department of Chemistry, West Virginia University, Morgantown, WV
26506
I o n i z a t i o n of atoms in flames is more probable from an e x c i t e d s t a t e than a ground s t a t e . A dye l a s e r tuned to a d i s c r e t e atomic t r a n s i t i o n will sufficiently b i a s the e x c i t e d s t a t e p o p u l a t i o n of the atom to produce a change in i o n i z a t i o n r a t e which is e a s i l y measured w i t h conventional e l e c t r o n i c s . The excess i o n i z a t i o n i n the flame due to l a s e r e x c i t a t i o n has been g e n e r a l l y c h a r a c t e r i z e d as an optogalvanic e f f e c t but l a s e r enhanced i o n i z a t i o n (LEI) is more d e s c r i p t i v e , p a r t i c u l a r l y i n terms of the mechanism . Generalized p l o t s of the Saha equation3 (Figure 1) show that most elements ( i o n i z a t i o n p o t e n t i a l ≥ 5eV) are predominantly n e u t r a l at t y p i c a l flame temperatures. The a b s o r p t i o n of o p t i c a l energy, moving an atom c l o s e r to its i o n i z a t i o n l i m i t , will significantly increase the i o n p o p u l a t i o n in the flame. According to F i g u r e 1, an e l e c t r o n v o l t of e x c i t a t i o n energy will provide approximately one order of magnitude increase i n i o n i z a t i o n at 2500 K. LEI spectrometry is a h y b r i d technique which depends on both l a s e r e x c i t a t i o n and thermal i o n i z a t i o n . The process may proceed by p h o t o e x c i t a t i o n and thermal i o n i z a t i o n or a combination of thermal e x c i t a t i o n , p h o t o e x c i t a t i o n and thermal i o n i z a t i o n (Figure 2). The experimental system used i s illustrated i n F i g u r e 3. The sample i s a s p i r a t e d i n t o a f u e l lean a i r - a c e t y l e n e flame of a standard premix burner w i t h a 5 cm s i n g l e s l o t burner head. The atomized species are e x c i t e d w i t h a flashlamp-pumped tunable dye l a s e r wi£h c a p a b i l i t y f o r frequency-doubled o p e r a t i o n . The data reviewed- and presented here were obtained at l a s e r bandwidths of 0.05-0.1 nm, although f u r t h e r narrowing i s r e a d i l y p o s s i b l e . The l a s e r dyes used included Fluoral-7GA, Rhodamine 575, Rhodamine 6G, and Rhodamine 640, w i t h frequency doubling i n most cases. The s i g n a l i s detected with a p a i r of 1 mm diameter tungsten welding rods 1 cm apart and ^ 1 cm above the burner head. These dual cathodes run p a r a l l e l to the burner s l o t and are maintained at -500V to -1000V with respect to the burner head, which i s used I
2
This chapter not subject to U.S. copyright. Published 1978 American Chemical Society
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
NEW
Number
Density= 1 0
APPLICATIONS O F LASERS T O C H E M I S T R Y
1
°/cm
3
10
3000K
0.1 ^10-2
Lu Q Q_
ζ Ç2ioUJ >
4
_i
Lu 10"
6
10-
4
5
6
7
8
E N E R G Y TO IONIZE ( e V )
Figure 1. Relative degree of ionization of a generalized element (3) as a function of its ionization potential for flames of (a) 2000, (b) 2500, and (c) 3000 Κ
IONIZATION POTENTIAL
ΔΕ· I ΔΕ;
hi/ hi/
GROUND STATE USING A RESONANCE LINE
USING A NON-RESONANCE LINE
Figure 2. Typical avenues of User-enhanced ionization: (a) photo excitation from the ground state followed by collisional ioniza tion; (b) photo excitation from a thermally populated excited state followed by collisional ionization
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
6.
TRAVIS
Trace Metal Analysis in Flames
93
as the anode. The e l e c t r o d e s remain v i s u a l l y outside the flame, although s t i l l i n e l e c t r i c a l contact with the flame. This c o n f i g u r a t i o n i s s l i g h t l y l e s s s e n s i t i v e than when the e l e c t r o d e s are immersed i n the flame, but i t avoids f o u l i n g and e r o s i o n which lead to long-term s i g n a l d e t e r i o r a t i o n . The burner head i s e l e c t r i c a l l y i n s u l a t e d from the burner body by a s t r i p of e l e c t r i c a l tape, so that the current may be monitored on the low v o l t a g e s i d e of the flame. The s i g n a l pulse i s separated from the dc background current with a high-pass f i l t e r , a m p l i f i e d , and pro cessed w i t h sample-and-hold c i r c u i t s and a minicomputer (or a boxcar s i g n a l averager w i t h d i g i t a l s t o r a g e ) . F i g u r e 4 shows LEI s i g n a l s from a s o l u t i o n of 25 ng/mL Mg and 7 ng/mL Na. The LEI i n t e n s i t i e s f o r these t r a n s i t i o n s are not i n d i c a t i v e of the r e l a t i v e concentrations and absorption c o e f f i c i e n t s alone. Indeed, the expected absorption r a t i o f o r Mg (285.2 nm) t o Na (285.3 nm) i s : 1900 f o r these c o n c e n t r a t i o n s . O s c i l l a t o r s t r e n g t h , i o n i z a t i o n p o t e n t i a l , and f r a c t i o n a l popula t i o n a l l p l a y important r o l e s i n determining the s i g n a l s t r e n g t h . The most s e n s i t i v e l i n e f o r atomic absorption, atomic f l u o r e s cence, and atomic emission, may not n e c e s s a r i l y be the best l i n e f o r LEI spectrometry. Table I shows the d e t e c t i o n l i m i t s f o r pure, aqueous s o l u t i o n s of s e v e r a l elements. These d e t e c t i o n l i m i t s were deter mined by using the average and standard d e v i a t i o n of the mean of 150 l a s e r pulses (^ 0.8 ys pulsewidth) a t a pulse r e p e t i t i o n r a t e of 5 pulses per second. For comparison, Table I a l s o contains d e t e c t i o n l i m i t s reported f o r other flame spectrometric t e c h n i ques. With one exception, LEI d e t e c t i o n l i m i t s a r e comparable to or b e t t e r than those reported f o r other flame spectrometric methods. A c l o s e r i n s p e c t i o n of the LEI d e t e c t i o n l i m i t s i s i n s t r u c t i v e . Table I I shows p e r t i n e n t parameters f o r the t r a n s i t i o n s used. One f a c t o r which i s p a r t i c u l a r l y important i s the energy d i f f e r e n c e between the l a s e r populated e x c i t e d s t a t e and the i o n i z a t i o n p o t e n t i a l . T h i s energy d i f f e r e n c e i s r e f e r r e d to as ΔΕ.. Sodium i s a s t r i k i n g example of the combined e f f e c t of t r a n s i t i o n p r o b a b i l i t y and proximity to the i o n i z a t i o n l i m i t . The d e t e c t i o n l i m i t s are comparable f o r both the strong l i n e a t 589.0 nm (which i s commonly used f o r s p e c t r o s c o p i c a n a l y s i s ) and the weak l i n e a t 285.3 nm, although the l a s e r output i s 100 times more powerful a t the strong l i n e . The e f f e c t of ΔΕ^ on s e n s i t i v i t y i s a l s o i l l u s t r a t e d by the low d e t e c t i o n l i m i t s obtained using e x c i t e d - e x c i t e d t r a n s i t i o n s of Cr, Cu, Mn, Pb, Sn, and T l . In these cases, the l o s s of s e n s i t i v i t y r e s u l t i n g from the small f r a c t i o n a l p o p u l a t i o n of the lower l e v e l i s s i g n i f i c a n t l y counter balanced by the decrease i n ΔΕ.. L E I a n a l y s i s of copper a t 324.8 nm i s r e l a t i v e l y i n s e n s i t i v e , s i n c e i t s ΔΕ^ i s l a r g e r than any of the other t r a n s i t i o n s attempted. Indium enjoys the dual advantages of a s m a l l ΔΕ. and a r e l a t i v e l y l a r g e a b s o r p t i o n coefficient, B . 0 t
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
94
N E W APPLICATIONS O F LASERS T O C H E M I S T R Y
PULSED LASER
PHOTODIODE
AMPLIFIER
AMPLIFIER SAMPLE
SAMPLE
HOLD
HOLD
&
&
A/D CONVERTER
OSCILLOSCOPE
COMPUTER
TTY
Figure 3. Block diagram of the instrument
Na V
j 0.1 nm
Mg t
\
285.3 285.2 WAVELENGTH (nm)
Figure 4. LEI spectrum of a solution of 25 ng/ mL Mg and 7 ng/mL Na in a C H /air flame 2
2
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
6.
TRAVIS
95
Trace Metal Analysis in Flames
TABLE I Comparative D e t e c t i o n L i m i t s by LEI and Other Flame Techniques
Element Cr
a
2 b
4
10
4
5
8
60
10
0.9
100
0.2
Ga
0.07
50
In
0.008
30
Mn Na
0.3
0.4 .05
3 3
b
b
0.05
b
5
1
0.5
1
70
0.8
1
0.8
0.5
0.1
0.2
1
0.4 0.1
—
5
20
10
100
10
6
50
100
50
0.09
20
20
8
Pb
0.6
Sn Tl
b
30
—
—
3
Ni
,d Laser FAF*
2
2
o.i
C
2
Fe
Mg
FAF
FAE
ioo
1
C
FAA°
Cu
Κ
a
LEl
8
2 13
4
T h i s work, except as noted. A l l l i m i t s a r e i n ng/mL. o r i g i n a l l y i n r e f e r e n c e 2.
b
Reported
C
Taken from J . D. Winefordner, J . J . F i t z g e r a l d , and N. Omenetto, Appl. Spectrosc. 29, 369 (1975). FAA = Flame Atomic A b s o r p t i o n . FAE = Flame Atomic Emission. FAF = Flame Atomic Fluorescence.
d
S . J . Weeks, H. Haraguchi, and J . D. Winefordner, A n a l . Chem. _50, 360 (1978).
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
298.6 301.8 282.4 324.8 298.4 302.1 287.4 294.4 303.9 294.3 285.2 279.5 280.0 285.3 589.0 300.2 280.2 283.3 284.0 286.3 291.8
Wavelength (nm)
3
a
.065 .065 1.0 1.0 .4 .4 .2 .2 .6 .2 .6 .6 .6 .9 .9 1.0 .7 .7 .04 .04 .5
:
TT
2.53 4.35 .298 1.77 .223 .426 1.76 1.76 2.51 7.5x10 5.5 .76 1.11 „ 7.0x10 4.63 .65 4.76 1.03 2.42 3.13 2.35
Β χ 10 L -2„ -1,-1 ) S~ (W cm Hz
7
8308 8095 11203 0 0 0 0 826 0 0 0 0 17052 0 0 205 10650 0 3428 0 7793
\
1.3 1 3 1 1 1 1 2 1 1 1 1 1.7 1 1 .8 5 1 5 1 2
12788 13345 15719 31533 30193 30604 13606 13601 13778 1037 26620 24200 7212 6407 24476 28078 13491 24533 20603 24318 7218
the LEI Figure of M e r i t ΔΕ. 1 g (cm ) V o (cm )
2
4.2x10^ 2.6x10^ 1.6x10^ 5x10" 2x10 30 8x10^ 7x107 9.6x10 17 „ 9.5x10. 1.6xl0 29 32 z 6.2x10
2.6x10" 3.6x10 17 6.9 .78
Figure of Merit
Computed f r o m E q u a t i o n 1, u s i n g t h e f a c t o r s g i v e n and a n assumed s p e c t r a l i r r a d i a n c e o f -9 -2 -1 -7 -? -1 3 χ 10 W cm Hz f o r a l l uv t r a n s i t i o n s and 3 χ 10 W cm Hz f o r Na ( 5 8 9 . 0 ) .
Taken f r o m R e f e r e n c e 5.
Tl
Sn
Ni Pb
Na
In Κ Mg Mn
Ga
Fe
Cu
Cr
Element
1
Factors Determining
TABLE I I
2.0 2.0 100 100 4 2 0.07 0.1 0.008 1 0.1 0.3 5 0.05 0.1 8 0.6 3 6 10 0.09
Limit of Detection (ng/mL)
1
H O
W
t>
O
o
>
2 M
05
6.
TRAVIS
97
Trace Metal Analysis in Flames
A zero-order f i g u r e of merit i s u s e f u l f o r p r e d i c t i n g the r e l a t i v e s e n s i t i v i t y of atomic t r a n s i t i o n s : F i g u r e of M e r i t = 31 Β
Here 3 i s the atomization e f f i c i e n c y of the element i n the flame; 1^ the l a s e r s p e c t r a l i r r a d i a n c e ; the E i n s t e i n c o e f f i c i e n t f o r the p r o b a b i l i t y of a b s o r p t i o n from s t a t e I t o u; E^ the energy of the lower s t a t e of the t r a n s i t i o n ; g^ and g a r e lower s t a t e and ground s t a t e s t a t i s t i c a l weights; Τ the flame tempera ture; and k the Boltzmann constant. The f i r s t exponential term expresses the r e l a t i v e p r o b a b i l i t y that a c o l l i s i o n i n the flame w i l l provide the thermal energy r e q u i r e d (ΔΕ.) to complete the i o n i z a t i o n process. The second exponential term, m u l t i p l i e d by the s t a t i s t i c a l weight r a t i o , i s simply the Boltzmann p o p u l a t i o n of the lower l e v e l of the t r a n s i t i o n , r e l a t i v e t o the ground state. The uv L E I d e t e c t i o n l i m i t s are p l o t t e d on a l o g - l o g s c a l e against the corresponding f i g u r e s of merit (shown i n Table II) i n F i g u r e 5. The trend of the data towards a slope of -1 r e s u l t s from the nominal r e c i p r o c a l r e l a t i o n s h i p between d e t e c t i o n l i m i t and s e n s i t i v i t y ( f o r constant l i m i t i n g noise) and supports the v a l i d i t y of the f i g u r e of m e r i t . Current i n v e s t i g a t i o n s using three and four l e v e l model c a l c u l a t i o n s — c a l l f o r s e v e r a l r e f i n e ments to the f i g u r e of merit, e s p e c i a l l y f o r e x c i t e d s t a t e t r a n s i t i o n s . The simple expression i s nonetheless more v a l i d than cross s e c t i o n s alone f o r p r e d i c t i n g the s e n s i t i v i t y of a t r a n s i tion. Given the f a v o r a b l e d e t e c t i o n l i m i t s of Table I , and the s p e c t r a l s e l e c t i v i t y a v a i l a b l e with tunable l a s e r s , i t i s worth while to study observed and p r e d i c t e d matrix i n t e r f e r e n c e s f o r r e a l sample a n a l y s i s by LEI. Such i n t e r f e r e n c e s may g e n e r a l l y be c l a s s i f i e d as chemical, s p e c t r a l , or e l e c t r i c a l . Chemical i n t e r f e r e n c e s w i l l g e n e r a l l y be the same as experienced by other flame s p e c t r o s c o p i c methods*-, and w i l l not be f u r t h e r discussed here. S p e c t r a l i n t e r f e r e n c e s , on the other hand, have some unique f e a t u r e s f o r LEI. Although atomic s p e c t r a l overlaps wjiich have been documented f o r other flame spectrometric methods- are s t i l l present, the r e l a t i v e degree of i n t e r f e r e n c e may d i f f e r d r a s t i c a l l y from o p t i c a l spectrometry due to the LEI f i g u r e of merit of the i n t e r f e r i n g t r a n s i t i o n . Thus, some of the documented i n t e r f e r ences may be i n c o n s e q u e n t i a l , because of a low f i g u r e of merit f o r the i n t e r f e r i n g l i n e , and conversely, some undocumented coincidences of weak s p e c t r a l l i n e s may become important due to a high f i g u r e of m e r i t . An example of t h i s l a t t e r case i s the "weak" 285.3 nm Na t r a n s i t i o n which y i e l d s a strong L E I s i g n a l and i n t e r f e r s s i g n i f i c a n t l y with the 285.2 nm Mg t r a n s i t i o n , (Figure 4 ) . Q
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
NEW
APPLICATIONS O F LASERS T O C H E M I S T R Y
! r
Cu Cu*
en :Fe Te
"'In'
Μη* Pb * » CrCr
Ξ~
Pb Μη Mg
Γ
Gaj|*Na Ga Na In
Γ
1
, .
juiiiil ι ι ι mill ι 10 1 ου
ι ι mill
Figure
10 of
ι ι ι mill
ι ι ι mill
ι ι ιini
3
4
s
10
10
l u
6
Merit
Figure 5. LEI detection limits as a function of predictedfigureof merit
Figure 6. Percent recovery of 100 ppb lead LEI signal as a function of sodium concentration for applied potentials of —600, —800, and —1000 V
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
TRAVIS
Trace Metal Analysis in Flames
100
A P P L I E D POTENTIAL (Volts)
Figure 7. Percent recovery of 100-ppb lead LEI signal as a function of applied potential for so dium concentrations of 0,10, 20, and 30 ppm
TABLE I I I R e l a t i v e I n t e r f e r e n c e of D i f f e r e n t M a t r i c e s on 100 ppb Lead S i g n a l Matrix
I.P.
(10 ppm)
(eV)
Percent S i g n a l Recovery -50QV
-750V
-1000V
Κ
4.3
0
0
180
Na
5.1
45
90
110
Li
5.4
100
110
110
Ca
6.1
82
100
100
Cu
7.7
100
100
100
Analyte:
100 ppb Pb
λ = 280.2 nm
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
100
NEW
APPLICATIONS O F
LASERS T O
CHEMISTRY
Molecular s p e c t r a l i n t e r f e r e n c e s seem to be l e s s of a problem with LEI than conventional flame spectrometry, s i n c e most of the t r a d i t i o n a l i n t e r f e r i n g molecules have high (a 10 eV) i o n i z a t i o n p o t e n t i a l s . R e l a t i v e l y few molecular species have been observed i n flames to date using LEI . E l e c t r i c a l i n t e r f e r e n c e s are unique to LEI ( i n l i e u of such o p t i c a l background i n t e r f e r e n c e s as flame background, ambient l i g h t , and s c a t t e r e d source l i g h t , to which LEI i s impervious). Two types of e l e c t r i c a l i n t e r f e r e n c e may be i d e n t i f i e d : 1) the e f f e c t of ambient e l e c t r o n d e n s i t y i n the flame on i o n i z a t i o n / recombination r a t e s ; and, 2) the e f f e c t of the ambient e l e c t r o n and i o n d e n s i t y on the s i g n a l c o l l e c t i o n process. As an example, F i g u r e 6 i l l u s t r a t e s the e f f e c t of sodium on the s i g n a l from 100 ppb lead f o r s e v e r a l values of a p p l i e d p o t e n t i a l . At each p o t e n t i a l , the a d d i t i o n of sodium i s f i r s t seen to enhance the s i g n a l , then reduce, and f i n a l l y — at lower p o t e n t i a l s — completely e x t i n g u i s h the s i g n a l . F i g u r e 7 was obtained from the same data as F i g u r e 6, and i s u s e f u l f o r e x p l a i n i n g the s i g n a l behavior. The threshold v o l t a g e — below which no s i g n a l i s observed f o r a given matrix — i s r e l a t e d to the sheath, or space-charge, of p o s i t i v e ions which surrounds the two cathode w i r e s . For a given flame temperature and ambient i o n d e n s i t y , a corresponding e l e c t r i c a l s h i e l d i n g i s provided by t h i s sheath, reducing the magnitude of the e l e c t r i c a l p o t e n t i a l at the measurement s i t e . The s h i e l d i n g e f f e c t , and hence the t h r e s h o l d , i n c r e a s e s with i n c r e a s i n g matrix i o n c o n c e n t r a t i o n . Above t h r e s h o l d , e l e c t r o n s generated by enhanced i o n i z a t i o n are d r i v e n by the e l e c t r i c f i e l d toward the burner head with a v e l o c i t y p r o p o r t i o n a l to the a c t u a l e l e c t r i c f i e l d . E l e c t r o n s which reach the burner head before recombining w i t h a p o s i t i v e ion provide the LEI s i g n a l . Table I I I compares the r e l a t i v e degree of i n t e r f e r e n c e f o r matrices of v a r i o u s i o n i z a t i o n p o t e n t i a l s . Only the most e a s i l y i o n i z e d elements are seen to provide a problem. The e l e c t r i c a l i n t e r f e r e n c e s are subject to m o d i f i c a t i o n by instrumentation design and parameter o p t i m i z a t i o n , and an a c t i v e program to minimize i n t e r f e r e n c e s i s underway. Laser enhanced i o n i z a t i o n may be seen to be a s e n s i t i v e and s e l e c t i v e method. Although p r e s e n t l y subject to unique matrix i n t e r f e r e n c e s , these are subject to f u r t h e r instrument development or sample pre-treatment. The method i s " b l i n d " to such common o p t i c a l i n t e r f e r e n c e sources as flame background emission, ambient l i g h t , and s c a t t e r e d e x c i t a t i o n l i g h t . Because of the i n s e n s i t i v i t y to s c a t t e r e d l a s e r l i g h t , the a b i l i t y of l a s e r s to s a t u r a t e o p t i c a l t r a n s i t i o n s may be u t i l i z e d to the f u l l e s t advantage. F i n a l l y , the v a s t l y modified c r i t e r i a f o r s p e c t r a l s e n s i t i v i t y gives the method multi-element p o t e n t i a l , and the c a p a b i l i t y of avoiding t r a d i t i o n a l s p e c t r a l i n t e r f e r e n c e s . Implementation of LEI spectrometry r e q u i r e s minimal m o d i f i c a t i o n of a l a s e r induced f l u o r e s c e n c e (LIF) spectrometer. Though
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.
6.
TRAVIS
Trace Metal Analysis in Flames
101
l e s s thoroughly developed than L I F a t t h i s time, LEI represents a complementary measurement which may be made simultaneously, i f d e s i r e d . Comparative LEI and LIF measurements w i l l o b v i o u s l y be r e q u i r e d f o r a wide v a r i e t y of samples and flames to a c c u r a t e l y e s t a b l i s h the dominant r o l e s o f the complementary methods of l a s e r e x c i t e d flame spectrometry.
Literature Cited 1. 2. 3.
4. 5.
6.
7. 8. 9.
Green, R. Β., R. A. K e l l e r , P. K. Schenck, J. C. T r a v i s , and G. G. Luther, J . Am. Chem. Soc. 98, 8517 (1976). Turk, G. C., J. C. T r a v i s , J . R. DeVoe, and T. C. O'Haver, A n a l . Chem. 50, 817 (1978). In order to render the p l o t s element-independent, the ratio of ion-to-atom p a r t i t i o n f u n c t i o n s has been s e t equal to u n i t y . The e r r o r in degree of i o n i z a t i o n should be l e s s than one order of magnitude f o r any given element. The n a t u r a l e l e c t r o n background p o p u l a t i o n o f the flame is assumed t o be negligible. See P. J. W. Boumans, Theory of Spectrochemical E x c i t a t i o n , H i l g e r and Watts, London (1966), p 161, for a more complete d i s c u s s i o n . T r a v i s , J . C., P. K. Schenck, and G. C. Turk, i n p r e p a r a t i o n . W i l l i s , J . B., in CRC Handbook of Spectroscopy, Volume I , J . W. Robinson, ed., CRC P r e s s , Cleveland (1974) p 799. Values from Table 12, p 814, w i t h c o r r e c t i o n s from Table 13 f o r Na and K. For a b r i e f d i s c u s s i o n , and p e r t i n e n t Tables, see M. L. Parsons, B. W. Smith, and G. E. Bentley, Handbook of Flame Spectroscopy, Plenum Press, NY (1975), p 61. See, for instance, R. J. L o v e t t , D. L. Welch, and M. L. Parsons, Appl. Spectrosc. 29, 470 (1975). Schenck, Peter K., W. Gary M a l l a r d , John C. T r a v i s , and Kermit C. Smyth, submitted f o r p u b l i c a t i o n . Weeks, S. J., H. Haraguchi, and J. D. Winefordner, A n a l . Chem. 50, 360 (1978).
RECEIVED August 7, 1978.
Hieftje; New Applications of Lasers to Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1978.