Light Absorption Spectrometry D. F. Boltz, Wayne State University, Detroit, Mich. M. G. Mellon, Purdue University, lafayette, Ind.
T
review of light absorption spectrometry is a continuative documentation of the progress in this analytical discipline for the period from October 1965 through Fovember 1967, primarily as recorded by Chemical Abstracts. Although an effort has been made to be selective in surveying the extensive literature, many papers have been cited because of the unique manner in which classical methods have applied to specific materials and the ingenuity of the authors in devising procedures to circumvent interferences and enhance sensitivity. As in previous reviews (77, 460, 470), the subject matter has been arranged under the general headings of Chemistry, Physics, and Xpplications. Several trends were noted in respect to the role of light absorption spectrometry in analytical chemistry. There was a noticeable decline in the number of papers related to the determination of organic substances-a trend which can be attributed to the more extensive utilization of gas-liquid chromatographic methods. Secondly, there has been a prolific publication of papers dealing with the use of organic dyes as chromogenic reagents. Another distinctive trend has been the use of immiscible organic solvents to isolate the light absorptive species from the aqueous solution prior to measurement. iltteiition is directed to a number of books and reviews pertaining exclusively, or in part, to light absorption spectrometric analysis. “Practical Hints on Absorption Spectrometry” (188), “Manual on Recommended Practices in Spectrophotometry” (4.9, “Colorimetric Methods of Analysis, Vol. IVA” (678) and “Spectrometric Identification of Organic Compounds” (675) are published in English. “A Practical Guide for Colorimetric and Spectrophotometric Methods of Analysis” (95) and “l’ractical Manual for Spectrophotometry and Colorimetry” (553) are in Russian. “Absorption Spectral rlnalysis in the Ultraviolet, Visible, and Infrared Regions” (168) is in German. Two reviews on Ultraviolet and Visible iihsorptioii Spectrometry (289, 779) and a chapter on Visible Spectrometry(78) have been published HIS TWELFTH
CHEMISTRY
One of the significant aspects of spectrophotometric analysis is t h a t one does not have to ask, “Is Chemistry
going out of Analytical Chemistry?” The perusal by these reviewers of approximately 1200 publications for the past biennium has provided convincing evidence that the chemical transformations and analytical technology required to extract a few micrograms of an element from the matrix of a sample and convert it to a highly light absorptive system is a challenge best met by a well trained analytical chemist. Emphasis in this section will he on reagents, reactions, and properties of light absorptive compounds. Metals. With the development of many new reagents for each metal and improvements in the use of existing reagents, there is a need for additional critical reviews in which specific reagents and specific metals are evaluated. T h e t e r m “practicability” has been suggested in defining the degree of simplicity with which optimum conditions for color development a n d measurement can be achieved for a color-forming reagent (I45). Reagents of very high selectivity and sensitivity have been discussed (776). One extensive review discusses the contemporary spectrophotometric methods for vanadium (803). Reviens on the complexing properties and use of thiocyanate complexes (604) and the nitrosoiiaphthols (619) i n colorimetric analysis have been published. The use of metal chelates in aqueous and nonaqueous media has been reviewed (752). The theory underlying the use of organic reagents for the spectrophotometric determination of rare elements and the rare earths has been reviewed critically (11). B critical evaluation of 16 dyes as chromogenic agents for ytterbium resulted in the following five being recommended: drsenazo 111, Xylenol Orange, Stilbazo, Methylthymol Blue, and Pyrocatechol Violet (46). A review on the use of drsenazo I11 and the 2,7diazo derivatives of chromotropic acid as chromogenic reagents (21) and a book (627) featuring Arsenazo I11 methods for the rare and the actiuide elements have been published. The synthesis, properties, and applicatioiis of thiazoylazo dyes are discussed in a review (718). I n another review the sensitivities and methods for over 33 elements are tabulated (371). The colorimetric methods for aluminum and the effect of diverse ions on the various methods have been reviewed (727). A critical appraisal of spectrophotometric methods
for the noble metals is especially noteworthy (67). Salicylideneamino-2-thiophenol has been proposed as a selective reagent for tin(I1) and tin(1V) (263). ri new selective reagent for palladium(l1) is 2,7-bis(4-azophenylarsono~-l,8-dihydroxynaphthalene-3,6-disulfonic acid which has been designated “Palladiazo” (550). Anthranildiacetic acid has been recommended a5 a satisfactory reagent for scandium, yttrium, and lanthaiium (180). Methylthymol Blue has been studied spectrophotometrically and found to form colored complexes with seven metals : magnesium, zinc, nickel, lead(I1) , manganese (11), iroii(I1) , and calcium (728, 730). Calcichrome has also been utilized in developing colorimetric methods for mauy metals including aluminum (%I), titanium (324), manganese (325), nickel (326), and cobalt (327). Xorpholinium morpholine-LV-dithiocarboxylate gives iiiqoluble chelates with 34 cations i n aqueous solution. However, these precipitates are soluble in organic solvents. The cobalt chelate is soluble in chloroform and is the basis of a spectrophotometric method for cobalt (75). 2,4-L)ihydroxybenzoic acid is purported to be a sensitive chelating reagent in the colorimetric determinations of iroii(II), vanadium(V), and uranyl ions (6S4). The o,o’-dioxyazo functional group is characteribtic of azo dyes used in the determination of niobium. Several new dyes are described and the extraction of the diphenylguanidine salts of these niobium complexes n i t h butanol indicated (20). Xitrobromoarsennzo was found to be the most satisfactory of five reagents tested for the determination of scandium (104). The other hydroxyazo reagents tested were carboxyarsenazo, 3-(3-chloro-2-h ydroxy-5-nitrophenylazo) chromotropic acid, 4-(3,4-dihydroxy-5bromophenyluzo) benzenesulfonic acid, and 3-(3,4-dihydrouy-5-chlorophenylazo) benzenejulfonic acid. The disnzo derivatives of chroniotropic acid, e.g. Arsenazo 111, have been studied as reagents for metals of the scandium group (130). N-Methylanabasine CYazo-n-heptyl resorcinol reacts with uranyl, indium, gallium, cobalt, vanadyl, manganese (I [) , nickel, and zinc ions to give insoluble complexes which are extractable with chloroform, butanol, and other organic solvents. These colored extracts show conformity to Beer’s law (658). Six antipyrine dyes VOL. 40, NO. 5, APRIL 1968
255 R
Table 1.
Constituent Ag
hIaterial
...
I
.
.
...
Selenium, or tellurium Phosphors Palladium
Al
. ~ .
...
...
Steel Steel Steel Alloys Tin Dolomite Ceramics Soil Au
... ... ...
... ...
...
Ores Ti-alloys Ba
...
Be
...
... ...
... Al-alloys Al-Mg-Be alloys Rocks Bi
*..
Cast iron
Photometric Methods for Metals
Method or reagent 5-(2,6-Dimethyl-4-pyranylidene)rhodamine 4,4’-Bis(dimethy1amino)thiobenzophenone 2-Amino-6-methylthio-4-pyrimidine carboxylic acid Crystal T’iolet, (C6H6) Potassium ferrocyanide,2,2’-bipyridine lJ5-Di-p-naphthy1thiocarbazone (p:Dimethylarninobenzylidene)rhodamine Dithizone, (C6H6) Calcichrome Xylenol Orange AIethylthymol Blue Salicylal-2-aminophenol Pyridylazo dye(s) of chromatropic acid Ferron Eripchrome Cyanide R, polycyclic ketoamine Aluminon .~ Alizarin Red S 8-Quinolinol, (CH,Cl,) Eriochrome Cyanine Xylenol Orange Ferron Xylenol Orange Isonicotinic hydrazide ; 2,3,5-triphenyltetrazolium chloride 6-Amino-4-hydroxynaphthalene-2-sulfonic acid 2,2’-L)ipyridyl ketoxime Rhodamine B, (C&) Ferroin. iCHClll Xlethylene Blue,’ (CHC13) Hexamethylphosphoric triamide, (CHZClt) 2-Pvridinealdoxime Sod:um azide Sodium diethyldithiocarbamate, (BuIPOI) Kinetic: cerium(1s’) mercury(1) Sodium azide, (amyl OH) Tin(I1) chloride Chlorophosphonazo I11 2,7-Bis(o-sulfo-pmethylphenylazo)chromotropic acid dianilide (BuOH) Indirect: Pptn. BaCrOd, Complexon 111 Sodium 2-(5-chloro-2-hydroxyphenylazo)l,S-dihydroxynaphthalene-3,5-disulfonate Pontacyl Tiolet 4 BSN 5-Hydroxychrome (c&) Aluminon Beryllon Is’ Arsenazo I Beryllon I1 Disodium 1,4-bis(8-mercaptotheophyllin-7vl)propane, (CHC13) Mblybdenum blue Iodide
+
Xvlenol Orange Thourea Dithizone (CC1,) Pyrazolyldithiocarbamates, (CHC13) Xylenol Orange 2-(2-Hydroxynaphth-l-ylazo-2-phenylazoxy)- (651) 4-methylphenol Cresolphthalexone (81) 2-C hloro-5-cyano-3,6-dihydroxybenzo(695) quinone Murexide
-
Ba ferrite Ca
...
*.. ...
... *..
Iron Cd
256R
Pi-Zn ores Cd oxides
Calcion Aluminon Glyoxal bis(2-hydroxyanil), (BuOH)
(661)‘ (147) (241, 366) (406)
Iron(II)-2,2’-bipyridine cation, (PhNO,) Bromobenzthiazo (669) Reduction of Cr(s’1) (520) (Continued)
ANALYTICAL CHEMISTRY
form 1:1 complexes with hexachloroantimonate (100). Gallion, Stilbazo, Arsenazo I, Xylenol Orange, Rhodamine C, and Triochrome Cyanine were studied as reagents for gallium. Stilbazo and Xylenol Orange were the most sensitive whereas Arsenazo gave the most accurate results (8). I n testing 33 hydroxamic acids with 78 ions, several potentially useful reagents have been observed (66). N - Cinnamoyl- N - phenylhydroxylamine has been used as a reagent in the successive extractions and spectrophotometric determinations of iron(II1) , vanadium(VI), and uranium(V1) (795). A Shiff base formed from salicylaldehyde and anthranilic acid serves as a suitable reagent for vanadic acid (70). Pyrocatechol, pyrogallol, and pyrogallolsulfonic acid are reagents which form 2 : 1 complexes with vanadium(1V or V) and in the presence of diphenylguanadinium ioiis are extractable by isoamyl alcohol (103). The relative merits of a photometric determination of titanium based on the extraction of ion associates are given (175). After investigating the stability of the widely used PAR chelon, a n alcoholic reagent solution was recommended (214). Attention has been given to the nature of color forming reactions and to the delineation of optimum conditions. Certain basic concepts in spectrophotometry including the estimation of reaction rates has been reviewed (492). The mechanism of the oxidation of Variamine Blue with copper(I1) and cyanide has been studied with the observation that the absorbance of the oxidized form increases with a n increase in pH and copper(I1) concentration (94). The recommended conditions for the reactions of 1(2-pyridylazo)2-naphtho1 “PAX”, with 12 metal ions have been cited (581). I n hydrochloric acid solution, the complex Re02C12-2, produced by reducing perrhenate with tin(11) chloride, reacts with thiocyanate to form two complexes; a yellow-green complex with an absorbance maximum a t 330 mp, and ail orange-red complex with an absorbance maximum at 430 mp. A large excess of thiocyanate decreases the absorbance a t 430 m,u because of the formation of another complex exhibiting maximum absorbance a t 490 mp. An excess of tin(I1) chloride also decreases the sensitivity of the color reaction (313 ) . Triple or ternary complexes in which three components are involved in the coordination often provide increased specificity and sensitivity (48). A mixed complex consisting of vanadium, hydrogen peroxide, and 4(2-pyridylazo) resorcinol is reported to have a high molar absorptivity (669). .A triple complex of titanium(1V)-pyrogallolcarboxylic acid-antipyrine which is soluble in dichloroethane has been used
to determine titanium in steel (671). Titanium also forms a ternary complex with trihydroxyfluorone and pyridine and has a molar absorptivity of 1.08 X 105 (506). Chrome -bur01 S and copper(11) react in the presence of (hydroxydodecy1)trimethylammonium bromide to form an ion-association chelate with a molar absorptivity of 1.19 X lo5 (663). Chromoxane Violet R, a triphenylmethane dye, forms a highly light absorptive binary complex with either iron or aluminum (431). Nonmetals. T h e colorimetric methods for phosphoric acid have been reviewed (500). The theory underlying indirect spectrophotometric methods for determining traces of anions has been discussed (349). The relative merits of o-phenylenediamine; 1,4-diphenylthiosemicarbazide,Victoria Blue E,and dithizone as a reagent for selenium were evaluated and dithizone was selected as the most suitable for samples c05 taining tellurium (657). The reaction of diazotized p-nitroaniline and azulene to give a purple dye has been found to be a sensitive, rapid method for nitrite (232). An improved pararosaniline method has been developed for the determination of atmospheric sulfur dioxide (636). Heteropoly chemistry continues t o be an important aspect of spectrophotometric methods for phosphorus, silicon, and arsenic. As the result of a study on the use of various reductants in the heteropoly blue method for phosphorus, ascorbic acid as reductant and potassium antimony tartrate as catalyst were recommended (650). h mechanistic study of the heteropoly blue reaction has given evidence that a 2-electron reduction step follows formation of the molybdophosphoric acid (148). Pyrophosphate was determined as a mixed heteropoly acid of vanadate and molybdate (225). Much attention has been given to the extraction of heteropoly complexes. Traces of phosphorus, arsenic, and germanium (544);silicon and arsenic (545); and arsenic, silicon, and phosphorus (546)have been sequentially separated by liquid-liquid extraction and then quantitated by the heteropoly blue method. Extraction of reduced Inolybdosilicic acid with isoamyl alcohol was feasible provided the aqueous phase is adjusted t o 3 . 5 4 . 5 N in sulfuric acid (350). Molybdosilicic acid forms a precipitate with Crystal Violet which is extractable with 2 :3 cyclohexanol :namyl alcohol. Nolybdophosphoric acid arid molybdic acid are reported as not forming precipitates. Pyridine enhances absorbance of the extract (49). However, another paper reports that molybdophosphoric acid forms precipitates with a number of basic dyes and includes Crystal Violet as forming a precipitate which is extractable with alcohols or ketones (51).
Table 1. Constituent Ce
Photometric Methods for Metals (Continued)
Material
...
...
... Steel Steel Cast iron co
...
... ...
...
... ...
Steel Iron Cr
... ... , . .
Ilmenite Laser rubies cs
...
cu
...
... ...
Method or reagent Phenylanthranilic acid Sulfanilic acid Isonicotinic hydrazide; 2,3,5-triphenyltetrazolium chloride o-Tolidine Methylene blue, (C&) S,S,S’,S’-Tetramethyl-o-tolidine Pyridine-2-carboxaldehyde-2-quinolylhydrazone Alizarine Black SN Thiocyanate] triphenyltetrazolium, (CHC13) Calcichrome I-Nitroso-2-naphthol, (C&) Fast Sulfon Black F 2-Pyridine aldoxime 2-(o-Hydroxyphenyl)-3-methyl-5-propylpyrrole S,,V-E thylenebis-(o-mercaptobenzamide) Chromotrope 2B 2-Thenoyltrifluoroacetone, (C~H4lIe2) Co-tetrabutyl EDTA 2-Nitroso-1-naohthol. iamvl OAc) 2-Nitroso-1-naphthol; (cHC13) 8-A4minoquinoline,(benzyl OH: CHC13) Xylenol Orange s-Diphenylcarbazide Diphenylcarbazide, (isoBuCOMe) Diphenylcarbazide Indirect: Heteropoly blue Cs[Cr(SCS)a(PhNH2)2],(PhN02) Picrate Hexanitrophenylaminate Diethylenetriaminepentaacetic acid S-Salicylidene semicarbazide Chrome Azurol S (Hydroxydodecyl) trimethylammonium bromide Stilbazo Morpholinium morphine-.V-dithiocarbamate, (CHC13) Molybdenum blue Calckhrome
+
...
...
...
...
...
.
.
I
... Alloys Mn-ores Antimony Phosphors Soils Er
...
Fe
... ... ... ...
...
(69) (74)
3,3’-Bis(3,6-dimethyl-1,2,4-triaxineJ (PhNOz) Sodium diethyldithiocarbamate; azideiodine reaction Bicinchoninic acid Phenol, chloramine-T Diethyl diketosuccinate(cyc1ohexane) n-Pentyl-2-pyridyl ketoxime(isoamy1 OH) Pyrogallol red 3-l\lethyl-5-hydroxy-5-(~-arabinotetrahydroxy butyl)thiazolidine-2-thione 2,3,8,9-Ilibenzo-4,i-dimethyl-5,6-dihydro1,lO-phenanthroline 6-llethylpicolinic acid thioamide, (nC5HnOH) Thiomalic acid G-(2-Thiazolylazo)-3-(dimethylamino)phenol, “TAAI,” (CHC13) Biscyclohexanone oxalyldihydrazone Sodiurr diethyldithiocarbamate, (CCld) 2,2-Bicinochonic acid Sodium diethyldithiocarbamate 1,5-Diphenylcarbazide Differential: 5,i-Dichloro-8-quinolinol Xylenol Orange Bis(2-ethylhexy1)orthophosphoricacid, thiocyanate Calcichrome S-Quinolinecarboxylic acid (Pyr.-CHC13) 2-hlercaptopyridine 1-oxide, (CHC13) or-Aminoacetophenone-N,N-diacetic acid oxime Ethylenediamine bis-(o-hydroxyphenylacetic) acid Kinetic: Hydrogen peroxide, Acid Chrome Dark Blue (Continued)
VOL. 40, NO. 5, APRIL 1968
257 R
Table
Constituent
I.
Photometric Methods for Metals (Continued)
Material
...
... ...
Al-alloy Alloys Alkalies Milk Fe-solns. Water Plutonium Ga
...
... ...
I
.
.
Zn-minerals Minerals
Method or reagent Indirect: iron(II1) benzilate 4-(2-Pyridylazo)-resorcinol Photokinetic: methyl orange Ethyl 4,6-dihydroxy-5-nitrosonicotinate 2,4-Dihydroxypropiophenone oxime Thiocyanate, (cyclohexane) Hexamethylphosphoric acid triamine, (CHzClz) 2,4,6-Tripyridyl-sym triazine (PrCOa) Thiocyanate (iso-BuCOMe) 2,6-Pyridinediamidoxine 3-(4-Phenyl-2-pyridyl)5,6-diphenyl-1,2,4triazine(isoamy1 OH) Bathophenanthroline, (CHCla) 1,lO-Phenanthroline (PrCOa) 1,lO-Phenanthroline (PhN02) 4-(2-Pyridylazo)-resorcinol Acid Chrome Pure Blue Salicylal-2-aminophenol Xylenol Orange Pyrocatechol Violet 1-(2-Pyridylaso)-2-naphthol Lumogallion Glycine Cresol Red Astrazon Blue B-chlorogallate, (PhC1-CCla)
Crystal Violet, (CHC1,) Diphenylcarbazone, (CC14) Rhodamine B, (CeHe-EtzO) Xylenol Orange, or Gallion Rhodamine B chlorogallate, (C&) 3,4-Dihydroxyphenyl-4’-azobenzene Ge 3-Arseno-2,5-dichloro-2’,4-dihydroxyazobenzene “Resarson” 2-( 3 ’,4’-Dihydroxyphenylazo)-4-phenyl-5benzvlthiazole (BuOH) Phenyrfluorone Resarson Cbai ash Chrome Azurol S Hf Differential: Chloranilic acid ... 1-(2-Pyridy1azo)-2-naphthol,(CHC13) ... Hg Iodide ... 4,4‘-Dinitrodiazoaminobenzene ... 4,4’-Bis(dimethylamino)thiobenzophenone ... Dithizone ... Cresolphthalein complexon ... Indirect: Nickel(II)-antipyrine-4-dithio... carboxylate (CHCL) 1-(2-Pyridylazo)-2 naphthol “PAN” In ... 1-(2-Pyridylazo)-4-naphthol ... 5-(2-Pyridylazo)-2-( ethy1amino)-p-cresol, 01 ... j-(2-Pyridylazo)-4-ethoxy-2-(methylaminotoluene) Glyoxal bis(2-hydroxyanil) ... Bromopyridylazoaminocresol 4-(2-S-Methylanabasineazo) resorcinol ... PAN: PAR. or derivatives ... LYmdgallion ... 4-(2-Pyridylazo)-l-hydroxynaphthalene, ... (CHCh) Dinitrohydroxyazo K Hexanitrophenylaminates ... Turbidimetric: cobaltinitrite Soils Anthranildiacetic acid ... La Murexide ... Alizarine S$-quinolinol Aiuminum, mag- Arsenazo I11 nesium Diantipyrylazo Lanthanides ... Chlorophosphanazo DAL Thorin Li Ag-alloys Calcichrome . . . Mg Virtoria Violet ... Naphthol Black ... carL‘Magon,)’ 1-2-hydroxy-3-2,4-dimethyl ... boxyanilide naphth-1-ylazo-2-hydroxybenzene (Continued) Bauxite Alloys Tungsten Semiconductors Pu-alloy
...
258 R
ANALYTICAL CHEMISTRY
Organic Constituents. A 0.5% solution of sodium nitrite in perchloric acid has been proposed as a specific colorimetric reagent for certain alkaloids (680). Twenty organic dyes having acidic functional groups have been studied as reagents for long chain quaternary ammonium salts. Using cetyldimethylbenzylammonium cation, benzyl orange and methyl red were found to be the most satisfactory (623). A new color reaction for mercaptans, in which compounds such as cysteine and thiamine react with chlorani1 or bromanil or 2,3-dichloronnphthoquinone to give colored compounds extractable with chloroform has been described (294). A study of color reactions of diaminophenols with oxidants showed vanadic acid to be superior to dichromate or cerium(1V) sulfate (567). A rapid, sensitive kinetic method for determining phenolic compounds has been developed based on the measurement of the initial reaction rate of N-(benzenesulfony1)quinonimine with phenols to produce indophenols, the absorbance of which was measured
(257). The mechanism of the reactioli of 4amino-6-chloro-~n-bei1zenedisulfonamide with nitrous acid has been studied and found to involve a two-step process. A sulfamoylbeiizenesulfonic acid derivative is formed first and then a thiatriazine derivative forms. The corresponding diazonium derivative is produced in the presence of water (756). Simultaneous Spectrophotometric Determinations. Platinum and palladium were determined by simultaneous spectrophotometric measurements at 567 mp and 585 mp of the chloroform extract of the 8-mercaptoquinolate chelates (472). The EDTA compleses of cobalt and nickel have been utilized in a simultaneous spectrophotometric method (479). Iron, cobalt, and nickel from chelates with 1(2-pyridylazo)-2-naphthol which are extractable with chloroform and can be measured spectrophotometrically a t 764, 628, and 566 mp, respectively (583). Cobalt and nickel are also determined siniultaneously as their chelates of pyridylazochroniotropic acid with measurements a t 570 and 640 mp (450). Nicotinic acid and isonicotinic acid react with cyanogen chloride and barbituric acid to form polymethine dyes. By the measurement of absorbance a t 465 and 574 mp the amount of each acid can be determined (195). PHYSICS
Subject matter pertaining t o the measurement of radiant energy in the visible region will be included in this section of the review. Recent developments in instrumentation and special methodology are included.
The theoretical fundamentals of spectrophotometry have been reviewed (117’). Computer technics for Beer’s law calculations of concentrations for linear and nonlinear systems have been discusqed (169). h paper discussing the optimum instrumental conditions in precision absorption spectrometry and the estimation of minimum detectable concentrations has been published (121). Differential spectrophotometric principles and applications have been discussed thoroughly (699). An experiment in spectrophotometry illustrating the dependence of the absorption law on monochromatic radiant energy has been developed (774). The calculation of equilibriuni constants from spectrophotometric data with the aid of a computer program is especially informative and interesting for academicians (689). The charge transfer complexes of iodine with nicotinamide and nicotinnitrile have isosbestic points a t 467 and 474 mp, respectively (686). The nitrogen atom of pyridine is considered to be the site of interaction. -4 spectrophotometric study of the charge transfer interaction between 2,3-dichloro-5,6dicyano-p-benzoquinone and aromatic hydrocarbons in chloroform showed that the frequency of the absorbance maximum of the charge transfer complex varies almost linearly with the ionization potential of the donor (686). A novel radioisotopic light source consisting of a scintillation material and a pemitting isotope has been introduced and incorporated in an absorptiometer. The pulsating radiant energy is measured per interval of time. A monochromator or filter is not necessary. A high speed scaler readout is used (603). The reflection, absorption, and emission properties of optical gratings in the visible region were studied both theoretically and experimentally. Special attention was given t o Wood’s anomalies (270). An ultra-high stability photometer utilizing optical feedback and applicable t o kinetic studies has been designed (689). Special Methodology. A chemical differential photometric method for highly concentrated solutions based on the prevention of a definite proportion of t h e desired constituent from reacting in t h e color reaction has been tested in the determination of aluminum (566). Problems involved in determining major constituents and trace constituents by spectrophotometry are reviewed on a theoretical basis (66). The interference of copper(I1) in the dithizoiie method for mercury(I1) mas circumvented by measurement of absorbance at the isosbestic point (6). A membrane colorimetric technic has been described based on the use of gelatincoated paper impregnated with a n appropriate reagent. When the paper
Table I.
Constituent
Photometric Methods for Metals (Confinued)
Material
A1:alloys Silicates Soils Soils Tellurium Mn
... ... Beryllium Lumiphors
MO
...
...
... ... ...
Steel
References Method or reagent “Magnezon,” 1,2-hydroxy-3-sulfo-5-chloro-l-(661) phenylazo-2-hydroxynaphthalene Azovan Blue Congo Red Titan Yellow l-Azo-2-hydroxy-3-( 2,4-dimethyl)-carboxanalide)naphthalene-l’-(2-hydroxybenzene) Titan Yellow Xylidyl Blue I1 Calcichrome Reduction, 6-methoxy-2-methyl 6-methoxv-2-methvl thio-4-pythio-4-w_ ” rimidine (C6H6) Thenolyl trifluoroacetone, pyridine, (C6H6) (C&) 2-LIethyloxinate, (CeHs) PAN, (CHC13) 2’,3’,4’-Trihydroxyacetophenone Pyrogallol red, dodecyltrimethyl-ammonium bromide Sulfochlorophenol S o,o’-Dihydroxyazobenzene Diethvldithiocarbamate Thiocyanate, ascorbic acid Thiocyanate, (BuCOMe) Pyrazine-2,3-dicarboxylic acid, tin(I1) chlorirlp
Steel Steel, ore Steel N b-alloy N b-Ti-alloys Niobium Catalysts Biological
...
... ... , . .
Steel Steel Steel Steel
Steel U-alloys Alloys Uranium Zr-alloy Tantalum Ores Steel Nd Ni
...
... ...
Steel Steel Ferronickel Cadmium, zinc Tungsten NP
os
+
Th&&nate, tartaric acid UV reduction Reduction of mixed W->\Io-P heteropoly complex Tributylphosphate, thiocyanate, (CHCl,) Differential : Thiocyanate Thiomalic acid Toluene-3,4-dithiol1 (CCl,) Thioglycolic acid Toluene-3,4-dithiol (BuOAc) Cation red violet (CBHB) Thiocyanate 1-(2-Pyridylazo) resorcinol 4-(2-Thiazolylaxo) resorcinol 4-11Iethy1-6,7-dihydroxycoumarin 4-(2-Pyridylazo) resorcinol Gosaipol (isoamyl OH-CsH6) Pyrocatechol Violet Thiocyanate (hle2CO) 1-(2-Pyridylaz0)-2-naphthol 2,4-Sulfochloropheno1C
Tetraphenylarsonium chloride, (CHClahle2CO) hlethylthymol Blue Picramine P Thiocyanate (EtpO-Me2CO) 8-Quinolinol (CHC13) Pyridylazoresorcinol 2-Cyanof ormazan Nitrosulfophenol S Rhodizonate p-Jlercaptocinnamic acid Calcichrome Isoamyl ester of p-mercaptohydrocinnamic acid Ar-’-?\Iethylanabasine-a:’-azohydroxyquinoline, (CHC13) Chromotrope 2 B Pyridine-2-carboxaldehyde-2-quinolylhydrazone Dimethylglyoxime Xylenol Orange Sodium diethyldithiocarbamate, (CC14) Dimethylglyoxime Dimethylglyoxime (Et20) Xylenol Orange Cystine Ar-(4-Aminophenyl)morpholine,(CCl,) o-(B-Benzoy1thioureido)benzoicacid (EtOAc) ( Contznued)
VOL 40, NO. 5, APRIL 1968
259 R
Table 1. Constituent
Photometric Methods for Metals (Confinued)
Material
... ... ... Pb
...
Steel
Pd
...
...
... ...
...
*..
...
... ...
...
...
... ...
Iron
Pt
... ,..
Pu
...
Rare earths
... ... ...
... Rb Re
...
...
... ... ... kioiybdenite Ores
References Method or reagent 2-Mercaptobenzimidazole (BuoH-csH~) 3,4-Dichlorobenzyltriphenylphosphonium chloride (CHC!() o-Phenylenediamine Thiocyanate (2-octanone) N-Benzoyl-N’-carbethoxymethylselenourea, (CSd Hydroxyhydroquinone Diphenylcarbazone (xylene) Sodium diethyldithiocarbamate (CCl4) PAN Indirect: Pptn. of PbCr04, Complexon I11 Pyridylazoresorcinol pE thoxychrysoidine Isonitrosoacetylacetne 4-(2-Thiazolylazo) resorcinol 2-(Mercaptomethyl)benzimidazole, (amyl OAc) 2-T hio-4-amino-5-nitroso-6-hydroxypyrimidine a-Benzoyl-p-carbe thoxymethyl-selenourea, (CSd 2-Hydroxy-5-methylpropiophenone oxime, (ccl4) Glyoximate, (CHCls) Tin(I1) chloride, tri-n-octylamine, (C&) Pyridine-2-aldehyde-2-quinolylhydra zone, (CHC13) 4,4‘-Bis(dimethylamino) thiobenzophenone p-Mercapthydrocinnamic acid, (CEHE) 8-Mercapt-8-phenylpropiophenone, (CHCla) 2-Thenolyltrifluoroacetone (MeCOPr) Thiooxine (isoBuCOMr) or (CHC13) 4-(2-Pyridylaxo) resorcinol Indirect: Copper(I1) diethyldithiocarbamate, ( d c h ) Palladiazo Sodium p-(mercaptoacetamido) benzenesulfonate .~.... ~
1,4-Thioxane, ( C H Q Z ) Picolinaldehyde-2-quinolylhydrazone, (CHCla) Quinazolineazo, (CHCls) N-Methylanabasine-or‘-azo-a-naphthol, (CHCln) Thioglycdic acid Phenoxathiin, (MerSO) 4-(2-Pyridylazo)resorcinol, (iso-BuOH) Arsenazo I11 Brucine Indirect: Iron(I1)-1,lO-phenanthroline chloroplatinate, (PhN02) Isonicotinic hydrazide: 2,3,5-triphenyltetrazolium chloride 1,4-DiphenylthiosemicarbazideJ(BuOH) 3,4-Diaminobenzoic acid Arsenazo I11 Thenoyltrifluoroacetone, (CEHE) Arsenazo 111, (BuOH) Xylenol Orange Arsenazo I “Chromatrope 2B,” [di-Na-4,5-dihydroxy-3 (p-nitrophenylazo)-2,7-naphthalenedisulfonate] Thenoyltrifluoroacetone, (CEHS) Pyrocatechol Violet Xylenol Orange Murexide Picrate Hexanitrodiphenylamina te Thiocyanate, (EtzO) Methj.1 Violet Thiosalicylic acid, tin(I1) chloride Diphenylcarbazide Safranine T(C2HrCL) Dime thylglyoxime (Continued)
260 R
ANALYTICAL CHEMISTRY
is pressed against a polished surface, ions are transferred to the gelatin. Application of a chromogenic test reagent results in the development of characteristically colored spots which identify constituents of the sample (2002). The rate of absorbance change in the development of the heteropoly blue of phosphorus has been determined by a n automatic digital readout system. Hence, the average initial reaction rate is proportional to concentration (149). Considerable attention has been given recently to reflectance spectrometry. A book, “Reflectance Spectroscopy,” (773) has been published and a symposium on this topic was held a t the 154th National Meeting of the American Chemical Society. The selection of the optimum concentration range for reflectance spectrophotometric analysis has been discussed and two graphical methods have been presented (4.24. Judd has discussed the terms, definitions, and symbols used in reflectometry (348). The effect of pressure on the spectral reflectance of compacted powders has been investigated, and two general effects were noted. Transparent particles undergo a large decrease in reflectance with an increase in pressure and opaque particles increase in reflectance with a n increase in pressure (638). An auxiliary sphere was used with a spectroreflectometer to obtain absolute reflectance (233). The relationship of internal reflection measurements to bulk optical properties is the topic of an interesting paper showing that reflection data taken using standard spectrophotometric procedures describe bulk properties of homogeneous material
(300).
(650 )
(635) (475) (474) (165) ( 17 0 ) (478) ( 708) (733) (618)
(39.2) (891)
(716)
(156) (667) (173)
Matrix rank, contour mapping, and iterative analysis of absorption spectra have been utilized to determine the nature of the hafnium-chloranilic acid species (759). Calibration. T h e procedure for evaluating the performance of one or more spectrophotometers has been presented. T h e absorbance measurement of a dichromate solution at 20 wavelengths is subjected to statistical treatment. Both wavelength calibration and linearity of absorbance are checked (775). Cells. A micro flow cell with a total hold-up volume of approximately 72 lambda has been designed (654). A flow cell which eliminated gas bubbles has been patented (331). Special cuvettes which permit the saturation of a solution with gases prior to spectrophotometric measurement and the subsequent removal of the dissolved gases has been described (408). A paper on sapphire window mountings for low temperature spectrophotometric measurements should be of interest to those involved in very low temperature spectrophotometry (641).
Table I.
Constituent
Rh
Photometric Methods for Metals (Continued)
Material Re-Pt-alloys Metals
...
...
... ...
Ru Sb
...
...
...
Steel Nickel Steel Au-Sb alloys Lead Alloys Copper Tellurium Ores Solder Cast iron Steel Lead
sc ... ... ...
... ... ...
...
...
Silicates Silicates Sn
...
Steel Brass Ores Organic Metals Ferrotungsten
Sr
...
Ta
... ... ...
Sn-ores Alloys U,Pu-alloys Tc
... N’idlear fuels
Th
Method or reagent Thiourea, tin(I1) Furildioxime 2-Thenoyltrifluoroacetone, (xylene) Azide Phenylselenium oxide Thioglycolic acid, (BuOH-EtOAc) 2-Mercaptobenzimidazole Hydrobromic acid 2-Amino-&naphthol-6-sulfonic acid Reduced antimonmolybdophosphate Brilliant Green, (PhMe) Pyrocatechol Violet Bromopyrogallol red Methyl Violet, (xylene) Crystal Violet, (CKHB) Crystal Violet, (PhMe) Iodide Methyl Violet, (C&) Pyridylazomonoethylamine-p-cresol 4,4’-Bis(dimethylamino)-3’-nitrodiphenylantipyridyl carbinol, (C&) Bis [4-(N-methyl-N-benxylamino)phenyl] antipyrinylcarbinol, (C&,) PAN, potassium iodide, (CeHe) Malachite green, (PhhIe) Rhodamine B Rhodamine, (C&) Iodide Naphthol Azoxime S Chrome Azurol S Arsenazo I11 Lumomagnesone Anthranildiacetic acid bIurexide Chlorophosphonazo I11 Lumogallion 1(o-Arsonphenylazo)-2-naphthol-3,6-disulfonate Stibazochrorne Arsenazo Bromopyrogallol red 2-Hydroxy-5-chloro-l(2,4-dihydroxyphenylazo)benzene-3-sulfonic acid (BuOH) Catechol Violet 5,7-Dibromo-8-quinolinol Bromopyrogallol red Qnercetin ZPyrid ylfluorone Salicylideneamino-2-thiophenol(xylene) Catechol Violet Phen ylfluorone Stilbazo 2,7-Bis(o-sulfo-p-methylphenylazo)chromotropic acid dianilide, (BuOH) Ethyl Violet, (BuOAc) Methyl Violet (CKH6) 4(2-Pyridylazo)resorcinol Pyrogallol, tetrahexylammonium iodide Rhodamine (C&) hlalachite Green, (cf,&) Hydroquinone Diphenylcarbazide Methyl Violet, TcOa-, (PhCl) Thiocyanate, (CHCla) “Arsenazo 111,” [Bis(2-ethylhexyl)phosphoric acid] Arsenazo DAL Methylthymol Blue Xylenol Orange Chrome Azurol S Reduction, Thorium molybdophosphoric acid ( Continued)
Spectrophotometers. A number of new spectrophotometers have been marketed in t h e past two year period. T h e Durrum Model P G S spectrophotometer is a double beam, ratio recording instrument with a prism grating monochropator and a resolution of at least 1 A over t h e range of 180 t o 1000 mp (181). The Coleman Model 124 Hitactii spectrophotometer is a double beam instrument featuring a diffraction grating and a rotating mirror t o direct the monochromatic beam alternately through the sample and reference cells. This spectrophotometer has a linear absorbance readout, a range of 190 to 800 mp, and provision for a recorder readout (143). The Coleman Model 101 is a compact, relatively inexpensive ultraviolet-visible spectrophotometer (142). The Coleman Model EPS-3T Hitachi spectrophotometer is a double beam recording spectrophotometer with solid-state e!ectronics and a 170 to 2600 mp range (141). The Gilford Model 240 spectrophotometer is a single beam, single nionochromator instrument with a 0 to 3.0 A linear absorbance readout (237). The Heath “700” scanning monochromator, a basic module in a series for various spectrometric systems, has recently become avaialble (282). The AmincoChance dual-wavelength spectrophotometer has added a split-beam mode and recording capability (27). Special Application Instruments. Technicon has introduced a new sequential multiple analyzer, t h e S M A 12/60, which can aspirate 2.0 m l of untreated serum and, in sequence, determine b y direct colorimetric methods 12 biochemical constituents in approximately 9 minutes (717). The results are recorded on a special precalibrated st rip chart so concentrations can quickly read for each biochemical test. The Model 701 Sifica Light Scattering Photometer which has been designed primarily for the determination of average molecular weights in the range 500 t o 5,000,000 (287). -1rapid scan spectrophotometer uses a cathode ray oscillographic readout and is especially applicable to kinetic studies of color reactions (485). -4stopped flow apparatus employing a rapid scanning monochromator measures color chaiiges for moderately fast reactions (184). A differential flash photolysis kinetic spectrophotometer with a response time of 1.4 msec and featuring a modulated monochromatic source and phase-lock detector has been developed (649). An automatic, continuous colorimetric analyzer, especially applicable to the determination of total hardness, has been patented (d69). A photoelectric device, in which a photocell relay is activated when there is a difference in absorbance between sample and reference cells, has been incorporated in a VOL. 40,
NO. 5,
APRIL 1968
261 R
~
Table 1.
Constituent
Ti
~~
discontinuous colorimetric analyzer (31). Two portable instruments, a wedge interference filter spectrophotometer and a 3 filter3 photovoltaic cell reflectometer which provides tristimulus curves of the C I E standard observer, have been described (601). A dual beam photometric analyzer which permits the measurement of the intensity ratio of two beams sensitive t o different variable characteristics of the sample has been patented (258). An attachment for a spectrophotometer which facilitates the measurement of the absorbance of a solution before and after injection of a gas has been discussed (18). This arrangement has been applied to the determination of water vapor, sulfur diouide, and acetylene in gases. A sample holder lvhich provides for the rapid positioning of sample and changing of the contents of the cuvette has been patented (163). Another apparatus is suitable for the spectrophotometry of sniall crystals (789). i i n attachment for the Bausch and Lomb Spectrophotometers enables the concentration of unknown to be computed very easily (57).
Photometric Methods for Metals (Continued)
Material Zirconium, u ra n1um Plutonium
Method or reagent Arsenazo I11 Arsenazo I11 Benzoylacetanilide, (CHC13) Adrenaline Chrome Azurol S Trihydroxyfluorone, pyridine Calcichrome Differential: Chromotropic acid 1(2-Pyridylazo)-2-naphthol (BuOH) Pyrocatechol, picolinic acid, (C2HrC12) Antipyrylmethane, tartaric acid Diantipyrylmethane, tin(II), (CHCla) Chromotropic acid Diantipyrylmethane, (CHCla) Chromotropic acid Ti(I_V-pyrogallolcarboxylic acid-antip iyrine,
...
... ...
... N’ibbium Niobium Tantalum Steel
(C’zHrC‘h)
U-Pu-alloys Al-alloys
Peroxytitanic acid Disodium 1,8-diacetoxynaphthalene-3,6-disulfonate Ascorbic acid Rock salt Hydrofluoric acid 9-hlethyl-2,3,7-trihydroxy-6-fluorone EbQuinolinol, (iso-BuCOMe) Turbidimetric: Rubeanic acid 3-Hydroxy- 1,3-diphenyltriazine ... Ethyl Violet, (AmylOAc) ... 1-Naphthol, aminodiphenylamine, (isoamyl ... OH) o-Phenylenediamine.. ... Iron(III), Methyl T iolet, (PhMe) Tin Metals Crystal Violet, (PhMe)
T1
...
... ... ... ... ...
3-Benzyl-4,5-dihydroxycoumarin Tri-n-octylamine sulfate, (C6H6) 6-(2-Thiazolylazo)-3-(dimethylamino)phenol “TAM,” (CHCl,) Benzoate, Crystal Violet, (PhMe) Arsenazo Thenoyltrifluoroacetone, (isoamyl OH) 4(2-Pyridy1azo)resorcinol Gossipol, (IsoamylOH) “Ferron” 7-Iodo-8-quinolinol-5 sulfonic acid (BuOH) Pyrocatechol Violet Schiff’s base, (1-amino-2-hydroxynaphthaleno)-3,6-disulfonic acid, salicylaldehyde Tiron Hydrogen peroxide, 4(2-pyridylazo) resorcinol 2-(2-Thiazolylazo)-5-(diethylamino)phenol Aromatic hydroxylamines, (CHC13) Xylenol Orange Schifff-!ase, salicylaldehyde, anthranilic acid,
Ores U-ore Lead Plutonium
v
...
...
...
...
... ... ...
...
...
... ...
...
...
...
Steel Bauxite Rocks Ores Ores Slags
0
APPLICATIONS
Methyl Violet, (C&) Differential: 5,7-Dichloro-&quinolinol Carminic acid, (triOCtylamine-C8H~) 4-(2-Thiazolylazo)resorcinol o-Aminophenol-p-sulfonic acid 5-( Benzoylacetyl)-4-methoxybenzofuran Rhodamine B Benzilic acid (BuOH) Arsenazo I11
Lead Tm U
262 R
~~
(C;eHs),
8-Quinolinol, (BuOH, C&) 3-Hydroxyflavone, (CHCla) 8-Aminoquinoline 5,7-Diiodo-8-quinolinol 4(2-Pyridylazo)resorcinol Salicylaldehyde, (BuOH) 2-Na~hthohvdroxamicacid o-Diinisidin;! N-Benzoylphenylhydroxylar nine, Caprohydroxamic acid Cyanoformazan Methylthymol Blue
ANALYTICAL CHEMISTRY
(494) (664) (746) (662)
(306) (463) (223) (70)
Methods of Analysis. The tremendous number of publications on spectrophotometric analysis within the past biennium attest? to the undiminished interest and extensive utility of this important facet of analytical chemistry. Xew reagents, new materials, and improvements in analytical technology have resulted in many significant publications describing more sensitive, more specific, more rapid, and more reliable methods for the spectrophotometric determination of trace quantities of metals, nonmetals, and organic substances. A selection of representative publications on photometric methods is tabulated in Tables I, 11, and IJI. It is quite likely that appropriate recognition has not been given to many authors. It is often difficult to evaluate the actual value of each contribution from their abstracts and it is impossible t o read hundreds of papers in many foreign languages. It should be indicated that an effort was made to indicate the extractant used in many of the methods and to include the chemical name as well as the trivial name of the reagent. Color Specification. h book, “Color Science, Concepts and Methods, Quantitative Data and Formulas” has been published (778). Basic equations for use in getting a tristimulus match for a given spectrophotometric curve have been discussed (23). A comparison of uncertainty ellipses cnlculated by the standard observer and actual observer methods is made with the aid of a n automatic computer program (517). The colorimetric sigriifi-
Table I.
Constituent
Photometric Methods for Metals (Continued)
Material
...
b-
... rjibbium lllolybdenum Silicates, water
Y
... ... ...
Aluminum, magnesium Yb
Zn silicate ores
... ... ... ... ... ... ...
Zr
Steel Alloys Mg-alloys Al-all0 ys Steel
Table II.
Constituent As
B
Photometric Methods for Nonmetals
Hydrofluoric acid Pyrite Nickel Ores Copper Alkali salts Si-aluminum alloys Nickel Steel Steel
Salicylate Ace tylqninalizarin Curcumin Curcumin hlethylene Blue-tetrafluoborate, (C2H4C12)
Steel
Methylene Blue- or LIethyl T’iolet-tetrafluoborate, (trichloroethylene) Carminic acid hlethylene Blue-tetrafluohorate, (C2H4ClZ) 1,1’-Bis(6-chloranthraquinony1)amine Crvstal Triolet R&orcinol, Trilon B
... .
.
I
... ...
Soils Water
... ...
... Brine BrOa-
Murexide (683) Differential: 5,7-dichloro-&quinolinol (602) 5,8-Quinoline-5-(8-hydroxyquinolyl-5-imide) (580) Alizarin Complexon (463) Sulfarsazen (440) 3’,4’,7,8-Tetrahydroxy flavanol (363) A’-Methylanabasine-a-azoresorcinol ( 705) Alberon (495) 8-Quinolinol, (CHCL) (622) Reduction, Molybdosulfatozirconic acid (267) Chrome Azurol S (299) Xylenol Orange (513) 2-Sulfo-4-nitrobenzeneazo-3’,4’-dihydroxy- (399) benzene, or 2-carboxybenzeneazo-3’,4’dihydroxybenzene Xylenol Orange (612) Zirconin Stilbazogall I1 Arsenazo I11 Picramine, (BuOH)
Method or reagent Silver diethyldithiocarbamate, (CHC18) Silver diethyldithiocarbamate Silver diethyldithiocarbamate Heteropoly blue Heteropoly blue Heteropoly blue, (BuOH-EtzO)
hlaterial
Rocks Rocks Plants Plants Germanium tetrachloride
Br-
ReferMethod or reagent ences Stilbene-4,4’-bis(2,3,4-trihydroxyphenylazo)-(528) 2,2’-disulfonic acid Benzohydroxamic acid (569) Gossipol, (isoamyl OH-C&) (368) Toluene-3,4-dithiol, (CC14) (692) Tungsten(V) thiocyanate (694) Toluene,3,4-dithiol (BuOAc) (124) Anthranildiacetic acid hlurexide Chrome Azurol S Chlorophosphonazo DAL Xylenol Orange
.. .
Curcumin Malachite Green-tetrafluoborate, (CaH6) Methylene Blue Differential: Diaminochrysazin Curcumin Salicylic acid, Crystal Violet, iron(II1) sulfate, (C&) Catalytic: Cerium(IV), iodide Kinetic: Bromate Indirect: lIercury(II), diphenylcarbazone, (CCW Fuchsine, sulfurous acid Molybdophosphoric acid, sulfosalicylic acid Heteropoly Blue (Continued)
cance of spectrophotometric errors is another relevant paper in this field (600). T h e characterization of light by its tristimulus coordinates has been reviewed and vector-transformation properties of these coordinates shown (656). The determination of color, according t o CIE, of 15 opaque samples shoived the necessity of specifying the instrument used in reporting color measurements (137). -4direct reading ratio-sensitive CIE tristimulus colorimeter which is suitable for the continuous monitoring of color (640) and a “colormatic” apparatus gives tristimulus values, or the A, G, and B values in the Hunter system (84) have been described. LITERATURE CITED
(1) Adachi, T., Isarai, R., Denki Seiko, 37, 96 (1966). (2) Adamiec, I., Chem. Anal. (Warsaw), 11, 1183 (1966). (3) Affsprung, H. E., Robinson, J. L., Anal. Chim. Acta, 37, 81 (1967). (4) Agarwala, B. Tr., Dey, A. K., Microchem. J., 12, 162 (1967). ( 5 ) Akaiwa, H., Kawamoto, H., Bunseki Kagaku 15,339 (1966). (6) Akaiwa, H., Kawamoto, H., Zbid., 16. 359 119671. ( 7 ) Akaza; I., Kosaka, hI., Inamura, T., Ibid., 14, 829 (1965). (8) Akhmedli, AI. K., Bashirov, E. A., Glushchenko, E. L.. Uch. Zap. Azerb. Gos. Univ., Ser. Khim. LVauk, 1965, 9-15, (9) Akhmedli, hI. K., Bashirov, E. A., Glwhchenko, E. L., Zykova, L. I., Zh. ilnal. Khim., 21, 1022 (1966). 10) rlkhmedli, AI. K., Gambarov. D. G.. LTch.Zap. h e r b . Gos. Univ., Ser. Khim: S a u k . 1965. 23-9. 11) Akhmedli, 11. K., Granovskaya, P. B.. Ibid.. DD 82-90. -12) Akhmedli, 11.K., Gainbarov, D. G., Zh. Anal. Khim., 22,276 (1967). 13) Akiyama, K., Kobayashi, Y., Bunseki Kagaku, 15, 694 (1966). 14) Albert, F. AI., Cimpu, T’., T’aleanu, hl., Rev. Roumaine Chim., 11, 1437-42 (1966). (15) Alderisio, A., Gauzzi, F., Ric. Sci., 36, 102.3-8 (1966). (16) Aleksandrov, A., T’asileva-Alekbandrov, P., Kovacheva, E., Mikrochim. Acta. 1967. 3 9 . (17) Alekperov, R: A., Efendieva, N. G., Dokl. d k a d . LYauk Azerb. SSR, 27, 66 (1966). (18) Alekseev, R. I., Tokanskaya, E. A., Zh. Anal. Khim., 20,983 (1965). (19) rlli, S. AI., Khan, hI. A. K., Pakistan J . Sci. Ind. Res., 8 , 211 (1963). (20) Alimarin, I. P., Savvin, S. B., Talanta, 13, 689 (1966). (21) Alimarin, I. P., Savvin, S. B., Pure -4ppl. Chem., 13,443(1966). (22) Aliotta, G., Carbezali, C. B., Anales. Real SOC.Espan. Fis. Quim., Ser. B, 6 3 , 111 (1967). (23) Allen, E., J . Opt. SOC.Am., 56, 1256 ,
A
I
(19BRi. \ - - - - ,
(24) Alykov, N . >I., Cherkesov, A. I., Zh. Anal. Khim., 20,870 (1965). (25) Amamchyan, R. G., bloroz, A. I., Tr. Vses. Sauchn.-Issled. Inst. Koslovodn. Mashinostr., 10, 140 (1965). (26) Amano, T., llizrtkami, S., Yakugaku Zasshi, 85, 981-5 (1965). (27) American Instrument Co., Inc., Silver Spring, hld., 20910, Aminco Laboratory Sews, 23, 10.4 (1967). VOL 40, NO. 5 , APRIL 1968
263 R
(28) Amirkhanova, T. B., Podgornova,
Table II. Constituent
Photometric Methods for Nonmetals (Continued)
Material Perchlorates Silicates
hlethod or reagent Indirect: Mercury(I1) chloranilate Iron(II1) thiocyanate Clod... Brilliant Green, (CGHG) Crystal Violet, (PhCl) Suifuric acid Brilliant Green, ascorbic acid, (C&) C Boron Copper (11)diethyldithiocarbamate Pyrophoric metals Oxidation to COa, Thymol Blue ... CN Indirect: Rlercury(I1)-phthalein complexon ... p-Nitrobenzaldehyde, o-dinitrobenzene Nitroprusside, ferricyanide CNzZ... F... Aluminum, Eriochromecyanine R ... Aluminum, Pyrogallol Red Lanthanum, Alizarin Thorium, 2-( 1,8-dihydroxy-3,6-diulfo-2-naphthy1azo)phenoxyacetic acid ‘(PAC” ... Niobium, pyrocathecol, EDTA Uranium oxides Lanthanum, Alizarine Complexon Pyrites Thorium iieothoriii; or lanthanum, Alizarine Complexon Silicates Zirconium, Eriochromecyanine R Plutonium Lanthanum, alizarine complexon, (10% Npropylaniline in BuOH) Organic Thorium, Xrsenazo I Welding fluxes lJ2-Dihydroxyanthraqui~ione-3-methylaminoN,N-diacetic acid, cerium(I1) nit’rate HzOz ... Peroxytitanic-8-quinolinol, (CCla) I... Indirect: Rlercury(II), dithizone hIercury(I1) iodide, Methylene Blue, (CHC13) Kinetic: Bromate Indirect: ~lercury(II),diphenylcarbazone, (CsH6) 104... 8-Amino-l-naphthol-3,6-disulfonic acid “Hacid” “3 ... Nitroprusside, phenol, hypochlorite ... Modified phenol, hypochlorite Steel Phenol, hypochlorite, (BuOH) Beryllium Phenol, hypochlorite NO%... Indigo carmine NOa.. p-I)iaminodiphenylsulfone ... Automatic: Diazotization, ,l’-(l-naphthyl) ethylenediamine Nesslers reagent NHzOH Coior developer Iron(III), acetylhydrosylamine Gases Photochemically generated Me Viologen ... Xolybdophosphoric acid, Brilliant Green, (CCleBuOH) Alolybdophosphoric acid, Crystal Violet, iBu0H-rvclohexanoli ... Indirect: Aiolybdophosphoric acid, thiocyanate Heteropoly blue, (DOA in CHClt-isoamyl ... OH1 - -... blolvbdophosphoric acid ; 2-Amino-4-chlorobin z enkt hid1 8-Quinolinol molybdophosphoric acid, (PrOAc) or diazotized sulfanilic arid ... Heteropoly blue, tin(I1) oxalate ... Reduction of safranine molybdophosphate to Heteropoly blue, (iso-BuCOMe) Arsenic Molybdophosphoric acid, (EtaO) Alloy steel Heteropoly blue Steel Heteropoly blue (BuOAc) Ferrochromium Heteropoly blue, (BnOH-CHC13) Phosphorus acid Molybdovanadophosphoric acid Organic llolybdovanadophosphoric acid ... hlolybdovanadophosphoric acid Iron(III), p-amines, (CHC13) ... ... Indirect: iron(II1) pyrophosphate, (n-dodecy1)amine, CHCl,; sulfosalicylic acid Nickel plating bath Xolybdovanadophosphoric acid ... Indirect: iron(II1); 1,lO-phenanthroline
c1-
.
(Continued)
264 R
ANALYTICAL CHEMISTRY
), T., Uneno, K., Bull. SOC. Japan, 39, 2400 (1966). (30) Andrew, T. R.,Nichols, P. N. R., Analyst, 91, 664 (1966). (31) Anscherlik, A,, Czech. Patent 118,348
(1966). \ - - - - I -
(32) Anon, Ryusan, 18, 152-7, 218-21, 23643 (196.5). (33) Anon, Ibzd., 19, 133 (1966). (34) Appelbaum, J., Marshall, J., Anal. Chlm. =Icta. 35. 409 (1966). (35) Archer, S., Doolittle; F. G., ANAL. CHEM.,39, 371 (1967). (36) Armeanu, V., Costinescu, P., Omagiu Raluca Ripan. 1966, 73-9. ( 3 7 ) Ashworth, hl. R. F., Bohnstedt, G., Anal. Chim. Acta, 36, 196 (1966). (38) Ashworth, JX. R. F., Gramsch, E., itlikrochim. Acta, 1967, 358-65. (39) Ashworth, M. R. F., Schupp, R., Zbid., 1967,366-74. (40) Asmus, E.,Kraetsch, J., 2. Anal. Chem., 223, 401-10 (1966). (41) Asmuy E., Kurzmann, P., Zbid., 229. 90 (1967). (42) Asmu,, E.‘, RIarsen, G., Zbid., 225, 252 (1967). (43) ASTN Committee E-13, “hIanual on Recommended Practices in Spectrophotometry,” 2nd ed., 113 pp, American Society for Testing and AIaterials, Philadelahia. Pa.. 1966.
v.
270 (1966).
(46) Babko. A. K.. hkhmedli. AI. K..
Granovskaya, P. ‘B,, Ukr. Khim. Zh.;
32, 879 (1966).
(47) Babko, A. K., Markova, L. V., Prikhod’to, hl. O., Zh. Anal. Khim., 21, 93,; (1966). (48) Babko, A. K..Pure A .d. . Chem.,. 10.. 5;i7 (1965). (49) Babko, A. K.,Shkaravskii, Y. F., Golkawska, A., Chem. Anal. (Warsaw), 11, 1091-7 (1966). (50) Babko, A. K., Shkaravskii, Y. F., Ivashkovich, E. AI., Ukr. Khim. Zh., 33, 397 (1967). (51) Babko, A. K.,Shkaravskii, Y. F., Kulik, V. I., Zh. Anal. Khim., 21, 196 (1966). \ - - - - ,
(52) Bahr, H., Jagielski, J., Chem. Anal. (Warsaw), 12, 363 (1967). (53) Bansho, K., Umezaki, Y., Bull. Chem. SOC. Japan, 40,326(1967). (541 Baranomki. R..Ciba. J.. Czerniec. ‘ J:, Gregorowicz, Z., Chem. rinal. (War: saw), 10,499 (1965). (55) Bark, L. S., Brandon, D., Proc. SAC. Conf., Sottingham, Engl., 1965, 387-94. (56) Barker, S. A., Somers, P. J., Carbohydrate Xes., 3,220 (1966). (57) Bausch and Lomb, Rochester, X. Y., Descriptive brochure (32-2215). (58) Bausova, N. V., Tr. Inst. Khim. Akad. Sauk SSR, U r d . Filial, 10, 97 (1966). (59) Bashirov, E. A., Akhmedli, 31. K., Abdullaeva, T. E., Uch. Zwp. Azerb. Gos. Univ., Ser. Khim. il’auk,. 1., 29 (1966). (60) Bashirov, E. A., Akhmedli,,hI. K., Abdullaeva. T. E.. Azerb. Khzm. Zh.. 1966, 1224. (61) Bashirov, E. A., Akhmedli, M. K., Glushchenko, E. L., Uch. Zap. Azerb. Gos. Znst., Ser. Khim. A’auk, 2 , 35 (1966). (62) B_ass, V. C., Yoe, J. H., Tatanta, 13, 135 (1966). (63) Bass, V. C.,Yoe, J. H., Anal. Chim. Acta, 35,337 (1966). (64) F s e t t , J., Jones, J. C. H., Analyst, 91, 16 (1966). I
,
(65) Basson, R. A., ANAL. CHEM., 38, 637 (1966). (66) Bastian, R., Ann. N . Y . Acad. Sci., 137,297 (1966). (67) Beamish, F. E., Talanta, 12, 789 f196n). (68)-Bendito, D. P., Casillas, J., Pino, F., Inform. Quim. Anal., 20, 69 (1966). (69) Bendito, 1). P., Pino, F., Zbid., 21, 9 (1967). (70) Ben-Dor, L., Jungreis, E., Jungreis, C., Israel J . Chem., 4, 189 (1966). (71) Bera, B. C., Chakrabartty, AI. M., As i ~ CHEM.. . 38. 1419 (1966). (72) Bera, B. C., Chakrabartty, ?If. &I., Mikrochim. Acta, 1966, 1094-100. (73) Bera, B. C., Chakrabartty, 31. M., Microchem. J., 11,420 (1966). (74) Beyer, W., Likussav, W., Mikrochim. Acta, 1967, 721-4. (75) Beyer, V., Ott, R. D., Mikrochim. Zchnoanal. Acta, 1965, 1130-5. (76) Bode, H., Hachmann, K., 2. Anal. Chem., 229, 261-6 (1967). (77) Boltz, D. F., Mellon, &I. G., ANAL. CHEM., 36. 256R (1964): 38, 317R (1966): ’ (78) Boltz, D. F., Rlellon, hI. G., in “Standard Methods of Chemical Analysis,” 6th ed., Vol. 3, Part A, F. J. Welcher, Ed., Van Nostrand, Princeton, N. J., 1966, Chapter 1, pp 3-22. (79) Bondareva, T. K., Shvarev, V. S., Perkina, 5’. P., Zavodsk. Lab.,, 32.. 907 (1966). (80) Borek, P Yrchlabsky, M, Chem. Prum., 16, 6& (1966). (81) Bosholm, J., Anal. Chim. Acta, 34, 71 (1966). (82) . . Bowd, A. J., Burns, D. T., Mikrochem. Acta, 1966, 1051. ’ (83) Zbid., 1967, 564-9. (84) Braun, RI., Double Liaison, 127, 365 (1966). \ - - - - ,
(85) Braiim, D. E., Wadman, W. AKAL.CHEW,39,840 (1967). (86) Bryan, R. G., Waterbury, G. AEC Accession *To. 22869 Rept. LA-3468, 19 pp (1966). (87) Budanova, L. RI., Pinaeva, S. Zavodsk. Lab., 32, 401 (1966). (88) Budanova, L. AI., Gurevich, A. Zbid., p 1208. (89) Budesinsky, B., hlenclova, Chemist-~4nalyst,56, 30 (1967). (90) Budesinsky, B., hIenclova, Talenta. 14. 523 (1967). (91) Ibid.; 14; 688 (196i). (92) Budesinsky, B., Vrzalova, D., Anal. Chirn. Acta, 36, 246 (1966). (93) Budesinky, B., S’rzalova, D., Talanta 13, 1217 (1966). (94) Buhl, F., Gregorowicz, Z., Zeszyty Sauk Politech. Slask. Chem. 29. 55 (1966). (95) Bulatov, 11. I., Kalinkin, I. P., “A Practical Guide for Colorimetric and Spectrophotometric Methods of Analysis,” 223 pp, Khimiya, Leningrad (1965). (96) Bundy, J. K., Goode, G. C., Anal. Chim. Bcta. 37. 394 (1967). (97) Burke, K. E., ANAL.CHEM.38, 1608 (1966). (98) Burke, R. W., hlenis, Zbid. pp 1719-
Table II.
Photometric Methods for Nonmetals (Continued)
Material
... ...
siieiium Fe-allo y
Method or reagent RIanganese(S’II), molybdovanadophosphoric acid Iron(II), 1,lO-phenanthroline, (PrCN) Fuchsine, formaldehyde Modified Methylene Blue, (CHCl3) Carbon disulfide, or benzene Reduction, Methylene Blue Methylene Blue
...
Indirect: Mercury(II)j iodide, diphenylcarbazone, (CsH6)
..
Pararosaniline, formaldehyde p-Aminoazobenzene Pararosaniline
Air
...
... ...
Cbai ash
llethyl Green-bleaching llalachite Green-bleaching Triiodide-bleaching Indirect: AIercury(I1)) diphenylcarbazone, (CBHB) Indirect: Barium chromate Indirect: Barium chloranilate Indirect: Lead sulfate, ammonium acetate, dithizone (CHC13) Fuchsine, formaldehyde Indirect: Barium Chloranilate Triiodide-bleaching Indirect: lIercury(II), iodide, diphenylcarbazide, (C&)
...
...
Sulfite, formaldehyde, iodine Indirect: Cyanolysis: iron(II1) thiocyanate
...
Methylene Blue, (C2H4C12)
... ... Copper Sulfuric acid Silver chloride Soils Steel, tellurium Zr-Se-alloy Ores Minerals
1-Amidino-Bthiourea RIolybdoselenic acid 1,5-Diphenylthiosemicarbazide, (CHC13) Thioglycolic acid, (EtOAc) o-Phenylenediamine “Bismuthiol” (K salt of 5-mercapto-3-phenyl173,4-thiadiazole-2-thione), (CCla) 1,8-Diaminonaphthalene, (CHC13) Codeine phosphate 3,3 ’-Diaminobenzidine 3.3’-Diaminobenzidine ljl-l>iphenylhydrazine, (CHC13) 3,3’-Diaminobenzidine, (PhMe) 1,4-Diphenylthiosemicarbazide, (CHC13) Dithizone, (CCI,) Molybdosilicic acid llolvbdosilicic acid, Crvstal Violet, icvclohexanol n-am-1 OH) Heteropoly blue, tin(I1) oxalate Heterooolv blue Hetwopol; blue, (isoamyl OH) Heteropoly blue, (DOA in CHCl3-isamyl OH) Fluotitanic acid, hydrogen peroxide Heteropoly blue 11olybdosilicic acid, (n-amyl OH) Heteropoly blue Heteropoly blue (BuOH) Molybosilicic acid
+
... ... Piitonium Copper Cast iron Titanium Sodium aluminate solns.
I
.
I
qq
LA.
(99) Buri-iel-Marti, F., Cabrera-Rlartin, A., West, T. S., Anales Real SOC.Espan. Fiz. Quim., Ser. B, 61, 703 (1965). (100) Busev, A. I., Bogdonova, E. S., Tiptsova, 1’. G., Zh. Anal. Khim., 20, 585 (196;). (101) Busev, A. I., Bry’ko, V. RI., Zhukova, R. G., Vestn. Mosk. Univ., Ser. ZZ, 21,72 ( 1966). (102) Busev; A. I.,’ Ivanov, V. &I., Khlybova, N. S., Zh. Anal. Khim., 22, 547 (1967). (103) Busev, A. L., Karyakina, Z. P.,
*..
...
Steel S-ores Silver chloride
2-lIercaptobenzothiazole, (CHC13)
Tetramethylthiuram disulfite, (CHCl,) Dimercaptothiopyrone Bismuthiol I1 Diphenylthiourea, (CHCl,) 5-llercap to-3-p-naphthyl-l,3,4-triadiazole-2thione, molybdate, (CHC13) Dithizone, iodide Tellurium sol. Bromide sym-Diphenylthiourea ~~
VOL. 40, NO. 5 , APRIL 1968
265 R
Vestn. M o s k . Univ., Ser. ZZ, 21, 77 Table 111.
Constituent Acetaldehyde
Photometric Methods for Organic Compounds
Material
... Ethanol
...
Acetylene Alcohols, p and sec Alcohols, aliphatic monohydric Alcohols
...
...
Aldehydes Amines, p or sec, aliphatic Amines, sec
... ...
Amines, p , aromatic
... ...
Aniline Anthrone Amines, p Amines, aryl
...
Amines, tert aromatic l-Aryl-3,3-dialkyltriazine Ascorbic acid Benzoylmethane Carbonyl compds, sat and a, 6 unsatd. Carbon disulfide
...
Carboxylic acids Carboxylic acid chlorides o-Cresyl Cyclohexanone oxime Cy'clopentadiene Diethyl lead, or diethyl tin G-Demethyl-7-chlorotetracycline Deoxy hexoses Diphenylborinic acid 2,2-Dinitropropyl 2,4- and 2,6-Dinitrotoluenes Diphenyliodonium ion
Diphenylmethane Erythritol tetranitrate Flavonoids Fluorocarboxylic acids Folic acid
... ...
...
...
Tricresylphosphate
Isoprene
... Pharmaceuticals
... *..
... ...
I . .
... ... ...
Method or reagent 2, 4-Dinitrophenylhydrazine Methylbenzothiazolone hydrazone Ilsovay's reagent Modified Ilsovay reagent Simultaneous conv. to alkyl nitrites Nitration, 1-naphthyl amine 3,5-Dinitrobenzoyl chloride, Janovsky reaction 3-Methylbenzothiazolin-2-one hydrazone, (CH2C12) 2,4-Dinitrophenylhydrazine Pyruvyl chloride-2,6-dinitrophenylhydrazone Nitrition: sulfanilamide, 1naphthylamine 3,5-Dinitrobenzoyl chloride, Janovsky reaction Thiotrithiazyl chloride Furfural hIolybdophosphoric acid pDimethylaminobenzaldehyde 3,5-Dinitrobenzoyl chloride p-Dimethylaminocinnamaldehyde Tetracyanoethylene Hydrolysis, coupling with Nethyl-1-naphthylamine Cacotheline Iron(II1) Simultaneous: 2,4-dinitrohydrazine Copper(I1) diethyldithiocarbamate 2,4-Dinitrophenol Hydroxylamine, iron(II1) Oxalic acid, sulfuric acid Diazonium salt of H-acid Diazotized sulfanilamide, A'(1-naphthy1)ethylenediamine 1-Dimethylamino-4-nitrosobenzene 4(2-Pyridylazo)resorcinol 12 N Hydrochloric acid Sulfuric acid Diphenylcarbazone, (CsHs) N,N-Dimethylformamide Acetone, EtaNOH, ( C ~ H B ) Hexanitrodiphenylamine, (CHC13) Indirect: copper(I1) diethyldithiocarbamate Nitration, Janovsky reaction Aquopentacyanoferrate Nitrosation Rhodamine S, (CHC1,) Diazotization, N-naphthyldiamine (Continued)
266 R
ANALYTICAL CHEMISTRY
I 1 966). \ - - -- -- // -
(104) Busev, A. I., Lunina, G. E., Basargin, S. s.,Zh. Anal. Khim., 21, 1414 (1966). (105) Busev, A. I., Tiptsova, V. G., Bogdonova, E. S., Andreichuk, A. AT., Zbid., 20 Q 1 3 (1965). /lOG5\ 20,812 (106) Bus Busev, A. I., Vin, D. K., Zbid., 20, (19 976 (1965). (107) Zbic Zbid., p 1208. (108) Zbic Zbid., 21,327 (1966). (109) Ibid., p 1082. (110) Zbid., p 1311. (111) Buzlanova, &I. M.,Skvortsov, N. P., Mekhryusheva, L. I., Ibid., 22, 469 11967).
( l i P j - c h r o y , Calvo, A., Vatterri, N. RI., BoZ. SOC.Chilena Quim., 13, (1963). (113) Canada, D. C., ANAL.CHEM.,39, 381 (1967). (114) Carlson, R. ?\I., Rosell, R. A,, Vallejos, W., Zbid., p 688. (115) Carter, T., Parker, A., C. K . At. Energy Auth. Res. Group, Rept. 5293, 7 pp, 1966. (116) Casassas, E., Eck, L., Salvatelle, N., Inform. Quim. Anal. (Madrid), 21,48 ( 1967). (117) Celsi, S. A,, Ibid., 19,. 120-30 (1965). (118) Cerrari, E., Ghersini, G., Proc. SAC Conf., Xottingham, Engl. 1965, 462-72. (119) Cerrari, E., Ghersini, G., Analyst, 91, 662 (1966). (120) Cerrai, E., Ghersini, G., Anal. Chim. Acta, 37, 295 (1967). (121) Cetorelli, J. J., Winefordner, J. P., Talanta, 14, 705 (1967). (122) Chalaya, Z. I., Yakumova, AI. N., Zavodsk Lab., 32, 792 (1966). (123) Chan, K. XI Riley, J. P., Anal. Chim. Acta, 36, 220 (1966). (124) Ibid., 39, 103 (1967). (125) Chen, T. H., ANAL.CHEM.,39, 804 (1967). (126) Cheng, K. L., Goydish, B. L., Anal. Chim. Acta, 34, 154 (1966). (127) Cheng, K. L., Goydish, B. L., Microchem. J.,10, 158 (1966). (128) Cheng, K. L., Mzkrochim. Acta, 1967, 820-7. (129) Cherepakhin, A. I., Zh. Anal. Khim., 21, 502 (1966). (130) Cherekesov, A. I., Alykov, N. AI., Zbid., 20, 1312 (1965). (131) Chetkowski, W., Prace Inst. Hutniczych, 18, 109 (1966). (132) Christopher, A. J., Fennell, T. R. F. W., PB 169458, 11 pp (1965). (133) Christopher, 0. H., West, T. S., Talanta, 13, 507 (1966). (134) Chung, 0. K., Xeloan, C. E., ANAL.CHEM.,39,383 (1967). (133) Zbid., 39, 525 (1967). (136) Ciurlo, R., Tassova, E., Ahi SOC. Peloritana Sci. Fis. Mat. S a t . 9, 287 (196.11 ,- - ,. (137) Ciusa, W., RIangini, C., Chim. Znd. (Milan),44, 499 (1967). (138) Claassen, A., Bastings, L., Analyst, 91, 725 ( 1966). (139) Clem, R. G., Huffman, E. H., ANAL.CHEM.,37, 1155 (1965). (140) Cohen, I. R., Purcell, T. C., Zbid., 39, 131-2 (1967). (141) Coleman Instruments, Maywood, Ill,, 60153, Bulletin AB-306B. (142) Zbid., Bulletin AB-305B. (143) Zbid., Bulletin AB-312. (144) Corbett, J. A., Guerin, B. D., Analust. 91. 490 (1966). (145) dorbett, J. A., Guerin, B. D., Talanta, 13, 1400 (1966). (146) Corbett, J. A., Zbid., 13, 1089 (1966). (147) Croitoru, V., Floricel, &I., Ann. Univ. Bucuresti. Ser. Stint. i'iatur., 14, 157 (1965). I
-
(148) Crouch, S. R.,Malmstadt, H. V., ANAL.CHEM..39. 1084-9 (1967). (149) Ibid., p 1090.’ (150) Cyrankowska, M., Chem. Anal. (Warsaw), 11, 797 (1966). (151) Cvrankowska, M., Downarowicz, ‘ J.,Zbid., 12, 137 (1967). fl52) Cxerwinski. W.. Vieweeen. H., Ib?d., I I, 923 (1966). ’ (133) Dagnall, R. bf., West, T. S., Young, P., Proc. Soc. Anal. Chem., 2, 140 ( 1965). (154) Dagnall, R. AI., West, T. S., Young, P., Analyst, 92, 27 (1967). (15-5) Dahlby, J. W.,Waterbury, G. R., (7. S. A t . Energy Comm. LA3314, 14 pp
Table 111.
Photometric Methods for Organic Compounds (Continued)
Constituent Formaldehyde
Material
...
\ - -
(196>i).
( l i s ) D’alxiel, J. A. W., Thompson, &I., Analyst, 91, 90 (1966). (157) Danb, T. V., Spitz, J., Mathien, C., Anal. Chim. Acta, 36,204 (1966). (158) Datta, N. P.,Kheva? M. S., Saini, T. It.. J . Indian Soc. Sod Sci.., 14., 111 (ig66j. (159) Davidek, J., Sb. Vysoke Skoly Chem.-Technol. Praze, Potravinarska Techno[., 8 , 59 (1964). (160) Davies, A. G., Foreman, J. K., Proc. S A C Conf., Kottingham, Engl., 1965. 166-77. (161) h e , A. K., Rahaman, M. S., Anal. Chim. Acta, 34, 233 (1966). (162) Deasy, C. L.,Stitzel, A. E., Ibid., 39, 123 (1967). (163) DeGrave, C. J., Jr., Kursten, K. G., IJ. S. Patent 3.280.857 (C1 141-21) Oct. 25, 1066. (164) Deguchi, AI., Hiroshima Daigaku Kogakubu Kenkyu Hokoku, 13, 55 I
(\ -1-QAA’I --,.
.
(163) Deikova, Z. E., Dokl. T S K H A , 103,463 (1965). (166) Demarcq, bI. C.,Chim. Anal., 48, 634 11966). (167) lleptda, C.,Chem. Anal. (Warsaw), 11, 589 (1966). (168) Derkoseh, J., “Absorption Spectral Analysis in the Ultraviolet, Visible, and Infrared Regions, Methods of Analysis in Chemistry,” 1-01. 5 , 427 pp, -4kad. Verlag, Frankfurt/RIain, 1967. (169) DeTar, L. F.,ANAL. CHEM.,38, 1744 (1966). (170) Dey, A. K.,- Sangal, S. P., Sinha, S. X., Nunshi, Ii. S., Microchem. J., 9, 282 (1965). (171) Dhara, S. C., Khopkkar, S. M., Indian J . Chem., 5, 12 (1967). (173) Djurkin, V., Kirkbright, G. F., West, T. S., Analyst, 91, 89 (1966). (173) Doege, H. d., Gross-Ruyken, H., Mikrochim. Acta, 1967, 98-103. (174) Dokladalova, J., Stankova, O., Mikrochim. Ichnoanal. Acta 1965, 725-8. (17,5) Dolgorev, A. V., Podchainova, V. N.. Tr. Vses. i’iauch.-Issled. Inst. Stand.’ Obraztsov Spektr. Etalonov, 2, 67 (1965). (176) Dolgorev, A. V., Podchainova, V. S . ,Kurbatova, 5’. I., Ibid., 2, 22-4 i 196.5). f 7 ) D’onaldson, E. AT., Inman, W. R., Can. Dept. Mines Tech. Surv., Mines Branch Tech. Bulletin TB77, 17 pp (1965). 78) Dragulescu, C., Costinescu, P., Rev. Roumaine Chim., 10, 67 (1965); Studii Cercetari Chim., 14, 67 (1965). 79) Dragulescu, C., Costinescu, P., Studii Cercetari Chim., 14, 1217 (1965). simdn80) ~ragulescu,c.,Policec, s.,’ esiu, T., Talanta, 13, 1543 (1966). (181) Durrum Instrument Corp., Palo Alto, Cal., 94303, Prelim. Bulletin, March 1, 1967. (182) Dushina, T. K., Vop. Prik. Geokhim., 1, 125 (1966). (183) Dvorak, J., Nyvltova, E., Mikrochim. Acta, 1966, 1082-93.
... Formic acid Furan-2-carboxaldehyde Glucose Glycerol trinitrate a-Haloketones Hexamethylethylenetetramine 2,5-Hexanedione Indole derivatives Indole Isonicotinic acid hydrazide Malthion Mercaptans 2-Mercapto-4-hydroxy5-methoxypyrimidine Methanol Naphthalenemonosulfonic acids Naphthenic acids
Formaldehyde solns.
Aminophenol, tin(I1) chloride
... ...
... ... ... Tar
... I
.
.
...
... ... ...
... ...
1-Naphthols 1-Naphthol Nicotine
...
Nitroalkanes
...
Nitroaniline Organotin hydrides p-Nitrobenzaldehyde Pentachlorophenol
... ...
Phenols
...
...
...
... ...
... Phenylacetonitrile Phenylenediamine Bomers Phosgene Phthalic acid Picric acid Quinine Reserpine D-Ribonic acid lactone Salicylic acid Sebacic acid
Method or reagent Pararosaniline, dichlorosulfitomercuriate Chromotropic acid, sulfuric acid 3-Methyl-2-benzo thiazoline, (IIzCO-CHCls) 2-Thiobarbituric acid Bromophenol Blue
Perchloroethylene Phthalic ester
... *.. ... o-Chlorobenzoic acid
...
Iodination, fluorescein Aquopentacyanoferrate Diphenylhydrazine Chromotropic acid, sulfuric acid pDimethylaminobenzaldehyde pDimethylaminocinnamaldehyde pDimethylaminobenzaldehyde Reinecke salt Bismuth(II1) nitrate, (CCl4) 2,4-Dinitrofluorobenzene Palladium(I1) chloride Oxidation, chromotropic acid Picric acid, fuchsine, sulfite Rhodamine G Pyridine, copper(I1) sulfate, (nC7Hi~) Xylene, iodine 4-Bminoantipyrine Chloroauric acid, Methylene Blue, (CHCl,) m-Dinitrobenzene, Janovsky reaction 8-Quinolinol Isatin or ninhydrin Indole Iron(II), 2,2’-bipyridine, (PhNOz) p-Nitrobenzenediazonium fluoborate Diphenylpicrylhydraz yl Kinefic: N-(benzenesulfony1)quinone Nitration, Janovsky reaction Phenol-ferricyanide Iodine Indirect: lead(II), dithizone Xethylene Blue, (CHCla) Titanium salicylate p-Dimethylaminocinnamaldehyde Iron(II1) chloride Iron(II1) salicylate Indirect: Pptn. lead sebacate, dithizone (Continued)
VOL. 40,
NO. 5, APRIL 1968
267 R
Table 111.
Photometric Methods for Organic Compounds (Continued)
Constituent Sulfonylchlorides Thenoyltrifluoroacetone Toluene diisocyanate Toluidine Trichloroacetate Triphenylmethyl Tryptophan Vanillin
Material
... ... ... ...
... *..
... ...
(184) Dye, J. L., Feldman, L. H., Rev. Sci. Instr., 37, 154 (1966). (185) Dziomko, V. M., Zelichenok, S. L., hlarkovich, I. 8., Tr. Vses. Nauch.Issled. Inst. Khim. Reaktivov Osbo Chist. Khim. Veshchestv., 28, 119 (1966). (186) Eberle, A. R., Lerner, M. W., A N ~ LCHEM., . 37, 1568 (1965). (187) Ibid., 39, 662 (1967). (188) Edisbury, J. R., “Practical Hints on Absorption Spectrometry,’’ Hilger and Watts, Ltd., London, 266 pp, 1966. 189) Elinson, S. V., Mirzoyan, N. A., Zh. Anal. Khim., 21, 1436 (1966). 190) Elinson, S. V., Pobedina, L. I., Rezova, A. T., Zbid., 20, 676 (1965). 1911 Elinson. S. Y.. Pobedina. L. I.. Rezova, A.’T., Zadodsk. Lab. 32, 1314 I,l-M - -6- i,. 192) Elinson, S. V., Savvin, S. B., Dedkov, Y. AI., Tsvetkova, V. T., Ibid., 32, 654 (1966). 193) Elinson, S. V., Savvin, S. B., Nezhnova, R. L., Zh. Anal. Khim., 22, 5.11 (1967’1. (194) Elizarova, G. L., Matvienko, L. G., Izv. Sibirsk. Otd. Akad. Nauk SSR, Ser. Khim. Nauk, 1966, 1:s-21. (195) Elhauer. H. D.. Fahrig, P., KrautSchick, G., Z. Anal. C h e k , 228, 276 (1967). (196) Emasheva, G. X., Chichinova, T. A., Silaeva, E. Y.,Kurbatova, V. I., Tr. Vses. 1Yauch.-Issled. Inst. Stand. Obraztsov Spektr. Etalonov, 2, 26 (1965). (197) Ermolaev, K. P., Kovalenko, G. S., Krot. X. N.. Blokhin. 1‘. I.. Zh. Anal. KhiA., 20, 1336 (196s). (198) Eremin, Y. G., Raevskaya, V. T., Romanov, P. N., Zbid., 21, 1303 (1966). (199) Eremin, Y. G., Romanov, P. V., Raerskava. V. V., Izv. Vusshikh Ucheb. Zavedonli ’ Khim.’ i Kh?m. Tekhnol., 9, 990 (1966). (200) Eremin, Y. G., Romanov, P. N., Toropkova, E. T., Materialy iYauch. Konf. Sovnavkhoz Sizhnevolzh. Ekon. Raiona, Polgograd. Politekh. Inst., Volgograd, 2, 149 (1965). (201) Evans, H. B., Hallcock, R. R., AXAL.CHEM.,39, 842 (1967). (202) Evans, W. D., Inst. Mining Met., Trans., Sect. B, 75, 165 (1966). (203) Fadeeva, 11. I., Kuchinskaya, 0. I., Vesin. Mosk. Unit]., Ser. 11, 22, 67 (1967). (204) Fal’kovich, Y. E., Bogdanova, N. A Pishch Tekhnol., 1967, 189-92. (205) Filipov, D. C., Natchev, I. R., C. R. Acad. Bulg. Sci., 20, 109 (1967). (206) Fishbein. W. V.,Anal. Chim. Acta, ‘ 37; 484 (1967). (2071 Flaschka. €I., Hicks.. J.,, Microchem. . J.; Z , 517 (1966).’ (208) Fleet,, M. E., ANAL. CHEM., 39, 253 (1967). \ - - -
268 R
I
ANALYTICAL CHEMISTRY
Method or reagent Basic pyridine Iron(II1) TTA(isoBUC0Me) Hydrolysis, diazotization, 1naphthol Sodium chlorite Iron(I1); 1,lO-phenanthroline, ( PhNOz) Conc. sulfuric acid 5,5-Methylenedi( 2-furaldehyde) Millon reagent
(209) Fomenko, L. D., Okun, A. E., Yampol’skii, M. S., Uch. Zap. Kursk, Gos. Podagog. Inst., 23,216 (1966). (210) Foster, R. E., Jr., Maeck, W. J., Rein, J. E., ANAL. C n m . , 39, 563 (1967). (211) Frankel, M., Wagner, D., Gertner, D., Zilkha, A., Israel J . Chem., 4, 183 (1966). (212) Fresenius, W., Schneider, W., Z. Anal. Chem., 214, 341 (1965). (213) Frumina, N. S., Mustafin, I. S., Kukleva, L. M., Izv. Vysshikh Uchebn. Zavodenii, Khim. i Khim. Tekhnol., 9, 554 (1966). (214) Fujii, Y., Ishiguro, Y., Shibata, S., Nagoya Kogyo Gijutsu Shikensho Hokoku. 15. 171 (1966). (215) Fujinaga, T.; Koyama, M., Kanchiku, Y., iVippon Kagaku Zasshi, 87, 1243 (1966). (216) Fujinaga, T., Koyama, M., Kanchiku, Y., Tsurubo, S., Bull. Chem. SOC.Japan, 40, 817 (1967). (217) Fujinaga, T., Koyama, hl., Tochiyama, O., J . Inorg. Nucl. Chem., 29, 1372 (1967). (218) Fukamauchi, H., Z. Anal. Chem., 229,413 (1967). (219) Fukushi, N., Kakita, Y., Bunseki Kagaku, 15, 553 (1966). (220) Gagliardi, E., Presinga, P., Mikrochim. Ichnoanal. Acta, 1965, 791 (1965). (221) Gagliardi, E., Wolf, E., Mikrochim. Acta, 1967, 104-15. (222) Gallo, N., Ann. Chim., 57, 54 (1967). (223) Ganago, L. I., Mukhina, hl. F., Materialy Nauch. Konj. Sovnarkarkhoz A’izhnevolzh Ekon Raiona, Volgograd. Politekh. Inst. Volgograd., 2, 128 (1965). (224) Ganago, L. I., Ovchinnikova, N. P., Zbid., 2, 119 (1965). (223) Ganago, L. I., Stepanova, T. V., Ibid., p. 154. (226) Ganago, L. I., Stepanova, T. V., Zavodsk. Lab., 32, 928 (1966). (227) Ganchev, N., Atanasova, B., Zh. Anal. Khim., 22, 274 (1967). (228) Ganchev, N., Chichkov, A., Mikrochim. Acta, 1967, 809-12. (229) Ganchev, N., Shishkov, A., Dmitrova, A., Zh. Anal. Khim., 21, 217 (1966). (230) Gancheva, A., Mikrochim. Acta, 1967, 601-2. (231) Gandhi, M. H., Desai, hf. N., ANAL.CHEM.,39, 1643 (1967). (232) Garcia, E. E., Ibid., p. 1605. (233) Gardner, R. D., Ashley, W. H., AEC Accession No. 1246, Rept. No. LA-3551,18 pp (1966). (234) Geary, W. J., Larsson, C. N., Proc. SAC Conf., Nottingham, Engl., 1965, 455-60.
(235) Geering, H. R., Hodgson, J. F., J . Assoc. Oflc. Anal. Chemists, 49, 1057 (1966). (236) Genchev, M., Postadzhyan, K., Nauch. Tr. Vissh. Pedagog. Inst. Plovdiv. Mat. Fiz., Khim., 13151,4,97 (1966). (237) Gilford Instrument Laboratories, Inc., Oberlin, Ohio, 44074, Prelim. Product Information Sheet. (238) Glasser, L. G., Kanzler, R. J., Troy, D. J., U. S. Patent, 3,306,156 (1967). (239) Goebel, D. G., Caldwell, B. P., Hammond, H. K., 111, J . Opt. SOC.Am., 56,783 (1966). (240) Golosnitskaya, V. A., Petrashen, V. I., Novocherk. Politekhn. Inst., 141, 65 (1964). (241) Gorbenko, F. P., Kuchkina, E. D., Tr. Vses. Nauch.-Issled. Inst. Khim. Reaktivov Osobo Chist. Khim. Veshchestv, 26,248 (1964). (242) Gorbenko-Germanov, D. S., Zenkova, R. A., Zh. Anal. Khim., 20, 1020 (1965). (243) Gorgushina, V. G., Esenina, N. V., Ibid., 21, 239 (1966): (244) Gorski, W., Lipiec, T., Chem. Anal. (Warsaw), 11, 759 ( 1966). (24.5) Goto, H., Kakita, Y., Ichinose, N., iVippon Kagaku Zasshi, 88, 640 (1967). (246) Goyal, S. S., Tandon, J. P., Bull. Chem. Soc. Japan, 40,994 (1967). (247) Grechnkhinn, Z. Y . , Nesmelov, Tr. lT.. Zh. Prikl. Khini.. 39. 2574 (1966). (248) Green, T. E., A ~ L . C’ H E ~ 37, , 1695 (1965). (249) Green, RI., Tollin, G., Rev. Sci. Imtr., 38,1316 (1967). (250) Gregorczyk, S., hlrozinski, J., Hutnzk. 33.426 (1966). (25l)‘Gr~goro&cz,’Z., Baranowski, R., Ciba, J., Gorka, P., Z . Anal. Chem., 217, 18 (1966). (252) Gregorowicz, Z., Ciba, J., Mikrochim.Zchnoanal. Acta, 1965, 733-6. (253) Gregory, G. It. E. C., Jeffery, P. G., Analyst, 92, 293 (1967). (254) Grob, R. L., Cogan, J., Mathias, J. J., Mazza, S. M., Piechowski, A . P., Anal. Chim. Acta, 39, 115 (1967). (255) Grosskreutz, W., Schultze, D., Wilke. K. T., Z. Anal. Chem., 223. 183 (1966). (256) Guilbault, G. G., Kramer, D. N., ANAL.CHEM.,38, 834 (1966). (257) Guilbault, G. G., Krarner, D. N., Hackley, E., Ibid., p 1897. (258) Gupta, H. K. L., Bhandari, 51. R., Sogani, N. C., Bull. Chern. SOC.Japan, 40, 215 (1967). (259) Gupta, J. G. S., AN‘IL.CHEW,39, 1822 (1967). (260) Gupta, S. S., hlukerjee, D., Chim. Anal., 49, 37 (1967). (261) Gupta, S. S., Mltkerjee, D., Mzkrochim. Acta, 1967, 763-7. (262) Gusev, S. I., Nikolaeva, E. AI., Zh. Anal. Khim., 21, 166 (1966). (263) Zbid., 21, 281 (1966). (264) Zbzd., p. 1183. (263) Gusev, S. I., Poplevha, L. V., Peiis, A. S., Zbid., 22, 731 (1967). (266) Guyon, J. C., Cline, L. J., ANAL. CHEM.,37, 1778 (1965). (267) Guyon, J. C., Clowers, C. C., Anal. Chim. Acta, 37, 401 (1967). (268) Guyon, J. C., Matulis, R. WI., Chemist-Analvst, 56. 22 (1967). (269) Hach, C.C.; U.’S. Patent 3,294,490 (1966). (270) Hagglund, J., Sellberg, F., J . Opt. SOC.Am., 56, 1030-40 (1966). (271) Hall, R. J., Gray, G. A . , Flyrin, L. R., Analyst, 91, 102 (1966). (272) Kankonyi, V.,Karas-Gasparec, Ti., Acta Pharm. Jugoslav., 17, 41 (1967). (273) IIarrison, T. S., J . Iron Steel Inst., 204, 1022 (1966).
VOL. 40, NO. 5 , APRIL 1968
269
(400) Korenman, I. M., Sidorenko, L. V., Ihid.. 1964. 431-44. --(401) ibid., 1966, 288-91. (402) Korol’kova, 1‘. S., Putnins, J., Gudriniece, E., Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 1966, 508. (403) Kostin, D. F., Koptseva, M. A., Tr. Khim. Khim. Tekhnol, 1966,310-14. (404) Kotera, Y., Sekine, T., Takahashi, M., Bull. Chem. SOC.Japan, 39, 2523 (1966). (405) Kotsuji, K., Ibid., 38, 988 (1965). (406) Kotsuji, K., Nippon Kagaku Zasshi, 86,519 (1965). (407) Kovalenko, P. N., Shchemeleva, G. G., Sokolova, L. S., Zavodsk. Lab., 33,287 (1967). (408) Krainev, S. I., Lab. Deb., 1966, 748. (409) Kratochvil, V., Chem. Prumysl, 17, 206 (1967). (410) Kreingol’d, S. U., Bozhevol’nov, E. A.. DraDkina. D. A.. Zh. Anal. Khim.; 22,2i8 (1967). (411) Kreshkov, A. P., Senetskaya, L. P., Karagodina, A. M.,Ibid., 21, 415 (1966). (412) Krishnaiah, K. S. R., Murty, G. Ti. L. N., Tisio, 13, 111(1966). (413) Kug, O., Metlenko, A,, Chem. Anal. (Warsaw),10,819 (1965). (414) Kuo, C. Y., Hua Hsueh Tung Pao, 1966, (7), 52-55. (415) Kurbatova, V. I., Feofanova, V. V., Suslova. S. P., Tr., Vses. Nauch.-Issled. Inst. Stand. Obraztsov Spektr. Etalonov, 2. 90 f 1965). - - - - I
N., Satyanarayana, D., Rao, V. P. R., Anal. Chim. Acta,. 35,. 484 (1966). ‘ (418) Kurmaiah, N., Satyanarayana, D., Pandu Ranga, Rao, V., Z. Anal. Chem., 230. 181) (1867). 230, 199 - - - (1967). (419) Kuznetsov, V. V., Glukhova, Y. V., (419j Zavodsk. Lab., 31, 1324 (1965). (420) KvaDil, J., Czech. Patent 114,448 (1965). (421) Landrum. J. H.. Henicksman. A. L.. ‘ AEC Accession hro. 1245, Rept. No: LA-3550, 15 pp (1966). (422) Larina, N. I., Gel’man, N. E., Zh. Anal. Khim., 22,582 (1967). (423) Lazareva, V. I., Lazarev, A. I., Ibid., 21, 172 (1966). (424) Lazareva, V. I., Lazarev, A. I., Zavodsk. Lab., 31, 1437 (1965). (425) Lel’chuk, Y. L., Sokolovich, V. B., Drelina, 0. A., Izv. Tomskogo Politekhn. Inst., 128,101 (1964). (426) Lesiak, T., Chem. Anal. (Warsaw), 10,223 (1965). (427) Levin, V., Nippoldt, B. W., Rebertus, R. L., ANAL.CHEM.,39,581 (1967). (428) Levorato, C., Mantovan, R., Bull. Chim. Farm., 105,231 (1966). (429) Lieu, V. T., Frodyma, Ll. AI., Talanla, ’13,1319’(1966): (430) Lin, H. K., Chen, K. Y., Chen, Y. F.. Hua Hsueh Tuna Pao. 1966. 365-8.‘ (431) Lisenko, N. F., Mustafin, I. S., Zh. Anal. Khim., 22,25 (1967). (432) Lomakina, L. K.,Alimarin, I. P., Vestn. Mosk. Univ.. Ser. I I : Khim. 2 1 , 79 (1966). (433) Lomonosov, S. A,, Xl’shtein, F. Y., Zavodsk. Lab, 33, 14 (1967). (434) Lomonosov, S. A., Rybakova, Y. A., Podchainova, V. K.,Bednyagina, N. P., Poluch. Anal. Veshchestv. Osobo Chast. Mater. Vses. Konf. Gorky, USSR, 1963, 263 (Pub. 1966). (435) Luedemann, K. F., Zimmermann, R., Wemme, H., Xeue Huette, 11, 755 (1966). (436) Luke, C. L., Anal. Chim. Acta, 34, 302 (1966). (437) Ibid., 36,122 (1966). (438) Ibid., 37, 97 (1967). I
\ - - - . I -
_
270 R
I
I
ANALYTICAL CHEMISTRY
(439) Ibid., 39, 404 (1967). (440) Lukin, A. RT., Chernysheva, T. V., Tr. Vses. Nauch.-Issled. Inst. Khim. Reaktivov Osobo Chist. Khim. Veshchestv, 26,288 (1964). (441) Lukin, A. M., Efremenko, 0. A., Podolskaya, B. L., Zh. Anal. Khim., 21, 970 (1966). (442) Lukin, A. M., Smirnova, K. A., Chernysheva, T. V., Ibid:, p. 1300. (443) Lukin, A. M., Smirnova, K. A., Zavarikhina, G. B., Tr. Vses. Nauch.Issled. Inst. Khim. Reaktivov Osobo Chist. Khim. Veshchestv.,29, 282 (1966). (444) Lupert, S., Kansky, O., Sb. Pr. Vyzk. Chem. Vyuziti Uhli, Dehtu Ropy., 6, 296 (1966). (445) Lystova, G. G., Strel’nikova, N. P., Analiz Blaaorod. Met., Moscow. 1965, 12-15. (446) McCloskey, J. P., Microchem. J., 12,32 (1967). (447) McDonald, C. W., Bedenbaugh, J. H., ANAL.CHEM.,39, 1476 (1967). (448) Madison, B. L., Guyon, J. C., Ibid., (449) h&ekl%, S., Kato, K., Sakurai, XI., Bunseki Kagaku, 15, 852 (1966). (450) Rlajumdar, A. K., Chatterjee, A. B., Talanta, 13, 821 (1966). (451) hlajumdar, A. K., Bhowal, S. K., Anal. Chim. Acta, 35,479 (1966). (452) Majumdar, A. K., Chatterjee, A. B., Mikrochim. Acta, 1967, 663-9. (453) hlajumdar, A. K., Das, G., Anal. Chim. Acta, 36, 454 (1966). (454) Majumdar, A. K., Mitra, B. K., Ibid., 33, 670 (1965). (455) Mal’tsev, V. F., Pashchenko, E. Rl., Volkova, N. P., Zh. Anal. Khim., 21, 1205 (1966). (456) Maly, J., Fadrus, H., Cesk. Hyg., 11,277 (1966). (457) Marcek, J., Dvorak, J., Ditz, J., Z. Anal. Chem., 217,248 (1966). (458) Marchenko, P. V., Obolonchit, N. V., Zh. Anal. Khim., 22,725 (1967). (459) LIarczenko, Z., Choluj-Lenarczyk, L., Chem. Anal. (Warsaw), 10, 729 (196.5)
\_.__,_
(460) Marhenke, K., Sandell, E. P., Anal. Chim. Acta, 38, 421 (1967). (461) RIarkham, J. J., ANAL. CHEM.,39, 241 (1967). (462) Marshall, T. K., Waterbury, G. R., U . S. At. Energy Comm. LA-3559, 24 pp (1966). (463) Rlarti, F. B., Margin, A. C., Gutierrez, C. F., Inform. Quim. Anal., 19, 165 (1965). (464) hlartinez, F. B., Rodriguez-Campos, J., Microchem. J., 11, 331 (1966). (465) Rlatrka, M., Marhold, J., Pipalova, J., Collection Czech. Chem. Commun., 31,4735 (1966). (466) blatsumoto, M., Miyazaki, &I., Bunseki Kagaku, 15,294 (1966). (467) Matwo, T., Funayama, K., Nippon Kagaku Zasshi, 87, 433 (1966). (468) Mavrodin. M.. Rev. Roumaine ‘ C&n., 1 1 , 1159(1966). (469) Llellon, 31. G., ANAL. CHEM.21, 3 (1949); 22, 2 (1950); 23, 2 (1951); 24.2 (1952): 26.2 (1954). (470) hie1lon;’M. G., Boltz, D. F., Ibd., 28, 559R (1956); 30, 354R (1958); 32, 194R (1960); 34,23212 (1962). (471) bleyer, J., Z. Anal. Chem., 22, 409 (1967). (472) blezharaups, G. P., Bankovskii, Y. A., Ievin’sh, A. F., Analiz. Blagorod. 1965, 4-12. Met., MOSCOW, (473) Rlikhalevich, L. S., Levitman, K. Y., Vestn. Akad. Yauk Belarusk. SSR, Ser. Khim. Xauk 1 9 6 6 , 5 5 4 (474) Milyukova, M. S., Nemodruk, A. A., Zh. Anal. Khim., 21,296 (1966). (475) llilyukova, M. S., Savvin, S. B., Ibid., 22, 353 (1967).
(476) Minczewski. J.. Kasiura. K.. Chem. ‘ Anal. (Warsaw);IO, 719 (1965).’ (477) blinin, A. A., Barmina, G. A., Filippova, L. P., Zavodsk. Lab., 32, 413 (,1-~--,. 866) (478) Rlischenko, V. T., Lauer, R. S., Efryushina, N. R., Poluiktov, N. S., Zh. Anal. Khim., 20,1073 (1965). (479) Misovic, J. D., Jovanovic, M. N., Fotic, L. D., Glas. Hem. Drus., Beograd, 31, 1 (1966). (480) Moeken, H. H. P., Van Neste, W. A. H., Anal. Chim. Acta, 37, 480 (1967). (481) Monnier, D., Rlarcantonatos, A,, Marcantonatos, M., Helv. Chim. Acta, 49, 57 (1966). (482) Morello, B., Met. Ital., 58, 317 (1966). (483) Morita, Y., Kogure, Y., Nippon Kagaku Zasshi, 86, 82 (1965). (484) Motojima, K., Tamura, N., Bunseki Kagaku, 14, 1150 (1965). (485) ;\louden, A., Xethodes Phys., Anal., 1966, 3-6. (486) Mrozinski, J., Chem. Anal. (IVarsaw), 12, 93-7 (1967). (487) 3lukherii.A. K.. Microchem. J.,. 11,. 243 (1966). * ’ (488) Rlurakami, T., Ishii, E., Kogyo Kagaku Zasshi, 68, 1865 (1965). (489) Murashova, V. I., Sushkova, S. G.,, Izv. Vyssh. Ucheb. Zavod. Khim. a Khim. Tekhnol., 9, 5.51 (1966). (490) Murashova, 5’. I., Sushkova, S. G., Bakunina, L. T., Zavodsk. Lab., 33, 280 (1967). (491) Rlurata, A., Suzuki, T., Bunsekz Kagaku, 16, 248 (1967). (492) RIurto, J., Suomen Kemistilehti, A39, 181 (1966). (493) Rlushkin, Y. I., Zavodsk. Lab., 33, 296 (1967). (494) Mushran, S. P., Prakash, O., Awasthi, J. N., AML. CHEM.,39, 1307 (1967). (495) Mustafin, I. S., Shchukina, V. S., Zh. Anal. Khim., 21, 309 ( 1966). (496) RIiistafin. I. S.. Shchukina. V. S.. ‘ Zavodsk. Lab,‘33, 12’(1967). (497) Rlustafin, I. S., Shchukina, V. S., Malinina, I. V., Zh. Anal. Khzm., 21, 1136 (1966). (498) Nabivanets, B. I., Lukachina, V. V., Zavodsk. Lab.. 33. 145 (1967). (499) Nadkarni; R. A.,‘ Haldar, B. c., Indian J . Chem., 3. 539 (1965). (500) Nakamura, bl:, Kagaku to Seibutsu, 3 , 3 9 4 6 (1965). (501) Naruskevicius, L., Kazlauskas, R., Lietuvos T S R Aukstuju Mokyklu Mokslo Darbai, Chem. ar Chem. Technol., 7.9 (1965). (502) Naruskevicius, L., Zazlauskas, R., Marmakaite, I., Zavodsk. Lab., 32, 926 (1966) (503) Nasouri, F. G., Shahine, S. A. F., Rlagee, R. J., Anal. Chim. Acta, 36, 346 (1966). (504) Kath, S. K., Agarwal, R. P., Chim. Anal., 49, 38 (1967). (50.5) Nazarenko, V. A,, Biryuk, E. A., Zh. Anal. Khim., 22,57 (1967). (506) Kazarenko, V. A., Biryuk, E. A., Antonovich, V. P., Zavodsk. Lab., 33, 22 11967). (507)‘Keeb, R., Khon-Boluki, K., 2. Anal. Chem., 215, 392 (1966). (508) Needleman, AI., A N A L . CHEM.,38, 915 (1966). (509) Negoiu, D., Kriza, A., Baloiu, L., Awlele Univ. Bucuresti, Ser. Stint. Nut., 165 (1964). (510) kegoiu, D., Kriza, H., Negoiu, M., Ibid., p 157. (511) Nermodrtlk, A, A., Glukhova, L. P., Zh. Anal. Khzm., 21, 688 (1966). (512) Neuzil, E., Josselin, J., Jensen, H., ~
’
Cesaire, G. O., Ann. Pharm. France, 25, 218 (1967). (513) Nevzorov, A. K., Ganenko, Z. G., Zavodsk. Lab., 33, 285 (1967). (514) Newman, E. J., Jones, P. P., Analyst, 91, 406 ( 1966). (515) Kietruch, F., Prescher, K. E., 2. A d . Chem., 226, 259 (1967). (516) Nikolaeva, E. M., Materialy Nauchn. Konf.. Permsk. Med. Znst.., Sb... Perm., 1964,67-8. (517) Nimeroff, I., J . Opt. SOC.Am., 56, 230 (1966). (518) Nogoiu, D., Kriza, A., Negoiu, M., Analel Univ. Bucuresti, Ser. Stiint. Nut., 13, 149 (1964). 1519) Nomura. T.. Nippon Kaaaku .. Zusshi, 88, 635 (1867). (520) Norman, I-. J., Analyst, 91, 593 ~
(1RPIfi).
\ _ _ _ _ ,
(521) Obtemperanskaya, S. I., Borodina, G. P., Vestn. Mosk. C‘niv., Ser. ZZ, 22, 88 (1967). (522) Obtemperanskaya, S. I., Egoronova, A. G., Zbid., p. 80. (523) Obtemperanskaya, S. I., Likhosherstova, Y. AI., Chenko, E. G., Zbid., p 4-10. (524) Obtemperanskaya, S. I., Tikhonov, Y. X., Zbid., 21, 93 (1966). (525) Okubo. T.. Koiima. RI.. Bunseki Kagaku, 15, 845 (1966). (526) Okatani, T., Nippon Kagaku Zasshi, 88, 737 (1967). (527) Okutani, T., Utsumi, S., Bull. Chem. SOC.Japan,, 40, 1386 (1967). (528) Okutani, T., Utsumi, S.,iyippon Kagaku Zasshi, 86, 1149 (1965). (529) Olcina, M. L. ll., Palomino, J. V., Anales Real. SOC.Espan. Fis. Quim., ( M a d r i d ) Ser R, 63,85-94,307 (1967). (530) Ozawa, T., A’ippon Kagaku Zasshi, 87, 855 (1966). 1531) Zbid.. v ,573. (532j Zbid.; i, 576. (533) T h M . . n 578. ( 534j Pakilhs, P., Flynn, W. W., Anal. Chim. Acta, 38,403 (1967). ( 5 3 5 ) Palei, P. K.>Milvukova, RI. S., Zh. Anal. Khim., 22,50-(1967) (536) Papafil, RI., Fur,mica. M;. Furnica, P.. Analele Stiinf. Unit).’‘‘‘41.’ Z . Cuza” la&, Sect. I C , Chim., 11, 133 (1965). (537) Papariello, G. J., Janish, ?*I.A. AI., AN.IL.CHEM.,38, 211 (1966). (538) Pappaq, A. J., Powell, H. B., Zbid., 39, 579 (1967). (539) Pardue, H. L., Rodriques, P. -4., Zbid., p 901. (540) Park, D. W., Deehan Hwahak Hwahak Hwoejee, 10,4 (1966). (541) Patrovsky, T‘., Collection Czech. Chem. Commun., 32, 2636 (1967). (542) Patrovsky, Y., Chem. Listy, 60,1545 (1966). (543) Patrovsky, V., Talanfa, 12, 971 ( 1965). (544) Paul, J., Anal. Chim. Acta, 35, 200 (1966). (545) Paul, J., Mikrochim. Zchnoanal. .4cfa, 1965, 830-5. (546) Zbid.. 1965. 83641. (547j Pavlovskaya, G. S., U.S.S.R. Patent 185,103 (1966). (548) Pays, RI., RIalangeau, P., Bourdon, R., Ann. Pharm. France, 24, 763 (1966). (549) Peaslee, D. E., Soil Sci. SOC.Am. Proc., 30, 443 (1966). (550) Perez-Bustamante, J. A., BurrielMarti, F., Anal. Chim. Acta, 37, 49 (1967’). (551) Pesez, M., Bartos, J., Bull. SOC. Chim. France, 1966, 3802. (552) Pesez, M., Bartos, J., Talanfa, 12, 1049 (1965). (553) Peshkova, U. V., Gromova, M. I., “Practical Manual for Spectrophotometry and Colorimetry,” 2nd ed., I
~
,
Moscow: Izd. Mosk. Univ., 228 pp 11965’l. \_.__
(554) Pichat, P., Bull. SOC.Chim. France, 1967, 242-3. (555) Pietri, C. E., Wenzel, A. W., U . S. At. Energy Comm. NBL-228, 77 pp (1965). (556) Pilipenko, A. T., Maslei, N. N., Ukr. Khim. Zh., 33,730 (1967). ( 5 5 7 ) Pilipenko, A. T., Shinb, N. M., Zbid., 32, 1211 (1966). (558) Pilkineton. E. S.. Smith. P. R.. A&[. Chi;. Acta. 39. 321 f1967). (559) Pilloni, G., ’Plakogna, G:, Zbid., 35, 325 (1966). (560) Pinaeva, S. N., Budanova, L. M., Zavodsk. Lab., 32, 1209 (1966). (561) Plock, C. E., Caldwell, C. E., ANAL. CHEM.,39, 1472 (1967). (562) Podchainova. V. N.. Dolgorev. A.’V., Zh. Anal. Khim., 20,’1059 (r965): (563) Podchainova, V. N., Malkina, T. G., Studenskaya, L. S., Tr., Vses. Nauch.-Zsled. Znst. Stand. Obraztsov Spektr. Etalonov, 2, 18 (1965). (564) Poddar, S. N., Dey, K., Sarkar, S. C. N., Zndian J . Chem., 4, 371 (1966). (565) Poddar, S. N., Kumar, D., Sci. Cult., 31, 189 (1965). (566) Poetzl, L., Z. Anal. Chem., 223, 10 (1966). (567) Poliau, A., Greger, H., Zbid., p 247. (568) Pollack, E. N., Miguel, A. N., ANAL.CHEM.,39, 272 (1967). (569) Poluektova, E. N., Nazarenko, 5‘. A., Zh. Anal. Khim., 22,746 (1967). ( 5 7 0 ) Polyak, L. Y., Bashkirova, I. S., Zbid., p 200. (571) Pons, J. A., Publ. Znst. Invest. Microquim., Univ. 2\Tacl. Litoral, 26, 194 (1965). (572) Popa, G., Albert, F. &I., Grigore, E. R., Ana/ele Univ. Bucuresti, Sr. Stiinf. -Vat., 12, 73 (1963). (573) Popa, G., Ciurea, I. C., Lazar, C., Lazar, R., Zbid., 13, 61 (1964). (574) Popa, G., Lazar, C., Anal. Chim. Acta. 33. 676 1196.5). ~
~
(592) Rangnekav, A. V., Khopkar, S. M., Sci. Cult. (Calcutta),32, 368 (1966). (593) Rao, P. S., Rao, N. B. S. N., Reddy, M. P., Zndian J . Chem., 3,408 (1965). (594) Reef, B., Doge, H. G., Talanta, 14, 967 (1967). (59.5) Rehwoldt, R. E., Chasen, B. L., Li, J. B., AN.AL.CHEM.,38, 1018 (1966). (596) Repas, P., Onfode, 16, 136 (1965). (597) Reusmann, G.. 2. Anal. Chem., 226. 346 (1966). (598) Reznik, B. E., Gonzburg, G. &I., hlilovanova, 5’. F., Zavodsk Lab., 33, 18 (1967). (599) Rohde, R. K., ANAL.CHEM.,38, 911 (1966). (600) Robertson, A. R., 6.Opt. SOC.Am., 57,691 (1967). (601) Robertson, K. D., AD629704, 25 pp (1966’1. (602) Romantesa, T. I., Gromova, M. I., Peshkova, 5’. hl., Vestn. Mosk. Univ., Ser. ZZ: Khim., 21,73 (1966). (603) Ross, H. H., ANAL. CHEM., 38, 414 (1966). (604) Rozycki, C., Chem. Anal. (Warsaw), 11,447 (1966). (605) Rozycki, C., Zbid 12, 131 (1967). (606) Rutkowski, W., ii’asowicz, S., Zbid., 11,971 (1966). (607) Russell, B. G., Lubbe, W. V., Wilson, A., Jones, E., Taylor, J. D., Steele, T. W., Talunla, 14, 957 (1967). (608) Sa, A,, Publ. Znsf. Invest. Microquim., C’niv. Sacl. Litoral, 26, 135
~~--~,.
119fi.i)
(609) Zbid., p 141. (610) Saba, R., Rlonnier, D., Khalil, F. E., Mitt. Gebiefe Lebensm. Hyg., 57, 381 (1966). (611) Sakaki, T., Yippon Kinzoku Gaktaishi, 27, 445 (1967). (612) Zbid., 29, 151 (1965). (613) Zbid., 30. 175 (1966). (614) Zbid.; p 473 161.5) Zbid.. D 1086. (616) Salikh’ov, T. D., Yampol’skii, hl. Z., Zh. Anal. Khim., 20, 1299 (1965). (617) Zbid., 22, 998 (1967). (618) Saneal, S. P., Chemist-Analust, 55., 104 (1966); (619) Sangal, S.P., Chim. Anal., 48, 351 (1966). (620) Sangal, S. P., Microchem. J., 11, 508 (1966). (621) Sangal, S. P., Dey, A. K., J . Zndian Chem. Soc., 43,440 (1966). (622) SantenR. T., van, Schlewitz, J. H., Toy, C. H., ilnal. Chim. .4cfa, 33, 593 11965). (623) Sarkav, A. K., Das, J., AXAL. CHEM.,39, 1608 (1967). (624) Sarma, P. L., Dieter, L. H., Talanfa, 13, 347 (1966). (62.5) Satori, T. O., Sippon Kagaku Zasshi. 86. 831 (1965). (626) Sahdkrs, R. 11.;Schwarz, H. P., Stewart, J. C., ANAL.CHEM.,39, 550 (1967). (627) Savvin, S.B., “rlrsenazo 111. Methods of Photometric Determination of Rare and Actinide Elements,” hloscow: Atomizdat, 256 pp (1966). (628) Savvin, S.-B., Borthova, Y. A., Malkina, E. N., Zh. Anal. Khim., 20, 947 (1965). (629) Savvin, S. B., Dedkov, Y. hl., Romanov, P. X., Zbid., 22, 65 (1967). (630) Savvin, S. B., llilyukova, 111. S., Zbid., 21, 1075 (1966). (631) Savvin, S. B., Pisarenko, I. D., Yurchenko, E. J., Dedkov, Y. IT., Zbid., p 669. (632) Savvin, S. B., Romanov, P. N., Eremin, Y. G., Zbid., p 1423. (633) Sawada, T., Kato, S., JYippon Kinzoku Gakkaishi., 30.874 (1966). , ~, (634) Sawicki, E., Microchim. Acta, 1967, 176-9. “
K.’ C., Talanta, 13, 1393 (1966). (578) Pritchard, D. T., Analyst, 92, 103 1 1967). , (579) Privalova, 11. RI., Tulina, M. D., Zavodsk. Lab, 33, 16 (1967). (580) Przeszlakowski, S., Przoszlakowska, M., Ann. Unb. ’ Mariae CurieSkodowska, Lubin-Polonia, Sect. A A , 19, 69 11964). ( 5 8 l ) ‘ P u ~ c h e l ,R., Z. Anal. Chem., 221, 132 (1966). (582) Pueschel, R., Lassner, E., Mikrochim. Acta, 1967, 977-83. (583) Pueschel, R., Lassner, E., Katzenuuber. K.. 2. Anal. Chem.., 223., 414 11966): ’ (584) Pushinov, Y. IT., Cherkesov, A. I., Zavodsk. Lab., 32,22 (1966). (585) Rai, R. Rf., Pande, P. C., Tripathi, B. N., Indian J . Chem., 4, 144 (1966). (586) Ramanauskas, E., Tutkuviene, V., Lietuves T S R Auksfuju Mokyklu Mokslo Darbai, Chem. ir Chem. Technol., 7, 31 (1965). (587) Ramanauskas, E., Tutkuviene, V., Zbid., 7,37 (1965). (588) Ramanauskas, E., Tutkuviene, V., Zh. Vses. Khim. Obshchestva im. D. Z. Mendeleova, 11, 355 (1966). (589) Ramette, R. W., J . Chem. Educ., 44, 647 (1967). (590) Rangnekar, A. V., Khopkav, S. M., Bull. Chem. SOC. Japan, 38, 1696 (1965). (591) Rangnekav, A. V., Khopkar, S. M., Zbid., 39, 2169-72 (1966). \ - - -
VOL. 40, NO. 5, APRIL 1968
0
I
271 R
(635) Sawicki, E., Johnson, H., ChemistAnalyst, 55, 101 (1966). (636) Scaringelli, F. P., Satlzman, B. E., Frey, S. A., ANAL.CHEM.,39, 1709 (1967). (637) Schafer, If. N. S., Ibid., p 1719. (638) Schatz, E. A., J . Opt. SOC.Am., 56, 389 (1966). (639) Schenk, G. H., Warner, P., Bazzelle, W., ANAL.CHEM.,38,907 (1966). (640) Schlotzer, G., Rev. Sci. Znstr., 36, 13.50 (1965). (641) Scheon, L. J., Ibid., 38, 1531 (1967). (642) Schilt, A. A,, Hoyle, W. C., ANAL. CHEM.,39, 114 (1967). (643) Schwartz, D. P., Brewington, C. R., Microchem. J . , 12, 192 (1967). (644) Scott, B. B., Analyst, 91,506 (1966). (645) Selig, W., C. S . At. Energy Comm. L’CRL 7111, lOpp(1966). (646) Sell, R., Kalz Steznsalz, 4, 240 (1966). (6471 Serdvuk. L. S.. Lazorina. S. AI.. Zh. Anal Khim., 21,‘561 (1966). (648) Sereda, I. P., AIadoi, S. N., Ukr. Khim. Zh., 32, 755 (1966). (649) Shafran, I. G., Kuraeva, A. T-., Tr., Vses. lYauch.-Issled. Inst. Khim. Reaktivov Osobo Chist. Khim. Veshihestv., 28, 96 (1966). (650) Shafran, I. G., Pavlova, AI. Y., Titova, S. A., Yakusheva, L. D., Ibid., p 56. (651) Shafran, I. G., Solov’ev, E. A., Ibid., p 24. (652) Shakhova, Z. F., Gavrilova, S. A., Zakharova. V. F.. Vestn. N o s k . Univ. Ser. I I , 21,’ 64 (1966). (653) Ibid., p 88. (654) Shapira, R., Wilson, A. AI., ANAL. CHEM.,38, 1803 (1966). (655) Shapiro, W. A., J . Opt. SOC.Am., 56, 795 (1966). (656) Shatalova, A. A., Levin, I. S., Shmargolina, I. I., Komashko, Z. S., Solov’eva, >I. Y.,Zavodsk. Lab., 32, 1320 (1966). (657) Sheherbov, D. P., Ivankova, A . I., Gladysheva, G. P., Zavodsk. Lab., 33, 683 (1967). (658) Shesterova, I. P., Kostylev, N. F., Talipov, S. T., Dzhiyanbaeva, R. K., U z b . Khim. Zh., 10, 71 (1966). (659) Shevchuk, I. A., Skripnik, S . A., USSR Patent 184,009 (1966). (660) Shevchuk, I. A., Skripnik, K. A., Enal’eva. L. Y.. Zavodsk. Lab., 33, 288 (1967). (661) Shigematsu, T., Tabushi, AI., Uesugi, I., Bunseki Kagaku, 15, 1369 (1966). (662) Shih, H. Rl., Ho, H. W., KO Hsueh T’ung Pao, 1965, 726-7. (663) Shiio. Y.. Bunseki Kaoaku,. 15,. 1063 (1966): ‘ ’ (664) Shijo, Y., Takeuchi, T., Zbid., 16, ~
1
~
51 11967).
(66n)‘Shimizu, T., Anal. Chim. Acta, 37, 7,j (1967). (666) Shimiau, T., Bunseki Kagaku, 16, 233 (1967). (667) Shimizu, T., Talanta, 14,473 (1967). (668) Shimoiski, Y., Hagami, T., Bull. Chem. SOC.Japan, 40, 1139 (lP67). (669) Shkrobet, E. P., Bakinovskaya, L. N., Zavodsk. Lab., 32, 1452 (1966). (670) Shriaidermari, Y., Knyazeva, E. N., Khzm. Prom. Ckr., 1966, ,534. (671) Shnaiderman, S. Y., Knyaseva, E. N., Zh. Anal. Khim., 21,419 (1966). (672) Shome, S.C., Das, H. R., Das, B., AXAL.CHEM.,38, 1522 (1966). (673) Shrimal. S.K.. Tarde, R;I. S.,Anal. ‘ Chim. Acta,’33, 683 (1962). (674) Siekierska, J., Piotrowski, A., Chem. Anal. (Warsaw),11, 845 ( 1966). (67;) Silverstein, R. SI., Bassler, G. C., Spectrometric Identification of Organic Compounds,” Wiley, 256 pp (1967).
272 R
ANALYTICAL CHEMISTRY
(676) Singhal, S. P., Ryan, D. E., Anal. Chim. Acta, 37, 91 (1967). (677) Siobore. B. L., Talanta,, 14,. 693 ‘ (196f). (678) Snell, F. D., Snell, C. T., “Colorimetric Methods of Analysis,” Lrol. IVA, “Organic Compounds of Non-Cyclic Xitrogen,” Van Nost,rand, Princeton, K. J., 1966. (679) Sokolowska, P., Emaehrungsforschung, 11,