Light Absorption Spectrometry D. F. Boltz, W a y n e State University, Detroit, Mich., and M . G. Mellon, Purdue University, lafayette, Ind.
T
HIS TENTH R E V I E W on t h e analytical absorption spectrometry of t h e visible region of the spectrum surveys the literature for the period from October 1961 through October 1963, as documented by Chemical .abstracts. I n the screening of approhimately 1500 articles and in selecting only about one third of them for inclusion in this review it is inevitable t h a t some worthwhile papers have been omitted and t h a t several of those included should have been deleted. In certain instances, incomplete information in the abstract is responsible for the error as well as the reviewers’ judgment as to the significance and/or relevancy of the publication. The presentation of subject matter under the topics of Chemistry, Physics, and Applications has been followed as in previous reviews. Of a number of books concerned entirely or in part with analytical qpectrometry the following have been 3elected as being representative : “Photometric Metal and Water Analyses’’ (493), “Kolorimetricheskii analiz i nefelometriya” (315), “Handbuch der Kolorimetrie, Band I. Kolorimetrie in der Pharmazie” (228),Kolorimetrie, Photometrie, und Spektrometrie” (251), “Praktischeskoe rukovodstvo po spektrofotometrii i kolorinietrii” (348), “Spektrofotometria Absorpcyjna (450) and “Colorimetric Methods of Analysis; Including Photometric Methods,” Vol. I I I h (428).
CHEMISTRY
Nevi reagents, better control of reaction conditions, the elimination of interfering substances, and a better understanding of the structural, kinetic, and mechanistic aspects of reactions have resulted in spectrophot.onietric methods of improved sensitivity, reliability, and applicability. Inorganic Constituents. Several papers deal with chemical concepts of fundamental importance. T h e changes in free rnergy of a complrx in terms of dissociation constants in solution and in vacuo are correlated with the effectivr field strength of t h e ion, t h e magnitude of which is correlated with t h e hathochromic shift of wrtain complexes (460). The capacity of t’he metal ion to form donor T I.)onds is correlated with the enhanced stability of the complex formed with a sulfur-containing chelating agent such
256 R
ANALYTICAL CHEMISTRY
as dithizone, where the sulfur is the donor atom ( 7 7 ) . The stability of transition metal chelates of dioximes was correlated to the decrease in ionic radius, attributable to the ease of hydrogen bridge formation (78). The effect of structure of bis(4-dimethylaminophenyl) antipyrylcarbinol derivatives on their reactivity with the tetrabromocadmium complex has been evaluated in respect to sensitivity as possible reagents in the spectrophot’ometric determination of cadmium ( 4 9 1 ) . The absorption spectra of sixteen metal complexes of 8-quinolinol have been interpreted on t’he basis of the ligandfield theory (109). The determination of the composition of complexes by light absorption measurements using Job’s met,hod of continuous variations continues to be popular (240) with more care being given to such factors as dimerization (459), low formation const’ant and side reactions (22), mi\;ed ligands (476) and nature of solvent (306). The use of a constant concentration of a n auxiliary complexing agent has been used to determine the coefficients for a complex in which t,he cation has a strong tendency to hydrolyze and the ligand is the anion of a weak acid by the ,JobOstromyslenskii method (38). In the saturation curve method (single variable method) the method of least squares has been utilized to solve the hyperbolic function ( 2 ) . A break in the plot of the absorbance values a t the isosbestic point as a function of mole fraction indicates the composition of the complex (23). The existence of an isosbestic point defines single reaction parameters (99). The composition of complexes and equilibria involved in two-phase systems ha$ also been subjected to mat,hematical treatment (243, 355). An extensive review on the spectrophotometric investigation of complexes in solution, with 197 literature references has appeared (445). The role of chelating agents in spectrophotometric analysis has been summarized (67). The mechanism of the color reactions of titanium and ;ilizarin S (259) and of copper(II), cobalt (11) and nickel(I1) with azo derivatives of 8-quinolinol (89) has been investigated. The nature of color forming ieactioni and the resulting complexes of iron(II1) with esculetin (216), kojic acid (3li?), hydrazoic acid (475), salicylhydroxy-
amic and o-cresotic acids (120), and the o-phenol methylols (112) has been elucidated. A reaction mechanism for the formation of the complex formed in basic solution between oxidized nickel and 4-carboxy-1,2-cyclohexanedionedioxime has been proposed and the reduction of the complex indicated a 2electron change ( 4 2 ) . In ammoniacal solution, 3 : 1 complexes of nickel(I1) and dihydrosyglyoxime, or dimet’hylglyoxime, or di-a-pyridylglyoximes result, provided a n oxidant is present (40). In dilute solution, a green monoazidochromium(II1) ion exists while in concentrated solutions a series of complexes between chromium and azide ions results, the hexaazidochromium(111) complex having a violet hue (408), Diethylether has been used to extract the colored species resulting in the reaction bet’ween ammonia and the thymol-hypobromite (254). Ailurninurn (111) and sulfodichlorohydroxydimethylfuchsonedicarboxylic acids form a 1 : 1 violet complex (431). The color reactions of aluminum(II1) and beryllium(I1) with 2-quinizarinsulfonate, or 2 - (4 sulfophenoxy) - quinizarin - 3sulfonic acid have been studied (339). The change in absorbance maximum and molar absorptivity of bis-di-noctylethylenedismine copper(I1) in the presence of various anions on extraction with hexanone was noted (54). Metals. We shall consider first general reagents which have been found t o be applicable to t h e dctermination of several metals, while those reagents used primarily in t h e determination of a single constituent will then be considered. 4 - ( 2 - Pyridylazo) - 1 - napht’hol ( p PAN), forms colored estractable complexes with a number of metals, those of copper(II), zinc(II), nickel(II), manganese(I1) and cobalt (11) having been investigated rather extensively ( 5 3 ) . The absorbance maxima and sensitivities of several complexes of p-Ph?; were compared with those of 0-P.iS. There is a loss of two phydroxy protons in forming neutral complexes with a meta1:ligand ratio of 1 : 2 . Additional st’udies have been made on the use of o-PAK, 1-(2pyridylazo)-2-naphthol, in the solvent extraction and spectrophotometric, determination of rnanganese(1 I ) , cadmium( I I ) , mercury( I I), gallium( I1 1) iron(III), and yttrium(II1) (4f1),and
-
~
Table I.
einc(II), copper(II), nianganese(II), cobalt(I1) and nickel(I1) (51). I n comparing the acid strengths of the 1hydroxy groups in PAR, 4-(2pyridy1azo)-resorcinol , with that of p-PAN, the higher pK value of the lat'ter is attributed to less conjugat'ion in t h e system and to a, decrease in the electron-withdrawing effect of the azo group (104). Twenty-three derivatives of 0-(2-thiazolylazo)phenol have been synthesized and a n investiga.tion of their color reactions with metal ions showed copper (11) zir c (II), and cerium (111) give violet-red water soluble chelates while cobalt(] 11) and palladium (11) formed insolubk green chelates. Solvent extractability with chloroform or isoamyl alcohol waF found for most of t h e metal chelates (2:12). Pyridine - 2,5 - dialdosime forms a green 1 : 1 chelate with copper(I1) and chelates wit,h 1 : 2 metal :ligand ratios with cobalt(II), yellow; manganese(II), blue violet; nickel(II), pale yellow; and zinc(II), colorless (39:. The absorption spectra of several osime complexes formed by nickel(II), palladium(II), copper(II), iron(II), cobalt(I1) and (111) with a number of different mono and diosimes have been examined (210). 4-Methoxyisonitrosoacetanilide and 2-met~hoxyisonitrosoacetanilideand t,heir oximes give coloi*sin basic solution wit'h cobalt(II), copper(I1) iron(III), manganese(I1) and n:ckel(II) (81). Picramic acid de\ elops color with gold(III), iron(III), cerium(II1) , and prevanadyl ions ($GO), Chlorphosphonazo I11 forms complexes exhibit,ing high molar absorptivities for determining zirconium, titanium, thorium, and scandium (133). The extraction and spectrophotometric 'determination of the compleses of uranium, thorium, plutonium, and aluminum by reagents of the arsenazo-thorcln group is made possible by centralizing their negative charge with hydropho3ic organic cations (158). Colored complexes are formed when 2 - (a- piperdinoisoprcqyl) - 4 - hydroxytetrahydro-3-furanoncm reacts with uranium (VI), molybdenum (VI), vanadium(V), and tungsten(V1) and these complexes are extrac.;able (457). Isonaphthazarin; 3-am:.nolawsone; lawsone; juglone; 3-hycrosyjuglone; 5,6dihydroxy-l,4-naphthoquinone;and 6,7-dihydroxy-l,4-naph.;hoquinone have been investigated as color development reagents for 26 metal ions. Several were found to be rather sentsitive and selective to bismuth(II1); the colored systems due to magnesium, zinc, and tin(1V) were especially n o t e w x t h y (317). The absorpt'ion tyectra of 4-(2pyridylazo)resorcinol, 2-salicylidene, aminopyridine, and 2 I:o-hydroxyphmylimin0methy)pyridine and some of their metal complexes have been evaluated in water and water-dioxane solutions (f 5 3 ) .
Constituent Ag AI
Au
Be
Bi Ca Cd
Ce Co
Cr
cu
Fe 1Fe(11)]
Photometric Methods for Metal
Material ...
Method or reagent Pyrogallol red, or bromopyrogallol red ... Bis(2,6-pgridine dicarboxylate) silver(I1) Ores Indirect, Cu(11)-tetraethylthiuram disulfide Metals, alloys Chromoxane Violet R Indirect, 8-quinolinol, mixed heteropoly acid Solochrome Cyanine R Polyethylene glycol-gold(111)saccharinate (CHCI,) 2-Hydroxymethyl-l,6-( 2-hydroxymethyl-5hydroxy-4-pyron-6 y1)-pyrano [3,2-b] pyran4,8-dione (Woods's reagent) ... Chlorpromazine hydrochloride Chlorophosphonazo-P [ 1-(4-chloro-2-phosphonophenylazo)S-na.phthol-3,6-disulfonic acid], (Trilon B ) Fast Sulphon Black F Naphthochrome Green G C'h'rbmium 2,6-Dimercapto-3-amyl-l,4-thiopyrone ... Dithizone Ammonium carboxymethyldithiocarbamate Th'ailium Acid Chrome Black Calcion IREA S&m .V-HvdroxvnaDhthalimide ... Eriochromk G;ey BL coned. Ores Dithizone (CHC13) 1-6-(Bromobenzothiazol-2-ylazo)-2-naphthol Rare earths Complexon I Rare earths Xylenol Orange Oximidobenzotetronic acid Bis-cyclohexanone oxalyldihydrazone 2,3-Quinoxalinedithiol Hydrozonium hydrazine dithiocarboxylic acid ... 1,2,3-Cyclohexanetrionetrioxime Eriochrome Blue Black R 1,2-Diaminocyclohexane tetraacetic acid Steels 2,B-Pyridine dicarboxylic acid Alloys Triethylenetetramine Ores, alloys ...
Reference (111)
(1880 (343) (314) (246) (399) 1492)
Monophenyloxalylhydrazide l-Picolinoyl-2-( 2-hydroxybenzy1idene)hydrazine
Ethylenediani ine Oximidobenzotetronic acid Pyridine-2,6-dicarboxylicacid 6-Methylpyridine-2-aldoxime
2,2'-Bip,yrimidine
3-(2-Hydroxyphenyl)-lH-1,2,4-triazole 6-Hydroxyl-l,7-phenanthroline Bis-(2-hydroxymethyl-5-hpdroxy-4-pyron-6-yl)
Ga
Metals Boiler water Ores
Ge
Hf Hg
...
In Ir
...
K La Li Mg Mn
Brick, alloys
...
Uranium, aluminum Blood
ketone 2-Thenoyltrifluoracetone (xylene) Iron(II1) oxide Butylrhodamine J3 A',.Y '-bis( 2-hydroxyphenyl)-C-cyanoformazan 3-Nitropyrocatechol, or 4-nitropyrocatechol 3,4-Dihydroxy-4'-sulfoazobenzene,or 3,4(dihydroxy-]-naphthyl) diphenyl carbinol 2,3-Bipyridine, pyrocatechol Alizarin S Ferrocyanide, 2,2'-bipyridine Cat>alvtic.ferrocvanide and nitrosobenzene Pyroc"atecho1 Violet 4-(2-Pyridylazo) resorcinol Brilliant Green Tin(I1) iodide Tin(I1) bromide 1-(2-Pyridylazo)-2-naphthol Indirect, pptn with ?;azPb[Cu(NO~)s] Sodium 1,8-dihydroxy-2-phenylazo-3,6-naphthalenedisulfonate, or 1,8-dihydroxy-2,7-bis(phenylazo)3,6-naphthalenedisulfonate Indirect, 1,lO-phenanthroline (4611 Sodium 5-(3-nitrophenylazo) salicylate (65) Pontachrome Azure Blue B (466) Solochrome Black PV (256) 8-hydroxy quinaldine (308) Benaohydroxamic acid
2-Thenoyltrifluoroacetone
Mo
Nb
... ... ... ...
Formaldoxime [reflectance] 1,lO-Phenanthroline, tin( 11) chloride Diethanoldithiocarbaniate
Aminohydroxyfuran (CHC13) Sodium alizarin-3-sulfonate Redured molybdoniobic acid Molybdoniobophosphoric acid Lumogallion 8-Quinolinol (Continued) VOL. 36, NO. 5, APRIL 1964
257 R
(Table I.
Constituent Material Nd Alloys Ni ...
NP
os Pa Pb
Pd
...
...
... ...
...
... G’a8es Tellurium ... ... ...
Pt
...
Pu
...
Rare earths
, , ,
Re
Rh
Ru Sb
sc
...
mOis ...
... ... ... ...
Soils, rocks ...
Sr Ta Tc
... Steel
hiiderals
...
Steel
Th
Ti
... ... ... ... Steel
T1 U
V
Alioys Steel silicates Steel
W
Yt
steels Steels Tantalum Steels
Zn
Rocks
Zr
T’in, lead ...
Aiioys ~
258 R
Method or reagent Differential 2-Thenoy ltrifluoroacetone
0-Furildioxine (reflectance) 1,2,3-Cyclohexanetrione trioxime 2,3-Quinoxaline dithiol Biscy clohexanone oxalyldihydrazone Quercetin Thorin Arsenazo Quinisatin oxime 1,5-Diphenylcarbohydrazide Arsenazo I11 Thenoyltrifluoroacetone Dithizone Dithizone 8-Aminoquinoline (CHCL) p-?;itrosodiphenvlamine (EhC204) Dibenzvldithiooxamide 5-i~-Dimethvlaminobenzvlidenekhodanine Dibenzvldi t h o x a m i d e Arsenazo I11 Pu(II1) Xylenol Orange Arsenazo 1-(2-Pyridylazo)-2-naphthol( E t O ) Th ymolphthalexon Butylrhodamine B Catalytic
Ores Rocks, molybdenite Molybdenite 4-Methylnioxime p-Xitrosodiphenylamine Tin(I1) bromide (iso-AmOH)
...
Sm Sn
Continued)
_____
1-(2-Pyridylazo)-2-naphthol
Tin(I1) chloride Diazotized sulfanilamide Dithiophthalimide 2-Nitroso-1-naphthol Ethyl violet Rhodamine B, nitrite Brilliant Green (toluene) Glyoxal bis-(2-hydroxyanil) 4-(2-Pyridylazo) resorcinol Xylenol Orange Xylenol Orange Tin( I1 )-iron(I1)-dimethylglyoximate Alizarin Blue (cyclohexanone-EtOAc) Ammonium purpurate Butylester of Rhodamine S Pyrogallol Malachite green (Cs&) Furil a-dioxime 1,5-Diphenylcarbohydrazide(CCl4) Ferrocyanide ( AmOH) Solochromate Fast Red Dibromoarsenazo I1 Sodium alizarin-3-sulfonate Arsenazo I11 Reduced molybdotitanic acid .Y-benzoyl-.V-methylhydroxylamine
,V-acetylanabasine (CHC1,) 2,7-Dichlorochromotropic acid Oxidation of sulfanilic acid by TI(II1) Iodide Methyl violet (amylacetate) Azide Arsenazo I11 4-(2-Pyridylazo) resorcinol 5,5’-(4,4’-Biphenylylenediazo)disalicylate Chlorophosphonazo I11 Thiocyanate-pyridine (CHCL) 1-(2-Thenoyl)-3,3,3-trifluoroacetone Acid Chrome Blue K Benzylphenylhydroxylamine .Y-Cinnamoyl-n-pheny lhydroxylamine Thiocyanate 8-Quinolinol (CHC13) Thio cyanate Disodium 3-(2-arsonophen,vlaxo)4,5-dihydroxy-Z,7- ( 6 8 ) naphthdenedisulfonate Borate-Pyrocatechol Violet (4011 Zincon (205) Indirect, Eriochrome Blue Black R (376) Alizarin Blue (cyclohexanone-EtOAc) (199) Reduced molybdosulfatozirconic acid (118) Semixylenol Orange ( 355 ) p - ( p-Dimethyl amino pheny1azo)henxenearsonic (127) acid ~ _ _ _ _
ANALYTICAL CHEMISTRY
A comparison of sixteen different reagents for beryllium indicated that Beryllon 111, and Beryllon IV were the most satisfactory (256). h photometric method of determining bismuth using 2,6-dimercaptothiopyr-4-one derivat,ives was developed (4’71). Fortyseven derivatives of 2,2’-biquinoline and copper(1) were examined spectrophotometrically to determine the effect of kind and position of substihents on absorption spectra (319). Seven reagents were studied critically in respect t’o their suitability in determining small amounts of copper in textiles ($36). Eight polyphenolic reagents for the spectrophotometric determination of iron(II1) and t’itanium(1V) were compared as to absorbance maximum and molar absorptivity (443). Sulfonazo and it’s dibromo and dimethyl derivatives form 1 : 1 complexes with indium and gallium(II1) (415). Twent,y other reagents have been evaluated for the photometric det’ermination of indium(II1) with Xylenol Orange, RIethylthymol Blue and Eriochrome Cyanine showing superior characteristics (33, 34). Molybdenum(V1) and (V) form colored compounds with aliphatic and aromatic reagents provided they contain one thiol and one carboxyl group, or another thiol, or a hydroxy group so that B five or six membered ring is formed ( 8 2 ) . A number of polyhydric phenols having t,wo ortho hydroxy groups can be used for the spectrophotometric determination of molybdenum(V1) ( 7 6 ) . The absorption spectra of rare earth metal complexes of phenanthroline have been studied (244). When numerous reagents were screened as to their utility in the spectrophotometric determination of zirconium, ;icid Chrome Pure Blue V (410) and Xylenol Orange (36, 37) seemed preferable. A procedure for the analysis of “fissium” alloys includes successive‘ spectrophotometric determinations of zirconium by Alizarin Red S, molgbdeiium by thiocyanate, ruthenium as perruthenate, palladium by 2-nitroso-lnaphthol, and cerium as tartrate (262). Successive extraction and photometric determination of copper, nickel, iron, and manganese in alkali metal halides use lead diethyldithiocarbamate, dimet~hylglyoxime, 1-nitroso-2-naphthol, and sodium diethyldithiocarbamate as reagents (61). I3y p H control, complesing, and select’ion of extract’ant it was possible to determine bismuth, copper, tin, and ant’imony in smelter zinc using sodium pyrrolidinedithio(253). Zinc(I1) - bis(2carbamate hydrosyethyl)dit.hiocarbamate forms water soluble colored complexes with bismuth, cobalt, copper, nickel and tellurium (487). Simultaneous spectrophotometric determinat,ions have been reported for the
determination of cobalt and nickel with 2,3-quinoxalinedithiol (28), copper, cobalt, nickel, and chromium with biuret (171), and copper, nickel, cobalt, iron, and manganese as pyridine thiocyanates (29)* METHODS
Nonmetals. Very little progress can be reported in respect to t h e development of new or improved methods for t h e spectrophotometric determination of t h e nonmetals. A comparative spectrophotometric study of 52 methods for the determination of nitrite included 38 new methods, or reagents (394). A comparison of the carmine, 1,l'-dianthrimide, Victoria Violet, and curcumin methods for determining the boron content of surface waters has also been made (269). From over 175 papers pertinent to the utilization of heteropoly anions, t h e studies related to the reduction of molybdosilicic acid (298, 430) and to the use of a 3-dimensional diagram based on acidity, absorbance, and molybdate concentration to correlate the problems involved in reducing molybdophosphoric acid are t h e most significant (125). The trichloramine raaction has been utilized with the linew starch-cadmium iodide reagent for the determination of traces of ammonia (494). Organic Constituents. Dichlorodicyanoquinone gives specific color reactions with aromrttic hydrocarbons a n d their derivativen by formation of pi complexes in chloroform solutions ( 1 Y ) . Stabilized diaironium salts form colors with numerous phenols and aromatic amines (275) cis-Dichlorobis (ethylenediamine) chyomium(II1) chloride reacts with polyfunctional organic acids (128). The excass reagent is converted to a thiocyanate complex and extracted by a n organic solvent; any monobasic acid present is also extracted. T h e color developed by EDTA and the chromium-organic acid complex in the aqueous layer was measured. 3Methyl-2-benzothiazolinone hydrazinehydrochloric acid reagent can be used in the spot test detection and colorimetric determination of 91 aromatic amines and iminoheteroarornatic compounds (392). 5-Nitroisatin gives colored compounds with N,N-dialkylanilines, diphenylamines, and carbazoles (390). Primary, secondary, 2nd tertiary fatty amines are determined in aqueous solution by extraction of the yellow complexes formed with methyl orange (418). I n the presence of acetic anhydride, only the tertiary amine reacts if salicylaldehyde is present, primary amines do not react, thus permitting determination of mixtures by use of three aliquots. Methyl orange has also been used to determine Schiff bases (284). Ethyl alcohol (283), alpha amino acids (284)and glucose (285) have been determined by riutomatic spectro-
photometric reaction rate methods in which enzymes are employed. The nitrosation, p-nitroaniline, and 4-aminoantipyrine methods for determining phenols in waste waters have been compared (338). A comparative study of four methods of estimating uronic acid contents of polysaccharides
Table II.
indicated the acidic decarboxylation method to be the most reliable ( 1 8 ) . The Furth and Hermann reaction has been utilized in the rapid spectrophotometric determination of itaconic, citric, aconitic, and fumaric acids (187). p-Aminodimethylaniline and mphenylenediamine are reagents in deter-
Photometric Methods for Nonmetals
ReferMethod or reagent ence Silver diethyldithiocarbamate (437) Azomethine H (84) B-hematein (306) Quinalizarin (1) ... 8-Naphthoquinoline ( 70) Hexabromofuchsin (98) WBiRr Indirect, catalytic (138) o-Arsanilic acid (278) Indirect, Ferroin as precipitant (169) Barbituric acid (313) Air Thymol blue, diethanolamine (432) ... Cerium( I11)-alizarin (484) ... Mn(II1) as oxidant (282) ... Diethylaluminum hydride-isoquinoline (311) Org. solvents Chloranilic acid (46) Rock Iodate cadmium iodide-starch (107) Semiconductor Iodine (0-xylene) (419) o-Dianisidine (173) .. Trichloramine cadmium iodide-linear starch (494) Gases Iron( I1)-thioglycolate (207) N,.V,IY',.V'-tetraphenylbenzidine silica gel (433) Gases Disodium 1-(4-amino-2-sulfophenylazo)-2-amino- (231) ... 8-hydroxynaphthalene-6-sulfonate Sea water N-I-naphthylethylenediamine (90) Propellants Iron(I1) sulfate (331) Safranin T (111 Water N t r i c oxide Ethylene Astrazone Pink FG Metals Pararosaniline, formaldehyde Metals Plasma Amy lose-iodine (iigj Conversion of cyanide to thiocyanate, iron(II1) (369) Phosphite ( ,900 ) 2,3-Diaminonaphthalene (274) p-Sulfophenylhydrazine, 1-naphthylamine (237) Triphenylmethane lactone derivative Paper Water Thiourea Cast iron
Constituent Material As Alloys B Steels BlOH14 Brz BrBrOaClO, CN -
co2
F-
+
104a"
NO2
Si02
so,Te
+
+
Table 111.
Constituent Adenine Ajamline Alcohols Aldehydes (aliphatic)
Photometric Methods for Organic Compounds
Material Biological Pharmaceuticals
...
...
Aldrin Alkylbenzenesulfonates water Amines Amines (sec) p - Aminophenol 3,6-Anhydrogalactose Anionic surfactants Ascorbic acid Azalene Bilirubin Bid 2-chloroethvl) - . amine Blood glycerides Caffeine Chlorophyll Cholesterol Choline CO-RAL Cysteinesulfinic acid
... ... ... ...
...
... ...
Serum Biological Serum
Beverages Ocean Blood
...
Fat . . I
Method or reagent Permanganate Diazotized sulfanilic acid Di-8-quinolinol ; orthovanadic acid Methyl amine o-aminobenzaldehyde Dinitrobenzene Methylene Blue Cobalt(I1) thiocyanate Coqper(I1) CS2 Cerium( 111) Indol-3-ylacetic acid Methyl Green Osmium tetroxide Electrophilic reagents Diazotized 2,4-dichloroaniline 4-(p-Nitrobenzyl )pyridine
+
Chromotropic acid Malonic acid acetic anhydride Spacelight spectroscopy Iron(II1) chloride Cis-aconitic anhydride 4-Aminoantipyrine Fuchsin
+
(Continued)
VOL. 36, NO. 5 , APRIL 1964
259 R
Table 111. Constituent Deoxyribose 1)ialkyl and trialkylaluminum Dialkyltin 1,4-T>icaffeylquinic acid 2,6-I>ichloro-4nitroaniline 2,5-Dichloro-4-nitrosalicylanilide Dimethoate residues 1,l:Dimethylhydrazine Ethinamate
Material Tissue ...
Fats
...
(Continued)
Method or reagent Cond. sulfuric acid Isoquinoline Catechol Violet Nitrite
Plants, soil
Redox, indamine dye formation
Water
Ethanolamine
Milk Air, blood, water
Tungstophosphate blue Trisodium pentacyanoaminoferrate L)iazobenzenesulfonicacid, pyridine Copper(I1) complex 3-(p-Iodophenyl)-2-(p-nitrophenyl)-tetradiuni chloride, cobalt(11) Iron( 111) hydroxamate Chromotropic acid, 6-amino-lnaphthol-3-sulfonic acid, 6-
Ethion Ethylenediamine
Plants
Fatty acid amides Formaldehyde
Lipids
...
anilino-1-naphthol-3-sulfonic
Fructose, glucose Glucose Glycine
Blood serum Blood Body fluids
Homovanillic acid Hydroperoxide Hydroxyurea
Urine Ether Biological fluids
Z-Isovaleryl-l,3-indandione Kynurenine Lysine Malonaldehyde
Rodenticides ... ...
Biological fluid Methanol 4-Met hyl-2,6-tert-butyl Parafin phenol Air Monoethanolamine Phthalic anhydride 1,4-Naphthoquinone Nikethamide 3-Kitropropanoic acid Nitrosamines
+
Diazo reaction Diazotization, p-nitroaniline Thiobarbituric acid, or p-nitroaniline Anthrone in conc. sulfuric acid Chromotropic acid Lead dioxide oxidation
Silica gel, ninhydrin Malononitrile Cyanogen bromide, barbituric acid Plant tissue Formaldehyde, sulfanilic acid naphthylamine ... Benzaldehyde Z-benzothiazolylhydrazone, p-phenylazoaniline p-llimethy laminobenzaldehy de 1,2-Naphthoquinone-4-sulfonate Phaimaceuticals Pyroligneous liquor Vanillin Salicylaldehyde Biological Iodine-borate Nesslerization, or nephelometric +iter Waravdekar Saslaw
Orotic acid Panthenol Phenols Phenol Phenothiazone Poly (vinyl alrohol) Polyarrylamides Purine, Pyrimidine deoxyribonucleosides Pyridine Alcohol nicotine Pyridine Pyridine nucleotide
acid Differential reaction rate o-Tolidine, filter paper strips o-Tolidine Indirect, copper(I1) phosphate, neocuproine Molybdate-nitrate Titanium(1V) chloride Diacetyl monoxime, sodium p diphenylamine-sulfonate, ferric alum 2,4-Dinitrophenyl hydrazine
Tissue
Pyridoxal l,Pyrroline-2-carboxylic acid or ~roline Serum Quinosol Crude drugs Rotenone Salanidine, or solanine Plants Sphingosine Propellents Sucrose octaaretate Thalidomide o-Toluidine Tyrosine Vinblastine
Tech. p-toluidine Gelatin
Vitamin A Vitamin A aldehyde Xanthurenic acid
Biological Urine
p-Methylbenzenesulphonyl chloride Barbituric acid Dichloroindophenol, phenazine methosulfate Condensation with acetone o-Aminobenzaldehyde
Iron(II1) chloride An&nony(III) chloride Methyl orange .4nt hrone Hydroxamic acid, iron(II1) chloride , .
1-Sitroso-2-naphthol
Acetic anhydride, acetyl chloride, pyridine, sulfuric acid Molybdenuni blue Thiobarbituric acid p-1)iazobenzenesulfonic acid
mining 2-furaldehyde, 5-hydrosymethyl-2-furaldehyde, cinnamaldehyde, and citral (268). The aldehydes resulting from periodic acid oxidation of various osides are determined in acetic acid medium by /%naphthylamine, thymol, and phosphoric acid (226). Five reagents for spectrophotometric determination of glyosal were compared; 4-nitrophenylhydrazine is the most sensitive (387). p-Dimethylaminobenzaldehyde in concentrated sulfuric acid gives colors with C4 and higher olefins (25). Three new methods for the spectrophotometric determination of cocaine in cocoa leaves have been described (454). Seven methods for the photometric determination of sennoside in drugs have been compared (310). Picric acid gives colors with alkaloids in glacial acetic acid (49). Five new spectrophotometric methods for determining alkylating agents have been introduced (385). Hydrosyl groups in polyglycols can be determined using acid-catalyzed acetylation, hydrosamation, and development of the iron(II1) hydrosamate color (176). The bound iron of siderophilin is determined in serum or plasma using either 2,2’,2’’-terpyridine or sulfonated 4,7--diphenyl-l,lO-phenanthroline (396). Tetracycline, oxytetracycline, and chlorotetracycline can be assayed colorimetrically using an alcoholic nitrite solution (6). Alphadicarbonyl- and quinone-type conjugated dicarbonyl compounds react with 2,4-dinitrophenylhydrazine to form bis(2,4-dinitrohydrazones) which give colors when treated with a solution of diethylanolamine in pyridine (220). Attention is directed to a review article on organic spectrophotometric analysis (388). Methods for various specific organic constituents are summarized in Table 111. PHYSICS
Under this heading the physical aspects underlying light absorption spectrometry, namely principles and methodology of measurement and concomitant instrumentation, are summa1 ized. A historical literature survey shows the development of the Beer and Bouguer laws (349). The optimum concentration range for conformity to Beer’s law depends upon a number of parameters and can eatend to as low as 2% and as high as 90% transmittance (206). h mathematical deduction of Beer’s law has been outlined (73), and a method of calculating mean absorptivities so that a linear plot is obtained when Beer’s law is invalid has been given (201). A review of deviations from I3ouguer’s law has cited diffusion of resonance radiant energy and systems with negative absorption eoefficients a$ possible mechanisms involved (132).
260 R
ANALYTICAL CHEMISTRY
Errors of spectrophotometric measurement are discussed in respect to the use of cells of circular cross section (296), stray radiant 1:nergy (427), uncertainties of slope and intercept of calibration graph (449), nonadditivity of absorbance in multicomponent analysis (356) and summation of errors of individual operations in biochemical analyses (368). T h e error resulting when the concentration of a n interfering component changes h m been evaluated ; the error can be reduced by making measurements at two wavelengths (381). T h e addition method has been used satisfactorily in the presence of impurities ( 3 ) . Methodology. Techniques have been described for measuring turbid biological samples in order t o correct for scattering, by measuring with different distances bel ween sample and photocell (263),and by using a n electron multiplier phototube close to the sample (330). Multicomponent systems are discussed in respect to varying either p H or wavelengths of mezsurement when absorption spectra are unfavorable ( 9 4 , using a computer to solve equations by least squares treatment (195), a method of calculatiig the absorption spectrum of a component in a reaction mixture without prior determination of the spectra of other components (9), the calculation of the number of absorbing species in a reaction mixture (8),estimating the instability of the system of equations due to linear relationship among ahsorption spectra (495), and the application of the absorbance ratio methoc to pharmaceuticals (361). The differential technique has been applied to flow colorimetry (147) and the limit of sensitivity in analysis of liquid or gaseous mixtures has been treated theoretically (60, 38.2). Very opaque solutions can be examined by using a multiple attenuated total reflection technique (186). In using the differential method for concentrated solutions, optical compensation was incorporated (49). Other papers deal with a nomogram for calculating the composition of liquid light filters with predetermined maximum transmittance (COG), and improved digital readout method ( l a g ) , the limiting resolution in derivative recording (442),and automation to improve the sensitivity and precision in the parts per billion range (72). Calibration. T h e problem of testing for photometric and wavelength accuracy continues to be studied. T h e isosbestic wavelength of 496.2 mp a t 25’ C. of the acidic and neutral forms of bromophenol blue (140) and solutions of samai ium and n e o d p i u m chlorides (1 41) have beenrecomriended. Colored glasses seem to be the preferred stan-
dards (233, 103, 121). Screens (75, 473) and a neutral filter glass (425) have also been used. The reproducibility of the absorption spectra data for 140 compounds (353) and the results of a collaborative test of Unicam SP. 5000 spectrophotometers have been discussed (376). Log-log paper has been recommended in plotting calibration graphs (370). Cells. T h e following special application absorption cells have been described: a general purpose cell with spacers to circumvent dilutions ( & I ) , a cell for measuring the reflectance spectra of powders (44), a hermetically sealed vibrating reaction cell (213), a capillary loop cell enclosing spherical drops of solution (378), a low temperature, double-path absorption cell ( 4 4 3 , and a split compartment cell for differential spectrophotometry (228). A cryostat fitting the cell compartment of a Cary Model 14 spectrophotometer and containing optical cells of variable path length has been designed (446). Spectrophotometers. Several new spectrophotometers have been marketed recently. T h e Coleman Model 30 “Autoset” has a grating dispersive element, automatically sets the reference, and has a range of 200-1000 mp (100). Another new ultravioletvisible instrument is the Hitachi PerkinElmer Model 139. It has a grating monochromator, a range of 195 to 800 mp, and features a transistorized power supply (350). The Unicam SP. 800 is a line-operated, recording prism instrument; the maximum wavelength range is 190 to 850 mp (468). The Unicam SP. 1400 Prism Absorptiometer is primarily a medium resolution instrument for routine analysis in the 400700 mp region and has a direct reading deflection galvanometer (469). The Beckman DK/Universal, a double-beam dual monochromator, has a wavelength range of 160 to 3500 mp (50). The “Spectrochem” of Hilger and Watts is a new direct reading spectrophotometer with a wavelength range of 340-750 (71). The Aminco-Chance dual wavelength spectrophotometer is a special instrument for biochemical research with which optically dense samples can be measured and the change in absorbance recorded as a function of time (16). Special application instruments for determining deoxyribonucleic acid in situ by cytospectrophotometry (159), bilirubin (224), and vitamin A (304) have been described. A modification of the Beckman DU spectrophotometer permits the recording of absorbance a t fixed wavelengths (291). A digital printer for the Cary Model 11 spectrophotometer prints out the absorbance and wavelength a t a selected number of wavelengths while the absorption spectrum
is being recorded (223). A system for converting a Beckman D U spectrophotometer to a n automatic recording integrat’ed densitometer which can also be used in flow spectrophotometry has been described (489).
Special Application Instruments. Microspectrophotometers incorporating microscopes have been described ( 7 , 86, 328). A photoelectric device applicable to spectrophotometric determination of micro amounts (286) and a photoelectric colorimeter capable of very precise measurements have been designed (252). An in vivo oximeter (358),a recording thermospectrophotometer which measures thermal stability (298), a portable analyzer for determining trace elements in plants and soils (373), and a combination ultracentrifuge spectrophotometer system (185, 395) are addit’iona,l examples of specialized apparatus. The Gilford Model 2000 multiple sample absorbance indicator-recorder is especially adaptable to enzyme assays (159). The Model TA-10 turbidity analyzer (323), the Model 230 aerosol photometer (STY), and the M 500 photomet’er (398) are commercially available. Automated Instruments. Research Specialties introduced their “Robot Chemist,” a system consisting of precipitation-filtration module, a Sample processing turntable. a spectrophotometer, and a digital print-out unit (372). This instrument is capable of performing approximately 100 determinations per hour using samples of 0.03-ml. size. Technicon has a n eightchannel AutoAnalyzer which gives the result’s of eight determinations on a 1-2 ml. sample in approximately 11 minutes ( 8 7 ) . Canalco Model M flow analyzer permits a fully automatic monitoring of effluents from chromatographic columns or other flow systems. The results are recorded in either % transmittance or absorbance (85). Milton Roy has a new automatic colorimetric analyzer, the Chemalyzer, which has no moving part’s and is especially suitable for routine water analyses (303). The LKB multichannel absorptiometer isapplicable to the photometric measurement of three liquid samples against a reference stream. The wavelengths depend on the interference filters selected (271). The D u Pont’ 400 photometric analyzer has been developed to monitor continuously liquid and gaseous samples (123). The Uausch and Lomb data acquisition system features a semi-automatic “flow-thru cuvette” in the Spectronic 20 and enables about 4 samples per minute to be tested. Either a strip recorder or a digital readout is used to eliminate reading errors (48). Automatic analyzers of special design and application include the following : a process-stream analyzer (160), analyzers for chromatographic effluent VOL. 36, NO. 5 , APRIL 1964
e
261 R
streams (19, 3 5 4 , apparatus for estimating low concentrations of protein (488),water analyzers (135, 182, 221, 402) and numerous patented instruments (21, 47, 136, 148, 158, 167, 193,
292,320,397,406,422). APPLICATIONS
Applications are considered in respect to methods of analysis and color specification. Methods of Analysis. New methods, improved methods, a n d unique techniques have been applied to multifarious samples. M a n y applications have been mentioned in t h e discussions of t h e chemistry and special application instruments. Most of t h e practical applications are included in Tables I, 11, a n d 111. A selected list of spectrophotometric methods of extensive applicability for metals, nonmetals, and organic substances has been summarized in tabular form (297). The applications of reflection spectroscopy have been discussed (250). Color Specification. Attention is called to a new journal, Color Engineering (101) and to books entitled “Color of Foods” (280), “Color in Business, Science, and Industry” (225), and the “Reinhold Color Atlas” (248). Development in color measurement, color specifications, and relevant topics are reported (211). The “color value” and a “shade number” are used in characterizing color (27). A uniform, rational dilution scale coordinates industrial and pharmacopeia1 colors (26). Correlations of the Lovibond color system with the C I E system for source A are given (224) Three color-difference equations have been studied with the objective of improving spectrophotometry as a tool for production control (209). Pigment analysis from reflectance spectrophotometry (122) and the measurement of color in a n industrial waste with the tristimulus method (261) have been discussed. The procedures and instruments used in precision measurement by photoelectric photometry have been reviewed (105).
A high-speed tristimulus color computer for quality control of color, “Colorgard, Model C” (151) the Toshiba color computer (458), a filter photoelectric reflection photometer for measurement of color, the Zeiss “Elrepho” (490), the 8/P Agtron, a direct reading reflectance colorimeter (4OO), and the Model V colormaster (289) are commercially available. ColorRad, a n abridged ratio type spectroradiometer and colorimeter, is used in obtaining a spectral analysis of colored luminous sources (220). Standards for tristimulus instruments are available (208, 322). 262 R
ANALYTICAL CHEMISTRY
LITERATURE CITED
( 1 ) Abrazhanov, Y. A , , U . S. S . R. 139,474 Appl. Sept. 29, 1960. ( 2 ) Adamovich, L. P., Zh. Neorgan. Khim. 6, 1267 (1961). ( 3 ) Adamovich, L. P., Zh. Analit. Khim. 17, 912 (1962). ( 4 ) Adamovich, L. P., Mirnaya, A. P., Starchenko, A. V., Ibid., 18, 420 (1963). ( 5 ) Adamson, J. H., Analyst 87, 597 (1962). (6) Agrawal, K. C., Dutta, B. N., J . Proc. Inst. Chemists (India) 34, 73 (1962). ( 7 ) Agroskin, L. S., Korolev, N. V., Opt. Spectry. 6, 544 (1959). (8) Ainsworth, S., J . Phys. Chem. 65, 1968 (1961). ( 9 ) Ainsworth, S., Zbid., 67, 1613 (1963). (10) Albrecht, A. M., Scher, W. I., Jr., Vogel, H. J., ANAL. CHEM. 34, 398 (1962). ( 1 1 ) Aleskovskii, V. B., Koval’tsov, V. A., U . S. S. R. 144,046,Jan. 27, 1962. (12) Alimarin, I. P., Han, H., Zh. Analit. Khim. 18. 82 (1963). (13) Al-Kayssi, M., M’agee, R. J., Wilson, C. L., Talanta 9, 125 (1962). (14) Allison, G. M., At. Energy Can. Ltd., Chalk River AECL-1371 (1961 ). (15) . . Altshuller. A. P..Sleva. S. F.. AKAL. CHEM.33, 1413 (1961). (16) American Instrument Co., Inc., Silver Spring, hld., Bulletin 2383, Nov., 1963. (17) Anderseh, L., Finska Kemisisamfundetz Medd. 70, 31 (1961). (18) Anderson, D. M. W., Garbutt, S., Anal. Cham. Acta 29, 31 (1963). (19) Anderson, X. G., Anal. Bzochem. 4, 269 (1962). (20) Anon, Analyst 86, 748 (1961). (21) Anscherlik, A., Belg. 614,252,Aug. 22, 1962. (22) Asmus. E.. Z. Anal. Chem. 183, 321 ( i g s i j . (23) Asmus, E., Bull, A., Wollsdorf, F., Ibid., 193, 81 (1963). (24) Asmus, E., Kraetsch, J., Papenfuss, D., Zbid., 184, 25 (1961). (25) Asmus, E., Papenfuss, D., Zbid., 185, 201 (1962). (26) Auber, L., Brantner, A., BudvariBarany, Z., Acta Pharm. Hung. 31/B, Suppl. 16-26 (1961). (27) Auber, L., Magy. Kem. Folyoirat 67, 545 (1961). (28) Ayres, G. H., Annand, R. R., ANAL. CHEM.35, 33 (1963). (29) Ayres, G. H., Baird, S. S., Talanta 7 , 237 (1961). (30) Ayres, G. H., Briggs, T. C., Anal. Chim. Acta 26,340 (1962). (31) Ayres, G. H., Scroggie, L. E., Zbid., 26, 470 (1962). (32) Babcock and Wilcox Company, Brit. 894,459,April 18, 1962. (33) Babko, A. K., Kish, P. P., Dopovidi Akad. Nauk Ukr. R. S . R. 1961, 1323. (34) Babko, A. K., Kish, P. P., Zh. Analit. Khim. 17, 693 (1962). (35) Babko, A. K., Mikhel’son, P. B., Kirpa, I. M.. Urk. Khim. Zh. 28, 963 (1962). (36) Babko, A . K., Vasilenko, V. T., Ukrain. Khim. Zh. 27, 396 (1961). (37) Babko! A. ,K., Vasilenko, V. T., Zh. Analzt. Khzm. 18, 71 (1963). (38) Babko, A. K., Volkova, 0. I., ~
Cet’rnan, T. E., Zh. n’eorgan. Khim.
6 , 1035 (1961). (30) Bag, S. P., Fernando, Q.,Freiser, H., AKAL. CHEM.35, 719 (1963). (40)Bambenek, M. A., Pflaurn, R. T., Inorg. Chem. 2, 289 (1963). (41) Bandyukova, V. A., U . S. 8. R. 139,473,Appl. Sept. 27, 1960. (42) Banks, C. V., La Plante, J. P., Anal. Chim. Acta 27, 101 (1962).
(43) Barkovskii, V. F . , Vtorygina, I. V., Zh. Analit. Khim. 17, 39 (1962). (44) Barnes, L., ‘Goya, H., Zeitlin, H., Rev. Sci. Znstr. 34, 292 (1963). (45) Barreto, R. C. R., Barreto, H. S. R., ,4nal. Chim. Acta 26. 494 (1962). (46) Basargin, N. N.,‘Kuznetsov, V. I., U . S. S. R. 148,584,Jul 13, 1962. (47) Baumberg, I. D., d l i k a d z e , L. D., U . S . S . R. 146,089,Apr. 6, 1962. (48) Bausch and Lomb, Inc., Rochester, N. Y., Bulletin D-20 51, 1063 B and I;. (49) Bayer, I., Acta Pharm. Hung. 29, 53 (1959). (50) Beckman Instruments, Inc., Process
Instruments Div., Fullerton, California, Technical Bulletin. (51) Berg, E. W., Youmans, H. L., Anal. Chim. Acta 25, 470 (1961). (52) Betteridge, D., Fernando, Q., Freiser, H., ANAL.CHEM.35, 294 (1963). (53) Betteridge, D., Todd, P. K., Fernando, &., Freiser, H., Ibid., 35, 729
(1963). (54) Betteridge, D., West, T. S., Talanta 9 , 4 5 6 (1962). (55) Betteridge, D., Yoe, J. H., Ibid., 355 (1962). (56, Beiteridge, D., Yoe, J. H., Anal. Chim. Acta 27, 1 (1962). (57) Bhat, A. iY.,Jain, B. D., J. Indian Chem. SOC.38, 779 (1961). (58) Bhat. A. N.. Jain. B. D.. Anal. Chi%. rlcta 25,343 (1961). (59) Bhat, A. N.,Jain, B. D., Proc. Indian Acad. SOC.Sect. A 56,285 (1962). (60) Blank, A. B.. Zh. Analit. Khim. 17, 1040 (1962). (61) Blank, A. B., Bulgakova, A. M., Sizonenko, X. T., Zbid., 16, 715 (1961). (62) Blankenhorn, D. H., Rouser, G., Weimer. T. J.. J . Livid Research 2. 281 (1961). ’ (63) Bly, D. D., Mellon, M. G., ANAL. CHEM.35, 1386 (1963). (64) Blyum, I. A., Dushina, T. K., Zavodsk. Lab. 28,903 (1962). (65) Blyum, I. A., Shebalkova, G. N., Tr. Kazakhsk. Nauchn. Issled. Inst. Mineial’n Syr’ya 1961,265. (66) Boettcher, C. J. F., Pries, C., Van Gent, C. M., Rec. Trav. Chim. 80, 1169 (1961). (67) Boltz. D. F., Record Chem. Pron. 24, 167 (1963). (68) Bornong, B. J., Moriarity, J. L., ANAL.CHEM.34. 871 (1962). (69) BraithGaite, ’B., Penketh, G. E., Analyst 88, 297 (1963). (70) Braman, R. S., Johnston, T. K., TalaQta 10, 810 (1963). (71) Bt Bull. Spsy., 1962,227. (72) Britt, R. D., ANAL.CHEM.34, 1728 f1962). ~- -~ (73) Brock, J. R., Anal. Chim. Acta 27, 95 (1962). (74) Brudz, V. G., Drapkina, D. A., ~
I
Smirnova, K. A., Doroshina, N. I., Sidenko. Z. S..Chizhova. G. S.,’ U . S. S . R . 146,088,Apr. 6, 1962. (75) Bryan, F. R., Appl. Spectry. 17,
19 (1963). (76) Buchwald, H., Richardson, E., Talanta 9, 631 (1962). (77) Burger, K., Ibid., 8, 769 (1961). (78) Burger, K., Ruff, I., Talanta 10, 329 (1963). (79) Burke, K. E., Davis, C. M., ANAL. CHEM.34. 1747 (1962). (80) Burke,’R. W.; Yoe, J. H., Zbid., 34, 1378 (1962). (81) Buscarons, F., Mena, R., Anales Real. Soc. Espan. Fis. y Quim (Madrid) 57,495 (1961 ). (82) Busev, A . I., Chang, F., Kuzyaeva, Z. P., I t v . Vysshikh Uchebn. Zadodneii, Khim. i Khim. Tekhnol 5, 17 (1962). (83) Cabrera, A. M., West, T. S., ANAL. CHEM.35, 311 (1963).
(84) Capelle, R., Ana,!. Chim. Acta 25,
59 (1961). (85) Canal Industrial Co Bethesda, Md., UVA Bulletin (1963:' (86) Catino, A., Ceruti, A., Colombino, J . , Attual. Lab. 5,No. 3,73 (1959). (871 Chem. Eno. Newus 41. No. 4d, 118 ' ( i963). (88) Cheng, K . L., ANAL. CHEM. 34, 1392 (1962). (89) Cherkesov, A. I., Zh. Analif. Khim. 17,16(1962). (90) Chow, T. J., Jt>hnstone, M. S., Anal. Chim. Acta 27,441 (1962). (91) Chudinov, E. G., Yakovlev, G. N., Radwkhimiya 4,373 (1962). (92) Ibid., p. 375. (93) Ibid., p. 506. (94) Ciercierska - Stoklosa, D., Gorczynsha, K., Swietoslowska, J., Waledziak, H., Colloq. Speetros. Intern. 9th, Lyons, 1961,3,174. (95) Claborn, H. V.,Iirey, M. C., Mann, H. D., J . Econ. Entoaaol. 53,263 (1960). (96) Clarkson, A., E r m o t t , P., Analyst 87,870 (1962). (97) Cobbett, W. G., Kenchington, A. W., Ward, A. G., Biothem. J . 84, 468 I1 962). (,98) Cogan, E., ANAL. CHEM. 34, 716 (1962). (99) Cohen, M. D., Fimher, E., J. Chem. SOC.1962,3044. (100) Coleman Instruments, Inc., Bull. 88-286. (101) Color Engineering, Knielow Pub. Co., New York, N. Y. (102) Comte, A., Boucherle, A., Badinand, A,, Bull. trav. SOC. pharm. Lqon 6, 47.(1962). (103) Connellv. J. H.. U . S . 3.022.181. ' Feb. 20.1962. (104) Co&ini- A., Fernando, Q., Freiser, H., Inorg. dhem. 2,224 (1963). (105) Crawford, B. H., Natl. Phys. Lab., Gt. Brit., Notes Appl. Sci. -No. 29, 15 pp. (1962). (106) Crepaz, E., Marchesini, L., Mazzolini, G., Met. Ital. 54,373 (1962). (107)Crouch, W. H., Jr., ANAL.CHEM. 34,1698 (1962). (108)Crummett, W. B.,Hurnmel, R. A., J . Am. Water Works Assoc. 55, 209 (1963). (109)Csaazar, J., Acta Chim. Acad. Sci. Hun . 32,437(1962). (110) saszar, J., Fugedi, K., Ibid., 32, 451 (1962). (111) Dagnall, R. M., West, T. S., Talanta 8,711 (1961,. (112)Dakshinamurty, H.,Santappa, M., J . Org. Chem. 27,1842 (1962). (113)Davidson, J. D., Winter, T. S., Cancer Chemotherapll Repts. 27, 97 (1963). (114) Davis, J. R., Mcrris, R. N., Anal. Biochem. 5, 64 (1963). (115)De, A. K., Raharnan, M. S., ANAL. CHEM.35, 159 (19631. (116)De, A. K., Rahainan, M. S., Anal. Chim. Acta 27,591(1!)62). (117)De, A. K., Raharnan, M. S., ANAL. CHEM.35,1095 (1963). (118) Dehne, G. C., Mttllon, M. G., Ihid., 35,1382 (1963). (119) Dixon, K., Clin. Chim. Acta 7, 453 (1962). (120)Divekar, K. Q..J . Sci. Znd. Res. (India) 21B,309 (1962). (121) Dodd, C. X., West, T. W., J . O p t . Soc. A m . 51,915(1961). (122)Duncan, D. R., J . Oil Colour Chemists Assoc. 45,No. 5 (1.962). (123)Du Pont de Nemours, ,and Co., Instrument Product13 Division, Wilmington, Del., B u l l e h 400-A (1963). (124) Duswalt, J. M.,Mellon, M. G., ANAL. CHEM.33, 1782 (1961). (125) Duval, L., Chzm. Anal: (Paris) 45,237 (1963). ~
I
e
'
,
(126) Eberle, A. R., ANAL.CHEM. 35, 669 (1963). (1271 Eberle. A. R.. Pinto. L.. Lerner M: w . , Ibid., 34,iii6 (1962). (128) Egashira, S.,Ihid., 33,1928 (1961). (129) Enol R., Ibid., 34,1516 (1962). (130)Ermolenko, I. N.,Longin, M. L., Gavrilov, M. Z., Zh. Analit. Khim. 17,1035 (1962). (131)Evans, H. B., Bloomquist, C. A. A,, Hughes, J. P., ANAL.CHEU. 34, 1692 (1962). (132) Fabrikant, V. A., Izv. Akad. Nauk S S S R , Ser. F i z . 26,61 (1962). (133) Fadoeva, V. I., Alimarin, I. R., Zh. Analit. Chim. 17,1020 (1962). (134) Farrington, K. J., ANAL.CHEM.34, 1338 (1962). (135) Ferrari, A., Tech. Eau (Brussels) 184, 55 (1962). (136)Ferrari, A., U . S . 3,098,717,July 23,1963. (137)Fischer, W., Bastius, H., Mehlhorn, R., Neue Huette 8,35 (1963). (138) Fishman, M. J., Skougstad, M. W., ANAL.CHEM.35, 146 (1963). (139)Florence, T. M., Farrar, Y., Ihid., 35,1613 (1963). ' (140)Fog, J., Scand. J . Clin. Lab. Inv. 14, 320 (1962). (141)Fog, J., Osnes, E., Analyst 87,760 (1962). $142)Free, A. H., U. S. 3,061,523,(cl. 195-1035), Oct. 30,1962. 143) Friedman, 0. M., Bogger, E., AXAL. CHEM.33. 906 (19611. 144) Friersbn, W. J., Marable, N., Ihid., 34,210 (1962). 145) Frierson, W. J., Patterson, N., Harrill, H., Marable, N., Zbid., 33,1096 (1961). Zbid.. 35. 1012 146) Friestad, H. 0.. (1963). Mar. 147) Fuhrmann, H., Ger. 1,103,642, 30,1961. 148) Fuhrmann, H., U . S. 2,995,425, Aug. 8,1961. 149) Futterman, S.,Saslaw, L. D., J . Biol. Chem. 236,1652 (1961). 150) Ganopol'skii, V. I., Krivonozhnikova, L. G. Shvarev, V. S., Zavodsk. Lab. 29,162 (1963). 151) Gardner Laboratory, Inc., Bethesda, Md., Technical Bulletin. 152) Garneau, R., Lava1 Med. 33, 656 (1962). 153) G a r y , W. J., Xickless, G., Pollard, F. H., Anal. Chim. Acta 26,575 (1962). 154) Gershkovich, E. E., Gigiena Trudal Prof.Zabolevaniya 6,57 (1962). (155) Gershuns, A. L., Rastrepina, I. A., U . S. S. R. 149,423,Aug. 28,1962. (156) Giang, P. A., Schechter, M. S., J . Agr. Food Chem. 11,63(1963). June (157) Gibson, J. J., U . S. 2,990,338, 27,1961. (158) Gidaspov, Y.F., U . 8. S.R. 96,843, Aug. 28,1962. (159)Gilford Instrument Laboratories, Inc., Oberlin, Ohio, Technical Bulletin (1963). ~(160) Giasser, L. G., Kanzler, R. J., Troy, D. J., Rev. Sci. Instr. 33, 1062 (1962). (161)Goldstein, G., Manning, D. L., Menis, O., Dean, J. A., Talanta 7,301 (1961). (162)Gonter, C. E., Petty, J. J., ANAL. CHEM.35,663 (1963). (163)Goryushina, V. G., Archakova, T. A., Zavodsk. Lab. 28,796 (1962). (164) Goulds, E.,ANAL.CHEM.34, 567 (1962). (165) Gottschalt, G., Z. Anal. Chem. 187,164 (1962). (166)Graham, J. R., Orwoll, E. F., J . Agr. Food Chem. 11,67(1963). (167) Grassmann, W., Hannig, K., U . S. 3,059,524,Oct. 23, 1962. ~
\ -
(168).Greenhalgh, R., Riley, J. P., Anal. Chzm. Acta 27,305(1962). (169)Gregorowicz, Z.,Buhl, F., Klima, Z., Mikro. Chim. Ichoanal. Acta 1963, 116. (170)Grossman, L., Greenlees, J., Anal. Biochem. 2. 189 (1961). (171) Gustin; V. K.,Sweet, T. R., ANAL. CHEM.33,1942(1961). (172)Gustin, V. K., Sweet, T. R., Zbid., 35,44 (1963). (173)Guernet, M.,C m p t . rend. 254, 3688 (1962). (174)Guilbault, G. G., ASAL. CHEM.35, 828 (1963). (175)Gupta, H. K. L., Sogani, N. C., J . Indian Chem. SOC.40,15 (1963). (176)Gutnikov, G., Schenk, G. H., ANAL. CHEM.34, 1316 (1962). (177)Guyon, J. C., Mellon, M. G., Ibid., 35,856 (1962). (178)Guyon, J. C., Wallace, G. W., Jr., Mellon, M. G., Zhict., 34,640 (1962). (179)Haas, W., Mzkrochim. Ichnoanal. Acta 1963,274. (180) Haas, W., Schwarz, T., Mikrochim. I c h n a l . Acta 1963.253. 4181) Haas, W., Winterstein, P., Mikrochim. Acta 1961,787. (182) Hack, C., Robert A. Taft Sanitary Eng. Center Tech. Rept. W 61-2,192 (1960). (183)Hakkila, E . A., Waterbury, G. R., Nelson, G. B., U. S. At. Energy Comm. TID-7629.55 (18611. 184) Hankkr, -J.'S., Sulkin, M. D., Gilman, M., Seligman, A. M., Anal. Chim. Acta 28,150 (1963). 185) Hanlon, S.,Lamers, K., Lauterbach, G., Johnson. R.. Schachman. H. K.. Arch. Biochem. Bkophys. 99,157 (1962): 186) Hansen, W. N., ANAL. CHEM.35, 765 (1963). 187) Hartford, C. G., Ihid., 34, 426 (1962). 188) Hartkamp, H., 2. Anal. Chem. 184, 98 (19611. (189)'Hartkamp, H., Ihid., 187,16 (1962). (190)Hartkarnp, H., Zbid., 190,66(1962). (191)Haskins, W.T., ANAL. CHEM.33, 1445 (1961). (192)Havermans, E., Verbeek, F., Hoste, J., Anal. Chim. Acta 26,326(1962). (193)Hecht, G. J., Smith, V. N., U . S . 3,089,382, May 14,1963. (194)Hernandez de Pool, D., Cadavieco, R. D., Acta Cient. Venezolana 13, 157 (1962). (195)Herschberg, 1. S.,Sixma, F. L. J., Koninkl. Ned. Akad. Wetenschav. Proc. Ser. B 65.244. (196)Hibbhs, J. O., Talanta 8,209(1961). (197)Hill, W.H., Kobayashi, Y., Shapiro, M. A,, A m Chem. soc., Div. Water Waste Chem., Preprints 1961. (198) Hirokawa, K., Sci. Repts. Res. Znst. Tohoku Univ.. Ser. A 13. 426 (19611. (199)Hirokana; K., Ibzd., Ser. A 14, 112 11962). (200)Holland, R., Analyst 87,385 (1962). (201)Holzapfel, H., J . Prakt. Chem. 14, 323 (1961). (202)HorAEek, H., Chem. Prumysl 12, 385 (1962). (203)Hough, D., Analyst 85,921 (1960). (204)Huffman, C., U. S. Geol. Surv., Profess. Papers 450-E,126 (1962). (205)Huffman, C., Jr., Lipp, H. H., Rader, L. F., Geochim. Cosmochim. Acta 27,209 (1963). (206)Hughes, H.K., Appl. Optics 2, 937 (1963). (207)Hummel, H., Kaltenhaeuser, H., Ger. 1,140,376, Sov. 3,1962. (208) Hunterlab Reflections and Transmissions, June 1963. 0209) Ingle, G. W., Stockton, F. D., Hemmendinger, H., J . Opt. SOC.Am. 52,1075 (1962). (210)Instrument Development Labora ~
-
~
I
\ - - - - , -
VOL. 36, NO. 5 , APRIL 1964
263 R
i tories, Inc., Attleboro, Mass., Techniral Bulletin, 1963. (211) Inter-Society Color Council News Letter, No. 167 (1963). (212) Ishitiara, Y., Kishi, H., Kornurc, H., Bunseki Kagaku 11, 932 (1962). (213) Ivanov, M. I., Podol’skaya, N. S., Galkin, I. X., Zh. Fiz. Khim. 36, 1838 (1962). (214) Jackson, S. H., Clin. Chem. 7, 512 (1961). (215) Jacobs, M. B., Am. Ind. Hyg. Assoc. J . 23, 411 (1962). (216) Jain, B. D., Singh, H. B., J . Indian Chena. Soc. 40, 263 (1963). (217) Jakovlievic. I. M.. J . Pharm. Sei. ‘ 51; i87 (i9;62).’ (218) Jankeclor, J . A., Anal. Biochena. 6 , 287 (1963). (219) Jayararnan, K. S., Rarnanujarn, S., Viiavaraehavan. P. K.. Current. Sci. (IAdh) 37, 282 (1062). ’ (220) Johnson, D. P., Critchfield, F . E . , Ruch, J. E., ANAL.CHEM.34, 1389 (1962). (221) Johnson, P. H., A m . Chena. SOC., I3v. Water Waste Chern., Preprints, 1961, 31. (222) Jokelle, O., Chena. Listy 56, 1108 (1962). (223) Jones, J. H., Clark, G. R . , Heine, K. S.,Williams, R . F., Appl. Spectr. 16, 187 (1962). 1224) Judd. D. B.. Charnberlin. E. J.. ‘ Haupt, G. w., j. opt. SOC. Am. 52, 813 (1962). (225) Judd, D. B., “Color in Business, Science, Industry,” 2nd Ed., J . Wiley and Sons, Inc., New York, 1963. (226) Jurado-Soler, A., Guernet, M., Compt. Rend. 254,2586 (1962). (227) Kakita, Y., Goto, H., ANAL.CHEM. 34, 618 (1962). (228) Kakac, B., Vejdelek, Z. J., “Handbuch der Kolnrimetrie. Band I. Kolorirnetrie in der Pharrnazie,” VEB Gustav Fisher Verlag, Jena, 1962. (220) Kalab, M., Actd Univ. Palackianae Olomuc. 23, 125 (1961). (230) Kassner, J . I,., Ting, S. F., Grove, E. L., l’alanla 7, 269 (1961). (231) Katsube, Y., IJesugi, K., Yoe, J. H., H u l l . Chem. SOC.Japan 34, 743 (1961). (232) Kawase, A., Bunsekz Kagaku 11, 621 (1962). (233) Keegan, H. J., et al., J . Opt. SOC. Ana. 53, 517 (1963). 1234) Keller. R . E.. ANAL. CHEW 35, ‘ 1753 (1963). (235) Kempton, A. G., Greenberger, hI., Ksplan, A. M., Teztile Res. J . 32, 128 (1962). (236) Khalifa, H., Bishara, S. W., Z . Anal. Chem. 184, 11 (1961). (23i) Kirkbrieht. G . F.. Yoe, J . H., AKAL.C H E 35, ~ 808 (1963). (. 2 3 8.) Kish. P. P., Orlovskii, S. T., Zh. Analit. Khini. 17, 1057 (1962). (2339) Kissin, B. I., Kurakin, E. N., li S.S.R. 144,633,Feb. 15, 1962. (240) K!ausen, K . S., Langnyhr, F. U., Anal. Ch,inr. Acta 28, 335 (1963). (241) Kleinsorge, H., Gaida, P., Pharniazip 16, 132 (1961). 1242) Kodarna. S..Taniauchi. I., Matsusaka, K., Naono, T., Japan 1597 (1963),Feb. 28. (24’3) Kornar. S P., Uch. Zap. Khdrkovsk GOR. Uniu. 7’r. Khiin. Fak‘. i .Vaiichn.lssled Inst. Khina. 71, 119 (1