Ligands To Form Monomeric, Trimetallic Gallium Complexes

David A. Atwood* and Drew Rutherford. Department of Chemistry, North Dakota State University, Fargo, North Dakota 581 05. Received February 27, 199P...
6 downloads 0 Views 690KB Size
Organometallics 1995,14,2880-2886

2880

Use of Tetradentate ( N 2 0 2 ) Ligands To Form Monomeric, Trimetallic Gallium Complexes David A. Atwood* and Drew Rutherford Department of Chemistry, North Dakota State University, Fargo, North Dakota 581 05 Received February 27, 1 9 9 P Members of the SalanH4 class of tetradentate (N202) ligand, N,"-bis(o-hydroxybenzyl)1,2-diaminoethane (SaleanHJ, N,"-bis(o-hydroxybenzyl)-l,3-diaminopropane (SalpanH41, N,W-bis(o-hydroxybenzyl)-l,2-diaminobenzene (SalophanHd, and N,W-bis(o-hydroxybenzyl)1,2-diamino-4,5-dimethylbenzene (SalomphanHd), react with 3 equiv of GaMe3 to form the trimetallic complexes SaleanGaMe(GaMe2)~(l),SalpanGaMe(GaMe2)~(2), SalophanGaMe(GaMe2)z (3),and SalomphanGaMe(GaMed2 (4). Similar reactions of the SalanH4 ligands with GaEt3 form SaleanGaEt(GaEtd2 (5), SalpanGaEt(GaEt2h (61, SalophanGaEt(GaEt& (71, and SalomphanGaEt(GaEt2)~ (8). For these compounds, the lH NMR data indicate the presence of rigid solution state geometries. A crystallographic study of 1, 2, and 5 demonstrates that the molecules contain a central GaR group (R = Me, Et) which is coordinated in a planar array to the nitrogens and oxygens of the ligand. The remaining GaR2 groups each bridge a n oxygen and nitrogen atom. Compound 1 contains one molecule of toluene as solvent of crystallization. Crystal data are as follows. 1: C2sH39Ga3N202, space group P21k (no. 14), with a = 10.694(2) b = 14.101(2) c = 19.184(2) p = 94.040(10)", V = 2885.5(7) Hi3, and 2 = 4. With 316 parameters refined on 2615 reflections having F > 4.0o(F), the final R values were R = 0.0498 and R, = 0.0545. 2: C22H 3Ga3N202, space Group P21k (no. 14), with a = 16.247(12) b = 9.588(9) c = 17.131(8) , ,8 = 116.21(4)", V = 2395(3) Hi3 and 2 = 4. With 262 parameters refined on 1777 reflections having F > 6.0a(F),the final R values were R = 0.0690 and R, = 0.0763. 5: C26H41Ga3N202, space group monoclinic P21h (no. 14), with a = 8.433(1) Hi, b = 22.010(2) c = 15.241(1) B = 98.81(1)", V = 2795.4(5) Hi3, and 2 = 4. With 298 parameters refined on 2111 reflections having F ' > 4.0o(F), the final R values were R = 0.0458 and R, = 0.0492.

A,

A,

A,

A,

A,

h

A,

A.

Introduction The SalanH4 molecules (N,"-bis(o-hydroxybenzyl)l,2-diaminoalkane or -arene) (Figure l a ) are unique and useful ligands with which to explore fundamental aspects of structure and bonding in the main group elements, specifically for the group 12-14 elements. For instance, the OH and NH groups in these molecules may be used to form o or donor bonding, or a combination of the two, depending on the oxophilicity and the oxidation state of the metal being bound. Additional properties such as chelate size, solubility, and chirality may be manipulated by varying the groups at R', R2,and R3. It is evident that these molecules should be ideal ligands for both the transition and main group metal elements. In fact, these ligands have been used previously in the synthesis of transition metal complexes1 and various main group examples, including complexes of general formula SalanHzM (where M = Zn2 and Sn31, [(SalanAl)L ~ ( T H F ) ~SalanH~AlMe,~ Iz,~ and [Salar~4l(AlMe2)12.~ @Abstractpublished in Advance ACS Abstracts, May 15, 1995. (1)(a) Gheller, S.F.; Hambley, T. W.; Snow, M. R.; Murray, K. S.; Wedd, A. G. Aust. J. Chem. 1984, 7, 911. (b) Bottcher, A.; Elias, H.; Jager, E.-G.; Langfelderova, H.; Mazur, M.; Muller, L.; Paulus, H.; Pelikan, P.; Rudolph, M.; Valko, M. Inorg. Chem. 1993, 32, 4131. (2) Atwood, D.A,; Benson, J.;Jegier, J. A,; Lindholm, N. F.; Martin, K. J.; Rutherford, D. Main Group Chem. 1995, in press. (3) Atwood, D. A.; Jegier, J . A.; Martin, K. J.; Rutherford, D. J . Organomet. Chem. 1995, in press. (4) Atwood, D. A.; Rutherford, D. Inorg. Chem. 1995, in press. (5)Atwood, D. A,; Jegier, J . A,; Martin, K. J.; Rutherford, D. Organometallics, 1995, 14, 1453.

0276-7333/95/2314-2880$09.00/0

Scheme 1. General Syntheses of Compounds 1-8 R

R

\ /

n

u

SalanH,

'Gs' / \

Salan = Salean,

R= Me (l),Et (5) Salpa& R= Me (2), Et (6) Salophan, R = Me (J), Et (7) Salomphan, R = Me (4), Et (8)

R'

R

In the present study we wish t o expand the range of trimetallic derivatives of formula SalanMR(MR2)z to include those with M = Ga and R = Me and Et. Specifically, we will examine the gallium complexes of formula SalanGaR(GaR&, where Salan = Salean [R = Me (11,Et (511,Salpan IR = Me (21,Et (611, Salophan [R = Me (31, Et (713,and Salomphan [R = Me (41, Et (811.The structures of compounds 1,2,and 5 have been determined by single-crystal X-ray analysis. Results and Discussion Synthesis and Characterization. Compounds 1-8 were prepared by the exothermic reaction of the respective SalanH4 ligand with trialkylgallium in a 1:3 stoi(6) Shannon, R. D. Acta Crystallogr. 1976, A32, 751.

0 1995 American Chemical Society

Organometallics, Vol. 14, No. 6, 1995 2881

Trimetallic Gallium Complexes

SaleanH4

SalpanH4

SalophanH4

Salomphanb (e)

(d)

(C)

Figure 1. General depiction of the SalanH4 class of ligands (a) and the ligands used in this study: SaleanH4 (b), SalpanH4 (c), SalophanH4 (d), and SalomphanH4 (e). Table 1. Selected NMR Data for Compounds 1-8 compd SaleanGaMe(GaMe212(1) SalpanGaMe(GaMe2)~ (2) SalophanGaMe(GaMe2)~(3) SalomphanGaMe(GaMe2)z(4) SaleanGaEt(GaEt2)~ (5) SalpanGaEt(GaEt2)z (6) SalophanGaEt(GaEt2)~ (7) SalomphanGaEt(GaEt& ( 8 )

Me'

GaR -0.25, 0.03,0.20 -0.10, 0.07,0.29 -0.72, 0.13, 0.53 -0.62, 0.16,0.56 -0.22-0.99, 1.16-1.23 -0.47-0.88, 1.20-1.48 -0.19-0.10,0.40-1.50 -0.16-0.02, 0.43-1.52

'Me

Figure 2. General depiction of the SalanAlMe(AlMe2)z molecule showing the cis disposition of the nitrogens and oxygens. chiometry (Scheme 1). The products were isolated in yields of 292%. In each case the disposition of the alkyl amine backbone was determined to be trans by the lH NMR data (see Table 1). In this configuration the gallium-alkyl groups were manifested as a series of three singlets (for Ga-Me) and three pairs of multiplets (for Ga-Et) in the region 6 0.6 to -0.4 ppm. By comparison, when the alkylamine backbone is oriented such that the oxygens and nitrogens are cis to one another, in for example, SalpanAlMe(AlMe2)2,5there are five AI-Me resonances (Figure 2). Another unique feature of 1-8 is the maintenance of a rigid solution state geometry. This is manifested as AB-type coupling within each Ph-CH2 group, leading t o a doublet-ofdoublets in the NMR spectrum. The alkylamine backbones also demonstrate this type of coupling. In Figure 3 is shown the 'H NMR spectrum for 2 which illustrates this point. Resonances 1and 2 can be attributed to the Ph-CH2 groups. The backbone propylamine protons are designated by 3-5. Irradiation experiments were used to confirm the assignments given for 1-8. We were interested to see if the SalanMR(MR2)z (M = AI, Ga; R = Me, Et) molecules would undergo

WH) NCHzCHz

NCHz

PhCHz

1.18

2.40, 2.92 2.53, 2.72

0.95-1.07

2.47, 2.96 2.61, 2.78

3.33.4.46 3.12,4.40 3.94, 4.62 3.96,4.64 3.51,4.58 3.31,4.53 4.13,4.74 4.18, 4.76

exchange of either the metal-alkyl units or the individual alkyl groups in solution. In order to test this, three types of reactions were examined. In the first, equimolar amounts of SalpanGaMe(GaMe2)~(2) and SalpanAIMe(AIMe& (915were mixed together in toluene and then stirred at 25 "C for 8 h. Analysis by lH NMR of the solid remaining after solvent removal indicated that 2 and 9 were unchanged from the mixing. The second and third reactions were directed a t the possibility of exchange of the alkyl groups between Ga atoms and were conducted in situ in 5 mm NMR tubes. Thus, the trimetallic derivatives SalpanGaMe(GaMe2)~ (2) and SalpanGaEt(GaEt2)~ (6) were mixed in CsDs at 25 "C and stirred for 2 h. Similarly, 2 was mixed with a 50-fold excess of GaEt3 and stirred for 2 h. The NMR spectra of these mixtures were comprised of well-defined resonances which could be attributed to unchanged mixtures ofW6 and 2lGaEt3. These experiments served to indicate that compounds of this type are nonfluxional and nondissociative at 25 "C in aryl solvents. Structural Characterization. An X-ray crystallographic study of 1 , 2 , and 5 was undertaken in order to determine whether the proposed solution structures were the same as that found in the solid state. A summary of crystallographic data for these molecules is given in Table 2. Selected bond distances and angles are given in Table 3, and positional parameters are given in Tables 4-6. Molecular structures and atomnumbering schemes are shown in Figures 4-6. In each structure the ligand adopts a trans orientation with respect to the location of the nitrogen and oxygen atoms. In this conformation each of the GaR2 units bridge both a nitrogen and oxygen atom. This is in contrast to the

2882 Organometallics, Vol. 14,No. 6, 1995

Atwood and Rutherford

Figure 3. IH NMR spectrum of 2 with chemical shift assignments. Table 2. Crystal Data for SaleanGaMe(GaMed2(l),SalpanGaMe(GaMe2)p(2), and SaleanGaEt(GaEtd2(5) compd formula fw cryst system space group a (A) b (A) c (A) /3 (deg)

v (A31

Z Dcalc(g/cm3) cryst size (mm) temp (K) 20 range (deg) scan type scan speed (deglmin) scan range (deg) reflcns collcd indp reflcns obsd reflcns no. of params R RW

GOF largest diff peak (e/A3)

1 CzsH39Ga3NzOz 644.8 monoclinic P21/c 10.694(2) 14.101(2) 19.184(2) 94.040(10) 2885.5(7) 4 1.484 0.5 x 0.5 x 0.5 223 3.5-45 28-8 6-60 0.39 4881 3740 2615 (F> 4.0o(F)) 316 0.0498 0.0545 3.37 0.66

structures that were determined for S a l p a d M e (AlMe2)~(9) and SalophanAlMe(AlMe2)z(101, in which the N and 0 atoms were cis, but correspond to that seen for SaleanAlMe(AlMe2)z (llh5 For these aluminum complexes the presence of a trans orientation for 11 was attributed to both the bond strain and the presence of eclipsing hydrogens in the cis-directed ethylamine backbone. The resulting N-N separation for this compound was 2.863 A. For compounds 1 and 5 a similar argument may be used to explain the trans disposition. The N-N distances in these complexes are 2.823 and 2.835 A,respectively. However, a different argument must be used when considering the trans disposition of the propylamine backbone in 2. Although five-coordinate Ga(II1) and Al(II1) have very similar ionic radii (0.62 and 0.69 A,respectively), the difference of 0.07 A can have a sizable effect. In the present case this is apparently responsible for the difference in

2

5

CzzH33Ga3NzOz 566.7 monoclinic P2 I l C 16.247(12) 9.588(9) 17.131(8) 116.21(4) 2395(3) 4 1.572 1.6 x 0.2 x 0.1 223 3.5-45 28-8 8-60 0.53 3979 3107 1777 (F > 6.0dF)) 262 0.0690 0.0763 5.09 1.49

C~6H41Ga3N20~ 622.8 monoclinic P21in 8.433(1) 22.010(2) 15.241(1) 98.81(1) 2795.4(5) 4 1.480 1.0 x 0.5 x 0.4 298 2.0-45 20-0 6-60 0.40 3679 3393 2111 (F > 4.0dF)) 298 0.0458 0.0492 3.07 0.50

geometries found between 9 and 2. In 9 the N and 0 atoms form a square plane (maximum deviation = 0.031 A for O(1)) above which the aluminum is located at a distance of 0.6109 The geometry is then distorted square pyramidal. In contrast, the geometry for the central gallium in 2 is best described as a distorted trigonal bipyramid with O(1) and O(2) occupying the axial positions and N(1), N(2), and C(3) occupying the equatorial sites. For the central Ga atom, this leads to average Ga-N bonds (1.93 A)that are shorter than the Ga-0 bonds (2.08 A). By comparison, the central Al atom of 9 contains average Al-N and Al-0 bond distances that are 2.004 and 1.934 A,respectively.

A.

Conclusion In summary, we have demonstrated that there is an interesting range of complexes that are a&essible in

Organometallics, Vol. 14, No. 6, 1995 2883

Trimetallic Gallium Complexes

Table 3. Bond Lengths (A)and Angles (deg) for Compounds 1,2,and 5 1

O(l)-Ga(l)-N(l) 0(1)-Ga(2)-0(2) O(1)-Ga(2)-N(1) O(1)-Ga(2)-N(2) 0(2)-Ga(2)-N(1) O(2)-Ga(2)-N(2) N( l)-Ga(2)-N(2) Ga(2)-0(2)-Ga(3) Ga(l)-N(l)-Ga(2) 0(2)-Ga(3)-N(2) Ga(1)-0(1)-Ga(2) Ga(2)-N(2)-Ga(3)

Distances 2.044(7) 1.981(6) 2.156(6) 2.155(6) 1.953(7) 1.958(7) 1.970(6) 2.030(7) Angles 84.1(3) 162.2(2) 81.8(3) 86.5(3) 86.0(2) 81.1(3) 92.4(3) 92.2(2) 96.5(3) 84.1(3) 92.2(2) 96.5(3)

5

2

Table 5. Atomic Coordinates ( x lo5)and Equivalent Isotropic Displacement Coefficients (k x 104) for SalpanGaMe(GaMe&(2) atom

2.044(16) 2.000(12) 2.064(14) 2.103(15) 1.941(15) 1.910(12) 1.957(11) 2.053(17)

2.018(7) 1.988(7) 2.116(6) 2.135(6) 1.959(9) 1.966(8) 1.955(7) 2.029(7)

59235(12) 71044(12) 89386(12) 64013(69) 80890(72) 70177(81) 81591(90) 65251(102) 59105(107) 59826(124) 67166(137) 73306(111) 72697(101) 79635(111) 86155(111) 86970(101) 78362(102) 68917(106) 77027(104) 78867(122) 85763(131) 90870(112) 89427(110) 82318(99) 47732(107) 60490(130) 62263(115) 85906(126) 102106(105)

80.5(6) 164.5(4) 81.4(6) 89.3(6) 90.9(6) 80.6(6)

109.9(6) 94.1i6) 96.1(7) 80.8(6)

93.6(6) 97.1(7)

Table 4. Atomic Coordinates ( x lo5) and Equivalent Isotropic Displacement Coefficients (Az x 104) for SaleanGaMe(GaMe2)z (1) atom

X

Y

50594(9) 3551(7) 74170(9) 14923(6) 98583(9) 12753(7) 55543(53) 15601(42) 93025(51) 10413(38) 69474(62) 1663(48) 79969(64) 12543(50) 52509(85) 18163(61) 39928(87) 18991(63) 21498(70) 36309(91) 45190(102) 23709(74) 57884(99) 22925(65) 61707(84) 20130(60) 75899(84) 19688(68) 75126(81) 2807(59) 75039(76) -3389(58) 73476(79) -2079(64) -3223(64) 87419(76) 91558(87) -10572(64) 104272(93) -12116(73) -6318(69) 112878(96) 109077(82) 1065(64) 96331(82) 2927(62) 43709(87) 7035(75) -4995(70) 42815(89) 73388(94) 25937(71) 107650(90) 1770(76) 103783(92) 26014(66) 31105(204) 50648(134) 42974(95) 26182(154) 34590(187) 38086(123) 30731(302) 31451(159) 17515(472) 28104(199) 32921(182) 10327(339) 13988(160) 40088(134)

z

17412(5) 18538(5) 26835(5) 22147(28) 16973(32) 16993(37) 28291(36) 28626(49) 29916(51) 36332(51) 41748(59) 40510(52) 34039(45) 33350(51) 29686(48) 23229(41) 10306(46) 9834(43) 5723(48) 4947(51) 8517(52) 12413(52) 13136(45) 8110(47) 23870(58) 12572(55) 30858(59) 27064(55) -1723(96) 2438(69) 7114(73) 10852(96) 10138(185) 5930(166) 1858(92)

Ues) 344(3) 299(3) 341(3) 349(20) 329(20) 310(24) 314(24) 364(33) 396(33) 430(35) 553(42) 456(37) 327(30) 422(34) 352(30) 285(28) 364(31) 314(29) 390(33) 465(37) 453(36) 396(33) 337(30) 450(35) 516(39) 508(38) 550(40) 481(37) 1550(111) 766(57) 1091(77) 1672(157) 2156(249) 2502(244) 1098(79)

combinations of the SalanH4 ligands with 3 equiv of GaR3 (where R = Me and Et). For instance, the trimetallic derivatives of general formula SalanGaR(GaR2)2 offer evidence for solution state rigidity. Additionally, no exchange occurs upon mixing SalpanAlMe(AlMe2)~ with SalpanGaMe(GaMed2 (21, SalpanGaMe(GaMe2)~(2) with SalpanGaEt(GaEt2)~(61, and SalpanGaMe(GaMeJ2 (2) with GaEt3. The solution state geometry of these molecules was shown by X-ray crystallography to be the same as that of the solid state.

X

Y

2

-19000(22) 5923(21) 19432(23) -3902(123) 11852(117) -12543(147) 7008(149) -2597(175) -8159(187) -6169(203) 1267(232) 7084(190) 5306(169) 13287(208) -6692(220) -15187(193) -22523(167) - 11708(196) -6074( 183) - 11947(209) -6629(232) 4458(202) 10790(204) 4983(180) -12495(243) -37295(222) 20846(206) 39449(177) 12993(204)

70098(13) 73100(13) 80202(13) 79052(77) 68886(82) 68150(89) 84102(96) 87277(113) 89836(112) 98060(135) 104033(133) 101378(119) 93291(107) 91315(118) 87223(119) 80252(119) 73476(122) 59025(119) 57852(111) 51433(124) 49406(130) 53915(123) 60592(112) 62415(109) 60209(130) 75305(142) 67493(151) 79917(143) 84007(150)

Ues) 387(8) 344(8) 394(9) 413(54) 429(57) 344(60) 404(69) 330(75) 374(80) 485(100) 601(105) 422(84) 293(71) 481(88) 510(88)

433(82) 416(87) 430(83) 335(74) 500(90) 572(103) 465(87) 445(87) 337(73) 687(101) 695(106) 635(106) 544(105) 626(102)

Table 6. Atomic Coordinates ( x lo5) and Equivalent Isotropic Displacement Coefficients (Azx lo4)for SaleanGaEt(GaEt2)z(5) atom

~~

~,

C(25) C(26)

Y

X

-10263(14) 19409(13) 29426(15) 11836(82) 21659(81) -3886(101) 20262(94) 16769(127) 13300(146) 18157(165) 26254(177) 29388(142) 24869(126) 29797(135) 2946(124) -7742(120) -9246(132) -3277(120) -13090(137) -8829(161) 5083(149) 15408(145) 11087(127) -9266(156) -905(176) -26269(139) -35568(149) 36400(146) 46194(172) 52470(146) 60827(174) 18215(161) 23680(219)

80245(5 ) 84637(5) 96582(5 82472(27) 88983(29) 84932(35) 93139(34) 85262(43) 82458(51) 85106(64) 90434(63) 93341(51) 90784(45) 94219(44) 94745(44) 91528(43) 82168(47) 85285(43) 84769(49) 87500(52) 90600(56) 91160(47) 88492(43) 71485(47) 67972(57) 84294(56) 80149(60) 78656(51) 77464(68) 95840(54) 98290(64) 103656(51) 109462(58)

z

6629(7) 18316(7) 26517(8) 4796(38) 30973(40) 18003(49) 14455(48) -2258(63) -10617(68) -17964(75) -17276(78) -9017(73) -1358(63) 7265(63) 11555(65) 17358(64) 26110(62) 35012(62) 41517(67) 49744(78) 51494(71) 45253(71) 36874(63) 8922(73) 2476(89) -2075(73) -8641(81) 20976(72) 13950(82) 28292(77) 36918(88) 30179(76) 26687(89)

Ues) 442(4) 369(4) 489(5) 418(24) 434(25) 422(30) 370(28) 419(37) 565(44) 731(56) 777(59) 566(45) 426(37) 488(40) 458(39) 423(36) 484(40) 402(36) 521i42) 630(51) 599(48) 552(44) 413(38) 633(48) 848(62) 634(46) 784(55) 604(47) 952(68) 673i50) 937(65) 679(51) 1053(78)

Future studies will be directed at the use of bulky group 13 reagents and chiral SalanH4 ligands. Experimental Section General Methods. All manipulations were conducted using Schlenk techniques in conjunction with a n inert atmo-

Atwood and Rutherford

2884 Organometallics, Vol. 14,No. 6, 1995

c141

C(141

C121)

Figure 4. Molecular structure a n d atom-numbering scheme for 1.

Figure 5. Molecular structure and atom-numbering scheme for 2. sphere glovebox. All solvents were rigorously dried prior to use. The ligands SaleanH4, SalpanH4, SalophanH4, and SalomphanHd were synthesized as previously described.2 NMR data were obtained on JEOL-GSX-400 and -270 instruments at 270.17 ('H) and 62.5 (13C)MHz. Chemical shifts are reported relative to SiMe4 and are in ppm. Elemental analyses were obtained on a Perkin-Elmer 2400 analyzer. Mass spectral data were obtained on a Hewlett-Packard 5988 spectrometer using electron impact ionization (70 eV) with a direct ionization probe (DIP). Infrared data were recorded as KBr pellets on a Matheson Instruments 2020 Galaxy Series spectrometer and are reported in cm-l. For 1, 2, and 5, crystals suitable for X-ray analysis were grown by dissolution in toluene and cooling to -30 "C.

SaleanGaMe(GaMed2 (1). Trimethylgallium (0.646 g, 5.62 mmol) was added neat to a rapidly stirring solution of SaleanHc (0.501 g, 1.84 mmol) in 50 mL of toluene a t 25 "C. The exothermic reaction was stirred a t 25 "C until the evolution of gas ceased (15 min) and then heated at reflux for 8 h. The toluene was removed in vacuo leaving the title compound as a white solid (0.946 g, 93%): mp 85-87 "C; 'H NMR (270 MHz, CsDs) 6 -0.25 (s, 6H, GaCHd, 0.03 (s, 6, GaCHs), 0.20 (s, 3H, GaCH3), 2.40 (d, J = 8 Hz, 2H, NCHd, 2.92 (d, J = 8 Hz, 2H, NCHz), 3.33 (d, J = 16 Hz, 2H, PhCHd, 4.46 (d, J = 16 Hz, 2H, PhCH2), 6.52-7.19 (m, 8H, Ph H);13C NMR (62.5 MHz, CsD6) 6 -11.3 (GaCHd, -6.8 (GaCHd, 1.4 (GaCHs), 48.1 (NCHz), 53.9 (PhCHZ), 120.0 (Ph), 121.7 (Ph), 128.6 (Ph), 129.3 (Ph), 130.3 (Ph), 156.9 (Ph); IR (KBr) 2981

Organometallics, Vol. 14, No. 6, 1995 2885

Trimetallic Gallium Complexes

Figure 6. Molecular structure a n d atom-numbering scheme for 5 . m, 2870 s, 1603 vs, 1487 vs, 1235 vs, 1055 s, 885 vs, 758 vs, 729 vs, 584 vs cm-'; MS (DIPMS) m l e 552 (M+),537 (M+ Me), 453 (M+ - GaMez), 437 (M+ - Me - GaMez), 422 (MT 2Me - GaMez), 407 (M+ - 3Me - GaMez), 337 (M+ - Me 2GaMez), 245 (PhOCHzN(CHz)3NGa+), 99 (GaMez+),69 (Ga+). Anal. Calcd: C, 45.64; H, 5.65. Found: C, 45.58; H, 5.70. SalpanGaMe(GaMe2)~(2). The procedure was as described for l, with trimethylgallium (0.623 g, 5.42 mmol) and SalpanH4 (0.500 g, 1.75 mmol) yielding 2 as a white solid (0.951 g, 96%): mp 172-174 " c ; 'H NMR (270 MHz, C6D6) 6 -0.10 (s, 6H, GaCHz), 0.07 (s, 6H, GaCHs), 0.29 (s, 3H, GaCH3), 1.18 (m, 2H, CHzCHz), 2.53 (m, 2H, NCHz), 2.72 (m, 2H, NCHz), 3.12 (d, J = 16 Hz, 2H, PhCHZ), 4.40 (d, J = 16 Hz, 2H, PhCHZ), 6.52 (d, J = 6 Hz, 2H, Ph HI, 6.75 (d, J = 6 Hz, 2H, Ph H ) ,6.98-7.13 (m, 4H, Ph H); 13CNMR (62.5 MHz, C6D6) 6 -8.0 (GaCHs), -6.4 (GaCHs), -5.1 (GaCHa), 28.0 (CHzCHz),51.8 (NCHz), 56.0 (PhCHz), 118.9 (Ph), 119.6 (Ph), 125.6 (Ph), 129.1 (Ph), 131.2 (Ph), 158.3 (Ph); IR (KBr) 2963 m, 1598 m, 1485 s, 1449 s, 1259 vs, 1078 s, 1025 s, 801 s, 754 vs, 580 s, 536 s cm-l; MS (DIP/MS) m l e 566 (M+),551 (M+ Me), 467 (M+ - GaMez), 451 (M+ - Me - GaMez), 436 (M+ 2Me - GaMez), 421 (M+ - 3Me - GaMez), 351 (Mt - Me 2GaMez),245 (PhOCHzN(CHz)3NGa+), 99 (GaMez+),69 (Ga+). Anal. Calcd: C, 46.63; H, 5.87. Found: C, 46.66; H, 5.82. SalophanGaMe(GaMe2)z (3). The procedure was as described for l, with trimethylgallium (0.548 g, 4.77 mmol) and SalophanHI (0.500 g, 1.56 mmol) yielding 3 as a yellow solid (0.889 g, 95%): mp 172 "C (dec); 'H NMR (270 MHz, C6D6) 6 -0.72 (s, 6H, GaCHs), 0.13 (s, 6H, GaCHs), 0.53 (s, 3H, GaCH3), 3.94 (d, J = 16 Hz, 2H, PhCHZ), 4.62 (d, J = 16 Hz, 6.48-7.12 (m, 10H, 2H, PhCH2),6.32 (d, J = 8 Hz, 2H, Ph H), Ph H); 13C NMR (62.5 MHz, C6D6) 6 -8.6 (GaCHd, -8.5 (GaCHs), -6.4 (GaCH3), -5.9 (GaCHs), 52.0 (PhCHZ), 52.1 (PhCHZ), 119.3 (Ph), 121.5 (Ph), 123.7 (Ph), 123.9 (Ph), 124.2 (Ph), 125.6 (Ph), 128.5 (Ph), 129.2 (Ph), 130.4 (Ph), 142.7 (Ph), 159.5 (Ph); IR (KBr) 3077 m, 3028 m, 1599 s, 1487 vs, 1451 vs, 1280 vs, 1018 s, 880 s, 752 vs, 592 s cm-'; MS (DIP/EI) m l e 600 (M+),501 (M+ - GaMez), 486 (M+ - Me - GaMez), 471 (M+ - 2Me - GaMez), 385 (M+ - Me - 2GaMez),383 (M+ - Me - 2GaMez - 2H), 279 (PhOCH&PhNGa+), 203 (PhOCHzNNGa+), 189 (PhOCHZNGa+),99 (GaMez+),69 (Gail. Anal. Calcd: C, 49.99; H, 5.20. Found: C, 49.95; H, 5.18. SalomphanGaMe(GaMe2)z (4). The procedure was as described for 1, with trimethylgallium (0.507 g, 4.41 mmol)

and SalomphanHl (0.500 g, 1.44 mmol) yielding 4 as a gray solid (0.877 g, 97%): mp 238 "C (dec); 'H NMR (270 MHz, C6D6) 6 -0.62 (s, 6H, GaCH3), 0.16 (s, 6H, GaCHs), 0.56 (5, 3H, GaCH3), 1.61 (8, 6H, Ph-CH3), 3.96 (d, J = 16 Hz, 2H, PhCHZ), 4.64 (d, J = 16 Hz, 2H, PhCHz), 6.35 (d, J = 7 Hz, 2H, Ph m, 6.53 (s, 2H, Ph H),6.61-7.13 (m, 6H, Ph HI; NMR (62.5 MHz, C6D6) 6 -8.5 (GaCHs), -6.4 (GaCH3), -5.9 (GaCH3), 19.1 (Ph-CH3),52.3 (PhCHZ), 119.2 (Ph), 121.6 (Ph), 123.9 (Ph), 124.9 (Ph), 127.9 (Ph), 128.1 (Ph), 129.2 (Ph), 130.4 (Ph), 132.6 (Ph), 137.2 (Ph), 140.2 (Ph), 159.6 (Ph); IR (KBr) 2966 m, 2363 vs, 2342 vs, 1599 m, 1487 vs, 1263 vs, 1086 m, 752 s, 588 m cm-'; MS (DIP/MS) m l e 530 (M+ - GaMez), 514 (M+ - Me - GaMez), 499 (M+ - 2Me - GaMez), 413 (M+ Me - 2GaMez),411 (M+ - Me - 2GaMez - 2H), 307 (PhOCHZNPhNGa+), 99 (GaMez+),69 (Ga+). Anal. Calcd: C, 51.58; H, 5.61. Found: C, 51.62; H, 5.57. SaleanGaEt(GaEt2)z (5). The procedure was a s described for 1, with triethylgallium (0.871 g, 5.55 mmol) and SaleanH4 (0.500 g, 1.84 mmol) yielding colorless crystals of 5 (1.140 g, 93%): mp 125-127 "C; 'H NMR (270 MHz, CsD6) 6 -0.220.99 (m, 10H, CHZCH~), 1.16-1.23 (m, 12H, CHZCH~), 1.46 (app. t , 3H, CHZCH~), 2.47 (d, J = 8 Hz, 2H, NCHz), 2.96 (d, J = 8 Hz, 2H, NCHz), 3.51 (d, J = 16 Hz, 2H, PhCHz), 4.58 (d, J = 16 Hz, 2H, PhCHZ), 6.64-7.12 (m, 8H, Ph H); NMR (62.5 MHz, C6D6) 6 0.5 (CHZCH~), 3.0 (CHZCH~), 5.7 (CHZCH~), 9.5 (CHZCH~), 9.6 (CHZCH~), 10.2 (CHZCH~), 10.3 (CHZCHB), 48.8 (NCHz),54.5 (PhCHz), 120.0 (Ph), 121.6 (Ph), 125.6 (Ph), 128.5 (Ph), 128.7 (Ph), 129.3 (Ph), 130.2 (Ph), 157.4 (Ph); IR (KBr) 2949 s, 2866 vs, 1597 s, 1485 vs, 1447 vs, 1285 vs, 1035 s, 756 vs, 585 vs cm-'; MS (DIP/EI) m l e 593 (M+ - Et), 465 2 (M+ - Et - GaEtz), 335 (M+ - E t - 2 G a E t ~ ) , 2 3 (PhOCHZN(CH&NGa+), 204 (PhOCHzNCHzGa+),127 (GaEtz+),69 (Ga+). Anal. Calcd: C, 50.14; H, 6.64. Found: C, 50.10; H, 6.63. SalpanGaEt(GaEt2)z (6). The procedure was as described for 1, with triethylgallium (0.832 g, 5.30 mmol) and SalpanHl (0.500 g, 1.75 mmol) yielding 6 as a white solid (1.04 g, 93%): NMR (270 MHz, C6D6) 6 -0.47-0.88 (m, mp 178-182 "C; 10H, CH2CH3), 0.95-1.07 (m, 2H, CHZCHZ),1.20-1.48 (m, 15H, CHZCH~), 2.58-2.65 (m, 2H, NCHz), 2.75-2.82 (m, 2H, NCHz), 3.31 (d, J = 16 Hz, 2H, PhCHz), 4.53 (d, J = 16 Hz, 2H, PhCHZ), 6.60 (d, J = 8 Hz, 2H, Ph HI, 6.72 (d, J = 5 Hz, 4H, Ph H ) , 7.06-7.12 (m, 2H, Ph H); 13C NMR (62.5 MHz, C6&) 6 1.3 (CHZCH~), 2.7 (CHZCH~), 3.5 (CHzCHs), 6.4 (CHZCH~), 10.1 (CHZCH~), 10.3 (CHZCH3),28.3 (CHzCHz),52.2

2886

Atwood and Rutherford

Organometallics, Vol. 14, No. 6,1995

(NCHz),56.7 (PhCHZ),119.0 (Ph), 119.4 (Ph), 124.0 (Ph), 129.1 (Ph), 131.1(Ph), 158.7 (Ph); IR (KBr)2944 s, 2866 s, 1599 m, 1485 s, 1271 vs, 1076 m, 1026 m, 881 m, 754 s , 578 m, 557 m cm-'; MS (DIP/EI) m l e 607 (M+ - Et), 479 (M+ - Et - GaEtn), 450 (M+ - 2Et - GaEtz), 421 (M+ - 3Et - GaEtz), 349 (M+ Et - 2GaEt2),273 (Ph0CH2N(CH2)3NGaEtf),244 (PhOCHzN(CH&NGa+), 127 (GaEtz+),69 (Ga+). Anal. Calcd: C, 50.92; H, 6.81. Found: C, 50.91; H, 6.78. SalophanGaEt(GaEt2)~ (7). The procedure was as described for l, with triethylgallium (0.738 g, 4.70 mmol) and SalophanHI (0.500 g, 1.56 mmol) yielding 7 as a pale solid (0.962 g, 92%): 'H NMR (270 MHz, CsD6) 6 -0.19-0.10 (5, m, CHZCH3),0.40-1.50 (m, 20H, cH2cH3),4.13 (d, J = 16 Hz, 2H, PhCHZ), 4.74 (d, J = 16 Hz, 2H, PhCHz), 6.47-6.93 (m, 12H, Ph H ) ; 13C NMR (62.5 MHz, CsDs) 6 2.3 (CHzCHs), 4.1 (CHZCH~), 6.1 (CHZCH~), 9.6 (CHzCHd, 9.7 (CHZCH~), 10.1 (CHZCH~), 52.2 (PhCHZ), 119.4 (Ph), 121.3 (Ph), 123.1 (Ph), 123.7 (Ph), 124.2 (Ph), 128.5 (Ph), 130.3 (Ph), 142.8 (Ph), 159.9 (Ph); IR (KBr)2887 m, 1597 m, 1485 s, 1265 s, 1116 s, 1018 S, 877 , 754 vs, 642 vs, 576 vs cm-'. SalomphanGaEt(GaEt2)~ (8). The synthetic procedure was as described for 1, with triethylgallium (0.681 g, 4.34 mmol) and SalomphanHd (0.500 g, 1.44 mmol) yielding 8 as a gray solid (0.950 g, 95%): mp 146-148 "C (dec); 'H NMR (270 MHz, CsDs) 6 -0.16-0.02 (m, 5H, cH2cH3), 0.43-1.52 (m, 20H, CHzCH3), 1.67 (s,6H, PhCHz), 4.18 (d, J = 16 Hz, 2H, PhCH2),4.76 (d, J = 16 Hz, 2H, PhCHz), 6.47-6.91 (m, 10H, Ph H ) ; 13C NMR (62.5 MHz, C6Ds) 6 2.4 (CHZCHB), 4.1 (CHzCH3),6.2(CH2CH3),9.6(CH2m3),9.8 (CH2m3), 10.2 (CHZm31, 19.2 (PhCH3), 52.5 (PhCHz), 119.4 (Ph), 121.4 (Ph), 124.2 (Ph), 128.5 (Ph), 130.3 (Ph), 132.5 (Ph), 132.5 (Ph), 140.2 (Ph), 160.0 (Ph); IR (KBr) 2945 s, 2864 s, 1599 m, 1485 vs, 1448 vs, 1265 vs, 1091 m, 1004 m, 879 m, 754 s, 648 m, 589 m, 490 m cm-l;

MS (DIPEX) m l e 698 (M+),671 (M+ - Et), 572 (M' - GaEtz), 542 (M+ - Et - GaEtz), 513 (M+ - 2Et - GaEtz), 484 (M+ 3Et - GaEtz), 411 (M+ - E t - 2GaEtz - 2H), 127 (GaEtz+), 69 (Ga+). Anal. Calcd: C, 54.99; H, 6.49. Found: C, 54.95; H, 6.46. X-ray Experimental Methods. Details of the crystal data and a summary of data collection parameters for 1, 2, and 5 are given in Table 2. Data were collected on a Siemens P4 difiactometer using graphite monochromated Mo K a (0.710 73 A) radiation. The check reflections, measured every 100 reflections, indicated a less than 5% decrease in intensity over the course of data collection, and hence, no correction was applied. All calculations were performed on a personal computer using the Siemens software package, SHELXTLPlus. The structures were solved by direct methods and successive interpretation of difference Fourier maps, followed by least-squares refinement. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in the refinement in calculated positions using fixed isotropic parameters.

Acknowledgment. Gratitude is expressed to the National Science Foundation NSF-EPSCoR program (Grant RII-861075) and the NDSU Grant-in-Aid program for generous financial support. Supplementary Material Available: Tables of bond lengths and angles, hydrogen positional and thermal parameters, anisotropic thermal parameters, and unit cell views (28 pages). Ordering information is given on any current masthead page. OM950152G