Light Absorption Spectrometry D. F. Boltz, Wayne State University, Detroit, Mich.
M. G. Mellon, Purdue University, lafayefte, Ind.
T
ELEVENTH review of light absorption spectrometry is an evaluation and digest of the developments in this discipline for the period from October 1963 through October 1965, primarily as documented by Chemical Abstracts. An attempt has been made to select the significant and representative developments with respect to chemistry, instrumentation, methodology, and analytical applications. The presentation of subject matter under the headings of Chemistry, Physics, and Applications has been followed as in previous reviews (63, 337, 338)* According to a recent survey by the National Science Foundation, 16.6% of about 3000 analytical chemists considered absorption spectrometry to be their field of specialization (94). I n a review on “Trends in Analytical Chemistry” d a t a are cited, indicating that in 1965 over 22% of the total pages in ANALYTICAL CHEMISTRYare devoted to colorimetry and visible spectrophotometry (154). The corresponding percentage in 1955 was 26y0, Although the current literature pertaining to light absorption spectrometry is voluminous, there is an indication t h a t the rate of publication in this field seems to have reached a plateau. Spectrophotometric analysis has now attained such a state of sophistication and maturity that it must be considered as one of the most widely used methods of chemical analysis. It is the candid observation of these reviewers that, in certain applications, alternative trace methods of analysis--e.g., atomic absorption spectrometry, gas-liquid chromatography-are superseding spectrophotometric determinations. However, the development of new accessories for spectrophotometers, new technology, and methodology has enhanced the versatility and value of spectrophotometry as an analytical tool. Several books concerned entirely, or in part, with light absorption spectrometry are as follows: “Absorption Spectroscopy” (44, “Optical Methods of Analysis,” (335) “Kolorimetrische Analyze,” 6th ed. (288), “Determination of Macro Elements and Trace Elements in Plants, Soil, Water and Animals by Rapid Colorimetric Methods” (440), “Colorimetric Analyses,” Vol. 11, 2nd ed. (12) and “Colorimetric Determination of Elements. Principles and
HIS
Methods” (93). Attention is also directed to a chapter on “Ultraviolet and Visible Spectrophotometry” (46.9) and to “Tables of Spectrophotometric Absorption D a t a of Compounds Used for the Colorimetric Determination of Elements” (541). CHEMISTRY
The most significant developments concern the fundamental chemical transformations necessary in order to obtain a light absorptive specie equivalent to the concentration of the desired constituent. Considerable progress is noted
Table 1. Constituent Ag
A1
Material
...
...
Ores
...
M i ‘alloy
Au
Cu alloy AI-Pu alloys Tungsten Rocks Water Silicon polymers Uranium
...
... Copper Metals Soil Be
...
... ... ...
Bi
Ca
Ores Mn-Zn alloy Bronze
...
... ...
... ... ... ...
Ores
... ...
Lead Blood Milk Uranium Potassium chloride soil
in the direction of developing highly selective chromogenic reagents. Many new chelating agents have been reported for the spectrophotometric determination of metals. Another popular approach to obtain specificity and to circumvent interferences has been to utilize the liquid-liquid extraction method. I n conjunction with this separative technic much attention has been given to the use of complexants. These complexants form more stable complexes with the interfering ions and thereby either prevent their reaction with the chromogenic agent or inhibit their extraction into the nonaqueous
Photometric Methods for Metals
ReferMethod or reagent ences l,l0-Phenanthroline, ammonium peroxydisulfate (536) 2,2’-Bipyridine (169) Dithizone (400) 5-Sulfo-4‘-diethylamino-2‘,2-dihydroxyazobenzene( 158) Chrome Azurol S Chrome Azurol S Xylenol Orange 8-Quinolinol Arienazo I1 Aluminon 8-Quinolinol 8-Quinolinol Xylenol Orange p-Aminohippuric acid Bromaurate-trioctyl phosphine oxide Rhodamine B Benzidine Bromide N ,Ai-Tetramethyl-o-tolidine Brilliant Green Naphthochrome Green G Alberone Xylenol Orange Beryllon I11 Beryllon Acetylacetone Chrome Azurol S Dithizone Iodide Dimercaptothiopyrone Gallein Thiourea Acid Chrome Blue Thymolphthalexon Glyoxal bis-( 2-hydroxyanil) Cyclo-tris-7(l-azo-8-hydroxynaphthalene-3,6disulfonic acid) Chlorophosphonazo I11 Azo-azoxy BN 8-Quinolinol Arsenazo
Glyoxal bis-(2-hydroxyanil) Glyoxal bis-(2-hydroxyanil) Glyoxal bis-( 2-hydroxyanil ) Calcichrome
(394)
(Continued)
VOL. 38, NO. 5, APRIL 1966
317 R
Table 1.
Constituent Ce
Material
... ... A1 ‘alloys Silicates
co
... ... ... ...
Steel Wire Fe alloys Tungsten Tantalum Nickel Steel Cr
...
... ... Alloys
CS cu
...
...
...
...
...
... ...
...
... Alloys Ferrites Magnesium White metal Steel Tin Tellurium Tungsten Steel, Yttrium Mineral oil Red phosphorus Fe
...
...
...
... ...
Bauxite Fe alloys Tungsten Red phosphorus Si1icone polymer Ethylene amines Ga
... ...
...
... Aluminum Ge Dusts
Zn dust
31 8 R
Photometric Methods for Metals (Confinued)
-
Method or rearrent Methylthymol blue Thenoyltrifluoroacetone
References
Salicylhydroxamic acid Arsenazo I11 Iron(II), 1,lO-phenanthroline 2-T hio-4-amino-5-nitroso-6-hydroxypyrimidine 0-( 2-Thiazolylazo) phenol B-Mercaptopropionic acid Redn. of Molybdotungstosilicic acid Dithiocarbamate o-Aminobenzylideneet hylenediamine Chloride, dimethylformamide Differential, nitroso-R-salt Nitroso-R-salt Nitroso-R-salt 2-Xitroso-1-naphthol N itroso-R-salt Differential, glycerol Alizarin Red S Chrome Azurol S Isonicotinic acid hydrazide; 2,3,5-triphenyltetrazolium chloride Diphenylcarbazide Pptn. with tungstosilicate, tungsten blue Butyraldoxime Nicotinic acid hydrazide 0-( p-Toluenesu1fonamido)aniline Rubeanic acid 2,9-Dimethyl-lJl0-phenanthrolineJ or 4,4’,6,6’tetramethyl-2,2’-bipyridine
Phenyl-2-pyridyl ketoxime Oxalyl dihydrazide Nitroso-R-salt N-Acetylanabasine, thiocyanate Iodide Lead(I1)-diethyldithiocarbamate Neocuproine-carbamate Acid Alizarine Black SN Diethydithiocarbamate Diethyldithiocarbamate Bicinchoninic acid Biscyclo hexanone oxalyldihydrazone Pyrrolidine dithiocarbamate Lead(I1) diethyldithiocarbamafce 2,9-Dimethyl-1 ,10-phenanthroline 2,9-Dimethyl-l,lO-phenanthroline Diethydithiocarbamate Neocuproine Diethyldithiocarbamate Diethyldit hiocarbamate 2,3-Dihydroxybenzoic acid Aminoacetone-N,N-diacetic acid 8-Aminoquinoline Anthranilic acid Isonicotinic acid hydrazide; 2,3,5-triphenyltetrazolium chloride Acetyl acetone Bis 3,3’-(5,6-dimethyl-l,2,4triazine) 1,lO-Phenanthroline, sodium diactyl sulfosuccinate Ferriin 1,lO-Phenanthroline 1,10-Phenanthroline 1,lO-Phenanthroline
(371)
2,2 ’-Bipyridine
(168)
Phenyl-2-pyridyl ketoxime
(163)
(498)
(183)
(129)
( 2091
(623 1
(238)
(482) (640) (310) (372)
(98)
Methylthymol blue 8-Q.uinolino1. diazotized sulfanilic acid CrGstal violet M&in (8) l-(2,4-Dihydroxyphenylazo)-2-naphthol-4sulfonic (92) acid Crystal violet (480) Pyrocatechol Violet (363) Phenyl fluorone (467) 7,8-Dihydroxy-2,4dimethylbenzopyrylium ( 633) chloride N,N-Bis( 2-hydroxy-5- sulfopheny1)-C-cyanofor- (634) mazan (Continued)
ANALYTICAL CHEMISTRY
phase, A large number of the methods cited in Table I have been included only because of the unique or effective manner in which the problem of interfering ions was handled. I n this review we shall consider the chemical reactions, structures, and reagents under the general categories of metals, nonmetals, and organic constituents. Metals. Di-p-naphthylthiocarbazone has been investigated as a chromogenic agent for 27 heavy metals and sensitivities have been compared with the corresponding dithizone complexes. I n all cases the metal chelates of di-0-naphthylthiocarbazone exhibited larger molar absorptivities (134). 8Mercaptoquinoline gives 1: 1 colored chelates with lead(I1) , zinc, nickel(II), and copper(I1) in a 50% aqueous dioxane solution. Because both functional groups are more acidic than in 8-quinolinol, this reagent is applicable to solutions of lower p H (106). Bis-3,3’-(5, 6-dimethyl - 1,2,4 - triazine) chelates with cobalt(I1) , iron(I1) , nickel(I1) , copper(1) and ruthenium. NMR spectra indicate that iron(I1) forms the colored complex through the 2,2’nitrogens in the ring (258). Several new reagents have been proposed for Group I1 A elements. 3,3‘Bis [ N , N - bis(carboxgmethy1aminomethyl]-thymolphthalein, “Thymolphthalexon,” and calcium form a stable colored complex (54). Six derivatives of glyoxal bis-(2-hydroxyanil) were proposed and it was found that the substitution of methyl groups in the 4position of each ring produced a more sensitive reagent for calcium than the unsubstituted substance (298). Another sensitive reagent for calcium and/or magnesium is 2,7-bis-(4-chloro-2-phosphonobenzeneazo) - 1,8 - dihgdroxynaphthalene - 3,6 - disulfonic acid, “Chlorophosphonazo 111” (148). Chlorophosphonazo I11 can also be used to determine strontium in the presence of calcium and barium (508). Sodium p - aminophenylazo - 1,8 - dihydroxy3 , h a p h t h a l e n e disulfonate has been recommended as a new sensitive reagent for magnesium (521). I n a study of the colored complexes or beryllium and chromotropic acid azo dyes of the pyridine series, i t was found that 2(2-pyridy1azo)chromotropic acid gives a colored chelate with beryllium but not with aluminum (317‘). A new reagent for zinc is N-methylanabasine-a ‘-azo-0-naphthol (501). Ortho - ( p - toluenesulfonamido) aniline reacts very specifically with copper(I1) in the presence of pyridine t o give a complex having a molar absorptivity of 150 (66). N-Acetylanabasine, copper (11) , and thiocyanate produce a 1:2 : 2 complex which is extractable with chloroform (503). 2-Thio-4-amino-56 - hydroxypyrimidine forms colored metal chelates with copper(I1) and
nickel(I1) (429). The visible absorption spectra of the bis - ( 2 , Q- dimethyl1, 10 - phenanthroline and the bis(4,4‘,6,6’- tetramethyl - 2,2’ - bipyridinecopper (I) complexes have been evaluated. An excess of ligand is necessary to avoid dissociation to a monochelate specie and nonconformity to Beer’s law (198). Copper(1) and rubeanic acid in the presence of a high concentration of chloride ion forms a 3 :2 polynuclear complex (401). From a study of 16 organic reagents for the spectrophotometric determination of gallium, it was found that diphenylcarbazone, magneson, and morin were the best reagents in nonaqueous media and Pyrocatechol Violet, Xylenol Orange, methylthymol blue, and diphenylcarbazone are the most suitable in aqueous solution (9). A new very sensitive reagent for gallium is 1-(2,4dihydroxyphenylazo) - 2 - naphthol4-sulfonic acid (92). Diantipyryl-pdimethylaminophenyl carbinol forms a 1: 1 complex with thallium(II1) and the complex is extractable with a nitrobenzene-chloroform solution (192). I n an evaluation of 18 organic chromogenic reagents for scandium, Arsenazo(III), 2,4-sulfochloropheno1 R, and 2,4-sulfochlorophenols were recommended (446). Quercetin and scandium(II1) a t p H 4.4 give a colored 1:1 complex (199). Yttrium, lanthanum, and cerium ions react with methylthymol blue to give colored 1:l complexes (469). A spectrophotometric study of uranyl thiosulfate complexes indicated that a 1:1 complex exists in dilute aqueous and ethanolic solutions, b u t in a more concentrated solution a 3 :2 complex predominates (339). The optimum conditions for determining the rare earth metals using Xylenol Orange have been outlined (496). Reactions of titanium(IV), zirconium (IV), and hafnium(1V) with Chrome Azurols give colored 1: 1 complexes which show conformity to Beer’s law (58). The mechanism of complex formation between Arsenazo(II1) and certain metal ions, especially in the quadrivalent state , has been discussed (459). Peroxytitanic acid forms an adduct with dioctyl methylenebis-phosphonic acid which is extractable with octane (183). A new spectrophotometric method for vanadium is based on the formation of a 1 :2 metal chelate with 6-hydroxy-1,7-phenanthroline (132). Niobium, N benzoyl - N - phenylhydroxamine, and thiocyanate form a 1 : 2 : 1 complex which is extractable in chloroform (366). The color reactions of niobium ions with reagents containing 0,0‘-dihydroxyazo groups were investigated and compounds similar to chromotropic acid and Arsenazo as well as monoazo compounds containing 0’0’dihydroxyazo groups were found to
Table 1. Constituent Hf
...
Hg
...
In
Photometric Methods for Metals (Continued)
Material
...
Ores
...
...
nin‘alloy Pb concen-
Lanthanides Li Mg
..
... ... ...
A1 alloys Blood Nickel Water hin
..
...
Steel Serum hi0
...
...
... ...
Method or reagent Stilbazo Xylenol Orange, or methyl thymol blue Iodide, 2,2’-dipyridyl-iron(II) Sulf arsazen Dithizone Bromopyrogallol red Alizarin Red S 8-Quinolinol Thorin 8-Quinolinol Phenylfluorone 5,7-Dichloro-8-quinolinol Diantipyridyl-propylmethane Indirect, dilituric acid p-Nitrophenylazochromotropic acid Methylthymol blue lJ3-Dihydroxy-4amino anthraquinone-2-sulfonate Tetrabutyl ammonium nitrate Quinazolinazo p-Aminophenylazo-1,8-dihydroxy-3,6nap hthalenedisulfonate Methylthymol blue Chlorophosphonazo I11 0,O’-Dihydroxyazobenzene Polymethine barbituric acid derivative Arsenazo, EGTA Calmagite 0,O’-Dihydroxyazobenzene Oxidation, tbaminoquinoline Formaldoxime Hexanitratocerate oxidation Leucomalachite green, periodate Thiocyanate Thiocyanate, ascorbic acid Pyrocatechol-pyridine 2-Methyl-3-hydroxy- y-pyrone Toluene-3,P.dithiol 8-Mercaptoquinoline
o-Nitrophenylfluorone Thiocyanate Metals Tungsten Uranium Nb
... ... ...
Ni
os
Ro’cks Steel Steel Steel U alloys
...
Golybdenum Tungsten Steel
...
Pb
... ... OSF~ ...
Pd
...
Steel Steel, brass
...
...
... ...
(433) (76) (231)
(455) (469) (421) (313) (140) (521) (340) (148) (128) (25) (268) (205) (128) (194) (178) (436)
(149) (404) (314)
(83)
(245) (11) (7 ,
316) (476) (41, 4381 547) (362) (493) (72) (500)
( o-Nitropheny1)fluorone Toluene-3,4dithiol Xylenol Orange Thiocyanate, 1,4bis(3,4dihydroxyphenylazo) benzene Bromopyrogallol Red (47) Pyridylazoresorcinol (5611 X-Benzoyl-N-phenylhydroxylamine,thiocyanate (366) Thiocyanate (346) Molvbdenum blue 562 Gossypol i602j Ammonium tetramethylenedithiocarbamate (173) Acid Chrome Violet K (62) Xylenol Orange (448) Thiocyanate (543) Formazan (283) Thiocyanate (311) 4tert-But 1 1,2-cyclohexanedionedioxime (37) N, N’-Bisfkulfobenzyl) dithiooxamide ( 234 ) 1-( 2-Pyridylazo)-2-naphthol (430) Dimethyglyoxime (372) Dimethylglyoxime (44) Pyrogallol (147) Diantipyridyl-propylmethane (76) 1-Thiocarbamido-3-methylpyrazol-Sone (416) Thiourea (237) Quinalizarin ( 366 ) Dithizone ( 487 ) 4( 2-Pyridylazo) resorcinol (114) (316) Tetraphenylarsonium chloride, thiocyanate 2-Mercaptobenzoxazole (23) N,N‘-Bis( 2-Sulfoethyl)-dithiooxamide (177) Nitrosodiphenylamine ( 322 ) yridine-2-aldehyde-2-pyridylhydrazone (48) 5,7-Dibromo-& uinolinol ( $86 ) (933) 2,3-Quinoxaline~ithiol Iodide, ascorbic acid ( 356 1 Ponceau Red R (422) (Continued)
6-
VOL. 38, NO. 5 , APRIL 1966
319 R
Table 1.
Photometric Methods for Metals (Confinued)
... ...
Method or reagent 2-Theno yltrifluoroacetone Tetraethylene glycol dimethyl ether-tetraiodopalladate( 11) Thioglycerol Thioglycolic acid 2,3-Quinoxalinedithiol
... ...
2-Thenoy1trifluoroacetone1 tin( 11) chloride 4-(2-Pyridylazo) resorcinol
Constituent
Material
...
...
Ores
Pt Rare earths
Xylenol Orange
...
Tiron Stilbazo Xylenol Orange Methyl Violet sym-Phenyl-2-Pyridyl ketoxime a-Pyridildioxime Thiocyanate
Tioiium Re
... ... ...
... ...
Ru Sb
sc
Sn
Sr Ta Tc Th
Ti
T1
Methyl-2-pyridyl ketoxime 1-Phenyl-2-thiourea a-Furildioxime iiidyS a-Furildioxime Ore Diphenylcarbazide Alloys 8-Mercaptoquinoline Ti-alloys Nitroso-R-salt ... Thiourea Heteropoly blue Diantipyridyl methylpyrazolene ... Pyrrolidine dithiocarbamate Iron Brilliant Green Zn alloy Pyrocatechol Violet Ores Au-Sb alloys Iodoantimonite Arsenazo .. Eriochrome Cyanine R .. Quercetin Anthrar~ifin-2~6-disulfonate ... p-Kitrophenyl azo chromotropic acid Xylenol Orange copper Rare earths 2-Sulfo-4-chlorophenol 2-Hydroxyperinaphthinden-1-one .. Iodide, ethyl iodide Alloys Pyrrolidinedithiocarbamate Iron Molybdotungstosilicic acid Brass Rhodamine B Brass Ores Phenylfluorone Ceramics Nitroorthanilic S Reduced 12-molybdotantalic acid ... 1-(2-Pyridylazo) resorcinol Alloys Fissium Alloy Toluene-3,Cdithiol Thoron ... Acid Alizarin Black SN Xylenol Orange, or Methylthymol blue ... Thorin Silicates Salicylic acid, concd. sulfuric acid ... Peroxo-(dioctylmethylene-bis phosphonato... titanium) Diantipyrylmethane 8-Quinolinol Diantipyrylmethane-pyrocatechol 2,7-Dichlorochromotropic acid ... 3-Benzyl-4,bdihydroxycoumarin ... Ascorbic acid Disodium-lJ2-dihydroxybenzene-3,5-disulfonate iii& Tungsten Disodium-l,2-dihydroxybenzene-3,5-disulfonate Diantipyrylmethane Alloy 2,3,7-Trihydroxy-9-( 3,4dihydroxypheny1)-6A1 alloy isoanthenone Aluminum Molybdotitanophosphate Thiocyanate Rhenium Diantipyr ylmethane Ores Steels iV-Furoylphenyl hydroxylamine Minerals 2,7-Dichlorochromotro ic acid Crystal violet-bromotfallate Diantripryl-p-dimethylamino-phenylcarbinol Methyl violet Pyronine Rhodamine B Indirect, hetero oly blue ... Isonicotinic a c i l hydrazide; 2,3,5-triphenyl... tetrazolium chloride (Continued) ~~~
320R
~
ANALYTICAL CHEMISTRY
give colors in aqueous and waterethanol solutions (11). 2,BDimercapto3,5 - diphenyl - 1,4 - thiopyrone and 2,B dimercapto - 3,5 - diethyl - 1,4 - thiopyrone were the best of 14 dimercaptothiopyrones tested as reagents for bismuth (627). Several reactions involving Group V I elements are especially noteworthy. Molybdenum(V1) forms a yellow 1: 2 chelate with nicotinyl-hydroxamic acid (442). The anionic complex of oxypentothiocyanato molybdate(V) and triphenylsulfonium bromide gives a product extractable with chloroform but insoluble in aqueous solution (269). Chromo Azurol S and chromium(II1) complex in a 2:l ratio in p H range 3.5 to 3.9 (519). Manganese(I1) and N , N ’,N “-trihydroxytrimethylenetriamine form a 1:2 complex in p H range 9 to 12.5 and the interference of iron is minimized by complexing i t with E D T A (247). The catalytic oxidation reaction of leucomalachite green with periodate in the presence of manganese(I1) has been found to follow first order kinetics in which malachite green is oxidized to a colorless product. The slope of the first order reaction plots (log A us. t ) for the catalytic oxidation reaction is proportional to the manganese(I1) in solution. This reaction has been applied to the determination of manganese(I1) in the range of 0.2 to 3.0mpg. of manganese per milliliter of solution and found applicable to the determination of manganese in blood (149). 1Phenyl - 2 - thiourea and 1,5 - diphenylcarbahydrazide have been recommended for determination of rhenium (418). Numerous new reagents have been suggested for the determination of iron, cobalt, and nickel but none seem to be superior to those being used at present. New organic reagents for the platinum metals continue to be investigated. Disodium (2,4-dimethylphenylazo)-Zhydroxynaphthaline - 3,6 - disulfonate is a satisfactory reagent for palladium (11) in the presence of platinum(1V) (422). Phenoselenazine (556) and 2mercaptobenzoxazole (25) have also been recommended for palladium. A 1:2 complex is produced by the reaction between ruthenium(II1) and 1-nitroso2 - naphthol - 3,6 - disulfonic acid (546). Platinum(1V) in the presence of tin(I1) chloride gives a blue color with 2,3 - quinoxalinedithiol in N , N - dimethylformamide. The ratio of the platinum to reagent in the uncharged complex is 1:2 (27). 5,5’-Thio-disalicylic acid forms colored complexes with rhodium(II1) , palladium(II), ruthenium (111), iron(III), and uranyl ions (179). Nonmetals. An ozonolysis reaction in which ozone converts 4,4‘-dimethoxystilbene t o anisaldehyde is the basis of a specific method for ozone. The anisaldehyde is determined using
fluoranthene as reagent (68). 2,2’Dianthrimide has been found to be more nearly specific for selenium(1V) than 1,l’-dianthrimide (290). o-Phenylenediamine and the 4-methyl, 4-chloro, and 4-nitro derivatives react with selenic acid to give benzoselenadiazoles (505). A number of very sensitive methods for nitrite based on the formation of colored free radicals by oxidation of the reagent by nitrous acid have been investigated. For example, 1-methyl-2-quinoline azine gives a free radical having a molar absorptivity of 1.27 X lo6 (461). The diazotization reaction of 8-aminoquinoline and nitrous acid and the subsequent coupling of the quinoline diazonium ion with 8-aminoquinoline has been studied and found to be suitable for the determination of nitrite (159). A critical investigation of the reaction between 3 , 5 - dimethyl - 5 3 ’ - dioxo - 1, 1’ - diphenyl - (4,4’ - bi - 2 - pyrazoline), ammonia, and choramine-T indicated t h a t rubazoic acid is the colored product. It is probable that chloramine-T and ammonia form dichloramine which attracts the 4-position of bis pyrazoline to form bis pyrazolone. This intermediate in basic solution forms rubazoic acid by Stieglitz rearrangement (428). Four oxazine derivatives (Brilliant Cresyl blue, Capri blue, Xile blue, methylene blue) form colored extractable complexes with fluoborate (477). The composition of the complex formed by boric acid and 1,l‘-dianthrimide in sulfuric acid medium has the molecular formula of C56H28X2013B2S (289). The sensitivities of 12 hydroxyanthroquinone and anthraquinonylamine reagents and nine other reagents for the colorimetric determination of boron have been compared and the relative merits of each delineated (186). I n the determination of sulfur dioxide using pararosaniline and formaldehyde an intensification of color results if N,Ndimethyl formamide is present (221). Sulfur dioxide can also be determined indirectly by the reduction of iron(II1) and the measurement of the resulting iron(I1) by the 1,lO-phenanthroline method (486). The following pyrazolono derivatives, diantipyrylmethylmethane, diantipyrylmethane, diantipyrylpropylmethane, and diantipyrylphenylmethane were studied as reagents for tellurium ( 7 7 ) . Pyrazoline - 3,4 - dicarboxylic acid dimethyldiamide reduces molybdosilicic and molybdoarsenic acid as well as molybdogermanic acid i o give the corresponding heteropoly blues (564). This reagent will reduce molybdate in 0.01 to 0.5N sulfuric acid solutions but only the molybdophosphoric acid when the acidity is 0.5 to 1.75N in sulfuric acid (552). Organic Constituents. A specific color reaction of formic acid has been
Table I.
Constituent U 1,T
Material
...
... ... ...
Photometric Methods for Metals (Continued)
Method or reagent 1-(2-Pyridylazo)-2-naphthol 5-Hydroxy-7-methoxyflavone Tetraphenylarsonium chloride, ethylene chloride 4-( 2-Pyridylazo) resorcinol
Kojic acid o-Hydroxyacetophenoneoxime S-Benzoyl-N-(p-chlorophenyl)hydroxylamine Polyvanadic acid ... 6-Hydroxy-l,7-phenanthroline ... 2-Methyl-3-hydroxy- y-pyrone Aluminum S’anadotungstophosphoric acid Rubber solns. 2,2 ’-Diaminobenzidine Catalytic; gallic acid, peroxydisulfate Water Formazan Steel Tungstophosphoric acid, or sulfanazo Potash Thiocyanate ... Morin ... Thiocvanate Steel ... p-Nitiophenylazochromotropic acid Methylthymol blue ... S,-V’-Bis( 2-hydroxy-5-sulfophenyl)-C-cyanoformazan Methylthymol blue Alloys Dicyclohexanone oxalyldihydrazone I-(2-pg,ridyl... azo)-2-naphthol 2-(2-Thiazolylazo) naphthol ... X-Methylanabasine-a ’-azo-B-naphthol Diphenylthiocarbazone Dithizone Methythymol blue .. Arsenazo I11 Nb alloys Catechol violet Silicates Quinalizarin sulfonic acid Steel Arsenazo 111 Tungsten 2-( 2-Hydroxy-3,6-disulfo-l-naphthylazo)benzene arsonic acid
... .
w Y
Zn
.
I
investigated. Lead(I1) nitrate and anisole are the reagents used to develop a violet color. It is postulated t h a t the nitrate oxides formic acid with the formation of nitrous acid which reacts with anisole to form nitrosoanisole. The lead(I1) and nitrosoanisole give the colored product (4%). Organic N-nitroso amines or amides form nitrous acid upon photolysis. The nitrite is determined using sulfanilic acid and 1-naphthylamine (116). Primary alcohols and ethylene derivatives can be oxidized by R u 0 4 to aldehydes which can be determined colorimetrically with methylbenzothiazolinone hydrazone (406). 2,4,7-Trinitro fluorenone, a pi complexant with phenols, aromatic hydrocarbons, and aromatic amines produces colored complexes having molar absorptivities of about lo3 (462). The reactions of ureas and thioureas p-dimethylaminobenzaldehyde with and diacetymonoxime have been investigated (217). Several new steroid color reactions have been observed using vanillin, resorcylaldehyde, and similar compounds as reagents (161). Benedict’s “arsenophosphotungstic acid” reagent for uric acid has been investigated and found to be a distinct mixed heteropoly acid contain-
ing arsenic and phosphorus as central atoms in the same molecule (629). Simultaneous Spectrophotometric Determinations. A simultaneous spectrophotometric method for calcium and magnesium is based on the fact t h a t a p H 2.2 only calcium gives a colored complex with Chlorophosphorazo 111. At p H 7 both calcium and magnesium form complexes. By subtracting the absorbance due to the calcium in solution of pH 7 , as evaluated on the basis of the absorbance measurement on a solution of p H 2.2, from the total absorbance of solution a t p H 7 it is possible to determine the magnesium (148). Another method of determining calcium and magnesium in the presence of each other uses one half of the sample solution to determine the total concentration of calcium and magnesium using Arsenazo, o [ (1,8-dihydroxy-3,6disulfo - 2 - naphthy) - azo] benzene arsonic acid. The calcium in the other half of the sample solution is complexed with EGTA, ethylene bis(oxyethy1enenitrile) tetraacetic acid and the magnesium determined by Arsenazo (286). YIolybdenum(V1) and tungsten (VI) form complexes with dithiol with absorbance maxima of 610 mp and 660 mp and enables a simultaneous determination of these two elements (255). VOL. 38, NO. 5, APRIL 1966
321 R
After the extraction of tungstate and molybdate with a-benzoinoxime, the thiocyanates of tungsten and molybdenum in isopropyl ether give absorbance maxim of 405 mp and 490 mp, respectively (404). Iron(I1) gives a colored complex with thiomalic acid in basic solution and molybdenum(V1) gives a colored complex in acidic solution. By changing the p H between absorbance readings a t the two characteristic wavelengths both constituents can be determined (326). Platinum and palladium are determined simultaneously using (233). After 2,3-quinoxaline-dithiol oxidation with peroxydisulfate, the ethylenediamine complex of cobalt(II1) absorbs strongly a t 875 mp and the nickel(I1) complex absorbs a t 463 mp
(88). Bromate and iodate can be determined simultaneously using an equimolar reagent of isonicotinic acid hydrazide and 2,3,5-triphenyltetrazolium chloride. Iodate gives a pink color at room temperature and bromate develops a color only upon heating (208). PHYSICS
A11 topics relevant to the measurement of radiant energy in the visible region will be included in this section of the review. These topics include primarily measurement, methodology, and instrumentation. Lothian has reviewed Beer's law and its use in analysis. He outlines tests for detecting stray radiant energy and discusses other instrumental and chemical factors involved (300). Factors affecting the precision of spectrophotometric measurements have been explained in detail and errors for single beam, double beam, double beam and double photomultipliers, and double beam and single photomultiplier spectrophotometers are compiled in tables (69). Methods of precision spectrophotometry have been evaluated with special reference to the Reilley and Crawford formula (271). A mathematical relation which eliminates the effect of one compound in a multicomponent colored system because of other measurements has been described (982). The use of one standard solution and isomation in the ultimate precision spectrophotometric technic so that the spectrophotometer can be used to the limit of its sensitivity has been huggested. I n essence, the amount of a standard solution required to give the same readout as the sample solution is ascertained after the 0% and 100% adjustments are made with solutions of definite but unknown concentrations (434). A computer method for the determination of high order matrices has been described with special attention
322 R
ANALYTICAL CHEMISTRY
directed to the application of this approach in evaluating spectrophotometric data. Thus, the effect of a changing variable, such as the p H of the solutions or a number of independent qiecies in solution can be identified (262). I n measuring the absorption spectra of natural products as is often the case in biochemistry, the problem of oveilapping bands is sometimes serious in the identification of species and the elucidation of reaction processes. I n derivative spectrophotometry the derivative function of either transmittance or absorbance is used to resolve the spectra. A comparative analybis of derivative spectrophotometric methods has been discussed (191), Special Methodology. There are several interesting developments in spectrophotometric methodology which are worthy of the attention of the analytical chemist. The attenuated total reflectance (*\TR) method is very useful in obtaining absorption spectra of opaque or solid samples (645). I n the XTR method, the incident radiant energy enters an optical plate, sandwiched between the surfaces of the sample, a t less than the critical angle so that total internal reflection occurs and the beam exists from the optical plate. Superimposed upon the normal reflection losses will be the ,elective absorption of certain wavelengths depending on the nature of the molecules in the sample adjacent to the optical plate. The magnitude of the absorption depends on the number of internal reflections. d multiple reflection cell is a valuable accessory which permits XTR spectra to be obtained with most commercial yectrophotonieter.; (200, 201, 204). I n addition to ATR spectra, indices of refraction and reflectivity data can be obtained. Low temperature spectrophotometry is employed to obtain better resolution and t o measure a substance of limited stability (119, 144). Reaction rates can be studied a t temperatures below - 100' C. I n general, the ambient temperature within the cell compartment i5 reduced by a gaseoui or liquid coolant, or the coolant is brought directly in contact with the sample cell. Liquid nitrogen and liquid helium dewars are suitable for temperature as low as - 150' C. and -196' C., respectively. A number of low temperature cells and dewars have been described in the literature (167, 483). The selection of a suitable solvent is very important, and the rigid glass technic is sometimes employed. Thus, a 5 : l niiyture of isopentane and methyl cyclohexane does not solidify until the temperature is less than - 190' C. and when it does freeze a glasslike transparency results (21). rllthough low temperature qiectrophotometry has been used primarily in the elucidation of structure and in studying mechanisms
of reactions, this technic seems to have a number of potential analytical applications. Spectrophotometric measurements a t high temperature have been concerned mostly with the examination of fused salts. High temperature furnace-cell compartment assemblies have been described in the literature (65, 354). These furnaces permit temperatures of 1000' C. to be reached. One problem in fused salt spectrophotometry is that there is some heterogeneous radiant energy emanating from the media, which is superimposed upon the monochromatic radiant energy from the monochromator. By chopping the beam prior to passage of the light through the sample, the signal obtained from the black body radiation is minimized. Heating of the detector has to be avoided in order to prevent an increase in the noise. The direction of the optical path can be reversed to avoid these difficulties. Synthetic sapphire has been found to be the most suitable window material for high temperature work. A captive liquid cell has been used to avoid the use of optical windows (560). This windowless cell is especially useful for corrosive melts, such as molten fluorides. Again, high temperature spectrophotometry is in its geneis and future advances are quite likely. The analytical possibilities of using molten organic solids or even a molten inorganic ,solvent such as sulfur is intriguing. Another accessory of value in certain quality control applications-e.g. paints, tile, paper, and tissues-is total diffuse reflectance attachments. I n general, the reference beam is reflected to a calibrated reflectance standard such as magnesium oxide. The other beam is reflected to the surface of the sample and the radiant energy is then diffusely reflected to the walls of the integrating sphere with a finite amount of the reflected energy being reflected through an exit aperture to the detector. These attachments can be installed within a few minutes and permit the reflectance spectra of suspensions and solid powders to be readily measured. Recently high intensity sources, which are useful in reflectance studies where the radiant powder of the beams reaching the detector is rather low have become available (19). Such factors as regeneration temperature, p H , grade of absorbent, and humidity were investigated as to their influence on the reflectance spectra of several dyes adsorbed on alumina (163). The direct spectrophotometric measurement of 2,4dinitrophenylhydrazones on paper chromatograms is facilitated by the use of acetylated paper (161). The paper disk method was used to isolate the thorium, fluoride complex which was then treated with solochrome brilliant blue. The
colored extract was assayed spectrophotometrically (10). A new spectrophotometric method for determining the solubility of phosphine oxides is based on the extraction with chloroform of the colored adduct of titanium(1V) , thiocyanate, and phosphine oxide (380). Pressed silver chloride disks have been reported to give good visible spectra (431). Calibration. T h e four NBS colored glaqs filter; used as spectral transmittance standards in checking the photometric reliability of spectrophotometers have been recalibrated (860). -1rotary sector attenuator was used to check the transmittance linearity of spectrophotometers (424). A report on optimum spectrophotometer parameters points out how too much or too little resolution can affect observed absorbance values (20). Test methods for stray-light determination have been thoroughly discussed (426). Cells. T h e following special application abiorption cells have been described : a simple semimicro cell for the measurement of the spectral reflectance of samples removed from TLC plates (I@), a high pressure cell with sapphire windows which can be used u p to 40,000 p.s.i. (407),flow cuvet for the Spectronic 20 ( 4 7 2 ) . h windowl e q captive liquid cell is suitable for examining corrosive liquids-e.g. molten fluoride salti (560). The design and construction of multiple reflection cells for ATR work ha5 been discussed (201, 204). A variable single reflection attachment consisting primarily of a 90" mirror and a 90" prisni permits most commercial spectrophotometers to be used as A T R instruments (200). Spectrophotometers. Several new spectrophotometers have appeared on t h e market a5 ne11 as new models of well known instruments. Bausch & Lomb introduced t h e Spectronic 600 and Precision Spectrophotometers. T h e Spectronic 600 is a double beam, double grating instrument with a conqtant bandpass of 5X over its 200- to 65O-nip range. The Bausch and Lomb Precision Spectrophotometer is a single beam, double grating instrument with constant bandwidths of 2.5 and 20A available for its 190- to 700-mp range (43). The Vltrascan is a double beam, ratio reading, grating ultraviolet-visible spectrophotometer developed jointly by Photovolt Corp. and the Jarrell-Ash Co. (411). A quartz prism spectrophotometer, Model 1100 has been manufactured by Schoeffel Instrument Co. (465). Beckman has introduced the hIodel. DU-2 spectrophotometer and Model DI3-G. The latter is a grating instrument (45). Perkin-Elmer has replaced its Model 350 with hlodel 450 (405). The Gilford Model 3000 Microsample spectrophotometer has a digital readout either in absorbance or con-
Table II.
Constituent As
Material
...
... Cbpper
... ...
B
...
B~HQ BF4BrBr03-
Moiybdenurn Silicon tetrachloride Air
...
Hz0
... ... Selenium Plutonium Polymers
C1-
C10 C102ClodClOZ CN CO F-
... ... ...
... ...
Air
... ...
...
...
O'rginic Fe( C N ) B - ~ Acetone HzO HzOz Bismuth I2 telluride I103-
I04
-
3"
...
...
Bioiogical Steel N2H4 NO2
NO,-
NOa-
...
Air Air
... ... ...
... ... wltter Sea water Air Gases Water Air
0 2 0 3
-
01
Po4-3
Org. solvents
Steel
Tin bronze Silicon tetrachloride Organic Organic Soil HPOzS -2
..,
...
Photometric Methods for Nonmetals
References
Method or reagent Pyrrolidene dithiocarbamate Silver diethyldithiocarbamate Rutin RIorin Heteropoly blue Curcumin Oxazine derivatives Barium chloranilate, saccharic acid Indirect carminic acid Carminic acid Quinalizarin Pyridine Indirect, tetraphenylarsonium chloride Indirect, trichloramine, cadmium iodide-linear starch o-Aminobenzoic acid Isonicotinic acid hydrazide, 2,3,5-triphenyl tetrazolium chloride Indirect, p-Dimethylaminobenzalrhodanine Rlercury( 11) thiocyanate, iron(II1) RIercury( 11) thiocyanate, iron( 111) Indirect, mercury( 11)-diphenyl carbazone Triiodide Triiodide Iron(II)-1 ,10-phenanthroline
(374) (5)
(566) (207) (211)
Tris(2,2'-bipyridine) iron(I1) Triiodide Chloranilic acid Silver p-sulfamoylbenzoate Thorium-methylthymol blue Thorium-Solochrome Blue Zirconium-Eriochrome Cyanine R Lanthanum(II1)-Alizarin Complexone Scandium-Xylenol Orange Zirconium-SPADM Pyridine, benzidine Copper(I1) chloride Leuco base of phenolphthalein, copper(1D) Turbidimetric, silver iodide Iodine cyanide Isonicotinic acid hydrazide, 2,3,5-triphenyl tetrazolium chloride o-Dianisidine Indophenol Bispyrazolone Phenol-hypochlorite Thymol-chloramine T p-Dimethylaminobenzaldehyde Grieqs Direct Formation of free radicals Diazotization-coupling; 8-aminoquinoline Anthrasol 04B iY,lY-Dimethylbenzidine Crystal violet Chromotropic acid Nitrobalicylic acid Indirect; rhenium, a-furildioxime 4-RIethvlumbelliferone Brucine Sulfanilamide, naphthylethylenediamine 1-AminoDvrene Copper())" chloride 3Iodified Winkler, std. reference solution Ozonolysis of 4.4'-dimethoxvstilbenzene, fluoranthene ' Liberation of iodine Heteropoly blue Rlolybdophosp hate Rlolybdovanadop hosphate Heteropoly blue llolybdovanadop hosphate Heteropoly blue Nolybdenum blue Indirect; Copper( 11)-1-phenylthiosemicarbazide ((
VOL. 30, NO. 5 , APRIL 1966
323 R
~
~
Table II.
Photometric Methods for Nonmetals (Confinued)
Constituent Material S Copper Selenium Organic Steel SCX... Air SO2 SaOs
Se
(268)
(468) (221,
Iron(III), 1,lO-phenanthroline Oxidation of Alician blue 2,2’-Dianthrimidine I-Phenylthiosemicarbazide 4,5-Diamino-6-thiopyrimidine blercap tobenzamidazole 1,2-Diphenylhydrazine o-Phenylenediamine 3,3’-Diaminobenzidine
... ... ...
... . .
Biological Bismuth telluride
Te
(2)
(448)
598)
Air
...
Si
References (34)
Method or reagent Pararosaniline-formaldehyde Pararosaniline-formaldehyde Indirect, barium chloranilate Methylene blue Pyridine, barbituric acid Pararosaniline-formaldehyde
( 486)
(531)
(290)
(811 (90)
(79) (360) ( 505 ) (111, 112)
3,3’-Diaminobenzidine
(96)
...
Heteropoly blue! pyrazoline-3,4-dicarboxylicacid dimethyldiamide ... r-Molybdosilicic acid Organic Heteropoly blue Ethyl silicates Molybdovanadate Gallium Heteropoly blue phosphide AIolybdosilicate Water Heteropoly blue Tungsten Heteropoly blue Copper Indirect, molybdosilicic acid ... AIolybdotellurophosphate ... Diantipyrylmethane Lead Bromide Copper
Acetone Acetylene Acids, organic Alcohols Alcohols.,. urim.
3Iaterial
... Acetic acid Nitrogen
... ...
.
.
I
Aldehyde, a,p-unsatd. . . . Aliphatic aldehydes
ilir
AlkvlbenzeneWater sdfonates G-Aminopenicillanic Fermentation media acid ... Amines
(327) (15) (133) (190) (406)
(209) (13)
(390) (64)
( 242 1 ( 295 )
Tissue Phospholipids Isoprene Biological Plants, soil
2,4-Dinitrophenylhydrazine 4-Aminoantipyrine 3-Methyl-2-benzothiazolone hydrazone Pyridine-sodium hydroxide Pyridine, acetic anhydride, methanol Perchloric acid, phosphoric acid, Iron(II1) chloride Tomatine; acetic acid Acetic anhydride, Iron(II1) chloride Phosphoric acid, iron( 111) chloride Alolybdenum blue Dinitrobenzene Ninhydrin Sodium hydroxide, acetone
Soil
Saponification, diazotization coupling
(61)
...
...
... ...
Biood Serum
Choline Cyclopentadiene Cysteic acid 2,3-Dichloro- 1,4naphthaquinone 3,4-DichlorophenylN ’-met h y l-N ’methoxy urea
p-Dimethylaminebenzaldehyde
References (103)
( 396) (100) (115) (291) ( 420 ) (101) ( 384 1
Water
Chloroform Citric acid Cholesterol
Method or reagent Sodium nitroprusside, morpholine, acetic acid o-Carboxybenzenediazonium chloride Ilosvay reagent Copper( 11),benzidine Vanadium( T’)-8-quinolinol Ru04 oxidation; methylbenzothiazolinone Isonicotinic acid; 2,3,5-triphenyltetrazolium chloride 3-Methyl-2-benzothiazolone hydrazone Methylene blue
Diphenyl picrylhydrazol Copper(I1) EDTA Chloramine, starch-iodide Methyl orange Hypochlorite Nitration, reduction Iron( 111)-1,lO-phenanthroline Chromotropic acid
...
Amines, fatty Aromatic amines Anthracene Ascorbic acid Carbonyls alp-unsat’d. Carbonyls Catechols
(261)
(470) ( 296 ) (304)
Photometric Methods for Organic Compounds
Table 111.
Constituent Acetaldehyde
(564)
(347)
(249)
(321) (99)
(362)
(2WO) (176)
(123) (35) ( 206 )
(74)
(Continued)
324 R
ANALYTICAL CHEMISTRY
centration (174). -4 double beam spectrophotometer has been added to the modular system of the Autohalyzer (513 ) . Accessories are constantly being developed for specific instruments. Typical accessories include automation accessories for the Unicam SP 800 (525), a high intensity tungsten source for Cary 14 (19), a vacuvette system for rapid handling of samples for Coleman instruments (204). An automatic sampling apparatus uses a hydrostatic pump to draw sequentially gas samples into the spectrophotometer cell (268). For low temperature work, liquid helium and liquid nitrogen dewars are commercially available for the Cary 14 and 15 spectrophotometers (18). Cryostats for studies at liquid helium temperatures have been described (144, 157, 483). For high temperature spectrophotometry, several high temperature furnaces for the Cary 14 have been designed (65, 354). By replacement of the photomultiplier and its associated electronics with a photodiode and thermistor bolometer the B and L Spectronic 505 was modified for measuring the spectral response of solid state photo-detectors (296). Special Application Instruments. The Sinclair-Phoenix Aerosol Photometer is designed to monitor atmospheric pollution (409). Another instrument automatically monitors the liquid effluents from chromatographic columns (85). A sensitive spectrophotometer can operate either as a double beam or dual wavelength instrument (439). Spectrosyn is an electronic colorimeter with an immersible probe into which the appropriate filter can be placed. The path length is adjustable u p to 5 cm. ( 8 4 ) . A “stopped flow’’ spectrophotometer mixes two solutions within a few milliseconds and permits immediate measurement of absorbance as a function of time (138). A flashing-light spectrophotometer for studying fast reactions occurring during photochemical reactions has been constructed (259). X combined double beam spectrophotometer and fluorometer for reflectance measurements haq special application in the use of two flashes of light a t different wavelengths for the spectrophotometric measurement of hemoglobin desoxygenation (91). A double beam spectrophotometer with a 10 msec, recording time is applicable to kinetic studies. The spectra can be shown either individually or in superposition on the screen of an oscilloscope (368). A photometer which gives reliable measurements of substances resolved on translucent sheet electrophoretograms and chromatograms has been discussed (302). A differential colorimeter for the continuous determination of oxygen in gases operates on the basis of the decoloriza-
tion of reduced sodium p-anthraquinone sulfonate by the oxygen (636). A photoelectric colorimeter with a single cell whose width is changed periodically has been devised (496). X photocolorimetric tape gas analyzer measures a colored spot formed on a moving paper tape moistened with an appropriate reagent. The instrument is applicable to the determination of traces of hydrogen sulfide, chlorine, sulfur dioxide, ammonia, ozone, and nitrogen oxides in industrial gases (6). A miniaturized recording analyzer for nitrogen dioxide examines the colored effluent froin a microcolumn containing t’he reagent in which absorption of the nitrogen dioxide occurs (464). X flow photometer operating on the double beam principle measures continuously the chlorate concentration of an acidified chlorate and sulfur dioxide solution. The color of the iodine liberated by the chlorine dioxide formed and the chloride is measured in the sample beam while the color of the chlorine dioxide is measured in the other beam (S44). The assembly of a microscope double beam spectrophotometer from commercial instruments permitted an area one square micron to be examined. T h e shift of absorption bands with pressure and the measurement of niicrosections of stained biological specimens are described (136). Color measuring inbtruments include the Color-Eye, a tristimulus colorimeter (227), the Color-Difference Meter (225), the Tri-Color phot (410), the Gardner Model C-4 color difference meter with digital readout (171), a digital readout tristimulus int’egrator for the 13 and L Spectronic 505 ($4, and the Elrepho (86). A direct’ reading C I E tristimulus colorimeter with photovolt’aic cells is suitable for the continuous monitoring of color (464). A seven-fold visual coloriineter has been developed to match color difference. The colorimeter readings can be converted to C I E color coordinates (661). An automatic colorimeter and a computer, “the Colorede” nieasures and classifies color (227). A relatively inexpensive a x . analog computer is used for evaluating chromaticity from spectral d a t a (142).
APPLICATIONS
Methods of Analysis. New methods, modified methods, different methodology and technology, and ne\$ materials for analysis have been responsible for hundreds of publications of analytical absorption spectronietiy. Representative examples of these analytical developments have been mentioned in the discussions under the headings of Chemistry and Physics. A selected sampling of the
Table 111.
Photometric Methods for Organic Compounds (Continued)
Constituent Dicyano diamide Dihydric phenols Dimethylhydrazine 2,6-Di-tert-butyl-pcresol Dithiocarbamate EDTA Ethanol Epoxy compds. Formaldehyde Galactose Glucose Glycerol Glycine Glycyrrhizic acid Hexachlorophene a-Hydroxy carboxylic acids 8-Hydroxypenillic acid Hydroxyproline
Material Acetoquonamine
...
Turbine oils Food crops
Phenoxyacetic acids
.. .
Vanillin
...
Inkecticide Ethanol Gasoline
p-Dimethylaninobenzaldehyde Chloramine T, p-dimethylaminobenzaldehyde, isopropanol Indirect ; thallium(111)-Xylenol Orange 3,6-Dinitrophthalic acid hIethvlamine 4-hm;noantipgrine, periodate Chromotropic acid Ferricyanide oxidation, coupling
Ethyl acrylate
4-Aminoantipyrene
...
Blood Sugars
...
...
Licorice extracts Biological
... Sucrose
... ... .
I
.
... ... ... ...
+Phthalic acid ... Polyhalogenated ... organic compounds Pol yo xyet hylene ... surfactants Pyrazole ... Pyridine nucleotides Tissue (DPN) ... Resorcinol Steroids Streptozotacin Thioureas Tocopherol Urea? Uronic acids IYtamin A Vitamin BIZ
Ntroprusside-ferricyanide
...
Ethyl chloride
...
Fermentation beers t
.
.
hlilk Flour
...
Pha’rmaceuticals
recent literature in spectrophotometric methods for metals, nonmetals, and organic substances have been summarized in Tables I, 11, and 111. Color Specifications. A book, “ T h e Neasurement of Colour” (650), and a chapter, “Specification and Designation of Color” ( 2 4 4 , have been published. A round-robin study of color measurement using GE spectrophotometers resulted in the establishment of confidence limits in terms of C I E Y and 2, y for
References
Tungstophosphoric acid Oxidation; chromotropic acid Lead dioxide Copper(I1) acetate; diethanol amine Indirect, iron(II1) thiocyanate Indirect, bis(2,4,6-tripyridyl-striazine iron(II1) Vanadium( T)-S-quinolinol 2,4-Dinitrpbenzenesulfonic acid, piperazine n-Phenylenediamine hydrochloride Enzvmatic. o-dianisidine Pheiol. acetone Coppei(I1) Ethyl chloroformate, pyridine Ethanol, vanillin, sulfuric acid 4-Aminoantipyrine Reduced molybdate
... ...
Hydroquinone Invert sugar Lactulose Lebaycid Methanol 2-hIet hyl-6-lertbut yl-p-cresol Methyl ether of hydroquinone 1-Naphthol 2-Naphthol iY-Nitroso compounds Peroxidase Phenol
Xethod or reagent
Iodine, sodium hydroxide Nitration Photolysis; sulfanilic acid, l-napht hylamine 4-Methoxy-a-naphthol Kit rat ion Dimethylaminoantipyrine 6-Amino-I-naphthol-3-sulfonic acid, or 6-anilino-1-naphthol-3-sulfonic acid Copper( I)-cuproine Modified Fujiwara reaction Sodium nitroprusside, diethanolamine Trisodium pentacyanoaminoferrate Orcinol, iron(II1) chloride Sodium 1,2-naphthaquinone-4sulfonate Vanillin Diazotization p-Dimet hglaminobenzaldehyde 4,7-Diphenyl-l, 10-phenanthroline Diacet ylmonoxime Carbazole Trifluoroacetic acid Xitroso-R-salt
Illuminent C when glass filters and opaque plastic and glass specimens were tested ( 5 7 ) . Reilley in his Fisher Award Address on “Chelometric Titration” (436) discussed color quality of end points and the spplication of tristimulus colorimetry to indicate color transitions (437). Recent developments related to instrumentation in color measurement and specification have been previously mentioned under “special application instruments.” VOL. 38, NO. 5, APRIL 1966
325 R
LITERATURE CITED
(1) Abrao, A., ANAL. CHEM. 37, 437 (1960). ( 2 ) Acs, L., Barabas, S., Ibid., 36, 1825 (1964). (3) Adachi, S., Ibid., 37, 896 (1965). (4) Adamiec, I., Rudy Metale Niezalazne 5, 409 (1960). (5) Affsprung, H. E., Archer, V. S., ANAL.CHEY.36,2512 (1964). (6) Agranov, K. I., Reiman, L. V., Zavodsk. Lab. 30, 626 (1964). (7) Agrinskaya, N. A., Petroschan, V.I., Tr. JVovocherk. Politekhn. Znst. 143, 27 (1963). (8) Akhmedli, hl. K., Bashirov, A. A., Cch. Zap. Azerb. Gos. Univ., Ser. Khim. Nauk. 1963 (3), p. 39. (9) Akhmedli, AI. K., Glushchenko, E. L., Zh. Analit. Khim. 19, 556 (1964). (10) Aldous, J. G., Hall, R. J., Sapp, P., ANAL.CHEM.36, 335 (1964). (11) Alimarin, I. P., Savvin, S. B., Dedkov, Y. AI., Zh. Analit. Khim. 19, 328 (1964). (12) Allport, N. L., “Colorimetric Analysis,” Yol. 11, 2nd ed., Chapman and Hall, London, 1963. (13) Altshuller, A. P.,Leng, L. J., ANAL. CHEY.35. 1541 (1963). (14) Aly, 0’. AI., Faust; S. D., Ibid., 36, 2200 ( 1 9 ~ ) . (li)Amamchyan, R. G., Aloroz, A. I., Zavodsk. Lab. 30, 1216 (1964). (16) Andrew, T. It.. Nichols, P. IV. R., Analyst 90; 151 (1965). ’ (17) Apton, A,, ANAL. CHEM.37, 1422 \ - - - - I
ij 1Ufln). ~ . . _ , .
(18) Applied Physics Corp., AIonrovia, Calif., Bulletin 208. (19) Ibid., Bulletin 214-G. (20) Ibid., Application Report AR 14-2 i1964). (21) Ibid., Application Report AR 14-3 (1964). (22) Arishkevich, A. hI., Uaatenko, Y. I., Tr. Dnepropetr. Khim.-Tekhnol. Inst. 1963, p. 27. (23) Arita, T., Yoe, J. H., Anal. Chim. Acta 29, 500 (1963). (24) .Arnesen, R. T., Selmer-Olsen, A. R., Ibzd., 33, 335 (1965). (25) Asmiis, E., Klank, W.,2. Anal. Chem. 206, 88 (1964). 126) Asmus. E.. Kurzmann. P..Walls‘ dorf, F., Ibid.,’ 197, 413 (1963).’ (27) Ayrea, G. H., McCrory, R. W., A N A L . CHEM.36, 133 (1964). (28) Babkin. 1.. P.. Zh. Analit. Khim. 19. 1271 (1964) (29) Bagdasarov, K. Y., Kovalenko, P. N., Pshenichnaya, A. X., Tekhnol. Pokrytzz Metallov z J f e t o d y Kontrolya Prozzv. Sb. 1962,p. 143. (30) Bagadasarov, K. N., Shelepin, 0. E., Budnyatskaya, N. I., Elektrokham. z Optzchn. Metody dnalzza Sb. 1963, n 176r (31) Balti,berger, R. J., ANAL.CHEM.36, 2369 (1964). (32) Banerjee, 1). K., Budke, C. C., lbid., p. 792. 133) Bansho. K.. Umezaki., Y.., Bunseki Kaoaku 14. 72‘11965). (34) Baraba;, S.,~ Kaminski, J., ANAL. CHEM.35, 1702 (1963). (35) Baranova, T’. G., Xoskvin, A. F., Kurochkina, T. F., Zavodsk. Lab. 30, 281 (1964). (36) Barkovskii, V.F., Taganova, T. K., Peredovue Xetodu Khim. Tekhnol. i Kontrolia Proizv.”Sb. 1964,p. 210. (37) Barling, 11. AI., Banks, C. V., AKAL.CHEM.36, 2359 (1964). (38) Basargin, N. N., Kukisheva, T. K., Solov’eva, N. T., Zh. Analit. Khim. 19, 553 (1964). (39) Batten, J. J., ANAL. CHEM.36, 939 (1964). ~
326 R
ANALYTICAL CHEMISTRY
(40) Bauer, G. A.,Ibid., 37, 154 (1965). (41) Zbid., p. 155. (42) Bauman, R. P., “Absorption Spectroscopy,” Wiley, New York, 1962. (43) Bausch and Lomb, Rochester, N.Y., Catalogs 33-2123 and 33-2151. (44) Beccaria, A. M., Maneschi, S., Met. Ital. 56, 371 (1964). (45) Beckman Instruments, Inc., Fullerton, Calif., Technical Bulletin. (46) Behrman, E. J., Goswami, RI. W. D., ANAL.CHEM.36, 2189 (1964). (47) Belcher, R., Ramakribhna, T. I-., West, T. S., Talanta 12, 681 (1965). (48) Bell, C. F., Rose, D. R., Zbid., p. 696. (49) Berezina, Y. I., Korosteleva, 11.M., Broit, T‘. V.,Zh. Analit. Kham. 20, 262 (1965). (50) Bergman, I., Loxley, R., ANAL. CHEM.35, 1961 (1963). (51) Bergstresser, K. S., li. S . At. Energy Comm. Rept. LA-2921,12 pp. (1963). (52) Beridze, A. E., Subtrop. Kul’tury 1963, p. 111. (53) Berman, S. S., Duval, G. R., Russel, D. S., ANAL.CHEM.35, 1392 (1963). (54) Bezdekova, A,, Budesin>ky, B., Collectton Czech. Chem. Conimun. 30, 818 (1965). (55) Biechler, 1). G., Jordan, 1). E., Leslie, W. D., ANAL.CHEM.35, 1685 (1963). (56)Billman, J. H., Chemin, R., Ibid., 36. 552 11964). (57) Billmeyer, ‘F. W.,Jr., J . Opt. Soc. Am. 55, 707 (1965). (58) Biswas, S. D., Seth, R. L., Dey, A. K., Talanta 12, 119 (1965). (59) Blomfield. J.. Farrar. J. F.. ANAL. &EM. 36. 960 (1964). (6oj-Bloomfield, ‘R. A., Guyon, J. C., Jlurmann, R. K.,Zbid., 37, 248 (1965). (61) Bock, R., Berndt, W.,Gorbach, S., Z . Anal. Chem. 198. 235 (1963). (62) Bogdanova, V. ‘I., Shulik, L. S., Khim. Analiz. Jfzneralor i ikh Khim. Sostav, Akad. S a u k . SSSR, Inst. Geol. Rudin. Nestorozhd., Petrogr., Jfineralog., Geokhzm. 1964,p. 45. (63) Bolte, U. F., illellon, M. G., ANAL. CHEM.36, 256 R (1964). (64) Bomstein. J.. Evans. W. G.. Ibid.. - 1
~
~
(83) Bykhovtseva, T. T., Tserkovnitskaya, I. A,, Zavodsk. Lab. 30, 943 (1964). (84) Cambridge Scientific Corp., Cambridge, Mass., technical bullet.in. (85) Canal Industrial Corp., Bethesda, hId. (86) Carl Zeiss, Inc,, S e w York, N. Y. (87) Carusi, F., AIoreschi, P.,Met. Ital. 56, 383 (1964). (88) Caullet, C., Tlllecroze, B., Chim. Anal. 46, 308 (1964). (89) Chakrabarti, C. L., AIagee, 11. J., Wilson, C. L., Talanta 10, 1201 (1963). (90) Chan, F. L., Ibitl., 11, 1019 (1964). (91) Chanre, B., Legallais, J-., Schoeiier, B., Rev. Sci. Znstr. 34, 1307 (1963). (92) Chang, T. L., Yee, J. H., Anal. Chim. Acta 29, 344 (1963). (93) Charlot, G., “Colorimetric. Determination of Elements. Principles and IIethods,” Elsevier, ?;ew York, 1964. (94) Chem. Eng. 1Vew.s 43, No. 21, 83 (1965). (95) Cheng, K. L., Anal. Chim. Acta 28, 41 (1‘363). (96) Cheng, K. L., Goydish, B. L., ANAL.CHEAT. 35, 1965 (1963). (97) Cherkesov, A . I., Akchiirina, G. S., Aleksaiidrovich-~Ielliiikova, A . S., 7’r. Astrakhansk 2‘ekhn. Znst. l i y b n . Prom. i Khor. 8 , 74 (1962). (98) Cheriiin, I?., Simonseri, E. R., ASAL. CHEM.36, 1093 (1964). (99) Choy, T. K., Quattrone, J. J., Jr., Elefniit, JI., Anal. Chz’ni. Acta 29, 114 (1963). (100) Citron, I. JI., Mills, A., AXAL. CHEM.36, 208 (1964). (101) Ciuhmdu, G., Diacoiiovici, AI., Fagasen, T., Z . Anal. Chem. 208, 359 i1 9 6 5 ) . \ - - - - ,
(102) Ciiihnndri, G., R~isii,Y.,Iliaconovici, 11.)Ibid., p. 81. (103) Clnncy, 1). J., Iir:inim, 11. E., A S . \ L . CHEM. 35. 1987 (1963). (104) Coleman Initriiments, Inc., Maywood, Ill., technical bidletin. (105) Comer, Y. lV,jJeiiseii, A . V., XN.\L. CHEhI. 36, $99 (1964). (106) Cnrsiiii, h.,Fernando, Q., Freiser, H., lbz’tl., 35, 1424 (1963). (107) Cottoii, T. M.,Woolf, A. A., Zbid., 36, 248 (1964). (10s) Cruwley, 11. H. A,, dnalyst 89, 749 i1064). (109) Ciilkin, F., Riley, J. P., Anal. Chim. Acta 32, 197 (1965). (110) Ciillen, T. E., ASAL. CHEM.36, 221 (1964). (111) Crimniin-. L. 11.. Martin. J . L.. \ - - - -
(115) lhhlgreii, G., Au \ L . CHEV. 36, 596 (1‘364). (116) Iluiber, I)., Preii.mmnii, It,, Z . Anal. C‘hem. 206, 344 (1064). (117) I1mev. K , Iordaiiov, K.,Y’alanta 11, 501 (1964). 1118) I1unchev:a. I:.. Beleva. 8..’ Khi/ii.Inh. (So&) 36, 109 (1964): (11‘3) IleArmand, K., Forster, L. S., Spectrochim. Acta 19, 1393 (1‘363). (120) Dedkov, Y. lI., Nakarova, V. P., Yinokurova, F. A , , Chashchikhina, 11. IT.,Sarvin, S. B., Zh. Analit. Khim. 20, 410 (1965). (121) L)eyiic.hi, 11.) Yamamoto, K., Kagaku Keisalsu h’enkyisho Hokoku 17, 76 (1964). (122) Dekhtrikyan, S. A , , Irv. d k a d . S a u k Ami. S.S.R., S a u k i o Zemle 17. 531 (1964). (123j I>eKonin$, A . J., Anal. Chim. Acta 29, 510 (1963). ~
(124) Dev, B., Jain, B. D., 2. Anal. Chem. 196, 178 (1963). (125) Devi, A., Srivastava, U., ANAL. CHEM. 36. 882 (1964). (126) Dev, ‘A. K., Rahaman, AI. S., Analysi 89, 795 (1964). (127) Ibid., Talanta 12, 343 (196s). (128) Diehl, H., Olsen, R., Spielholtz, G.’ I., Jensen, R., AXAL. CHEM. 35, 1144 (1963). (129) Dinsel, D. L., Sweet, T. R., Ibid., p. 2077. (130) Dmitriev, AI. T., Tr. 1Yauchn.Issled. Inst. Gidrometeorol Priborostr. 1963, p. 62. (131) Ilolaberidze, L. D., Politova, Y. T’., Grelesiani. L. T.. Dzhaliashvili. A. G.. ~ a c o d s k .Lab. 30; 1439 (1964). ’ (132) Dougherty, J. A., hlellon, AI. G., ANAL.CHEM.37, 1096 (1965). (133) l)raganiC, Z. D.. ilnal. Chim. Seta 28, 394 (1963) (134) IIuBois, R. J., Knight, S. B., ANAL. CHEM.36, 1313 (1964). (135) Duecker, H. C., Lippincott, E. R., Rev. Sci. Znstr. 35, 1108 (1964). (136) Ilugan, R. E., Frigerio, N. A., Siebert, J. AI., ASIL. CHEM.36, 114 (1964). (137) Dukes, E. K., Hyder, 31.L., Ibid., 36, p. 1689. (138) Durrrim Instrument corp., Palo Alto, Calif., technical bulletin. (139) Uym, A., Analyst 88, 232 (1963). (140) Dziomko, T. lI.,Zelichenok, S. L., hIarkovich, I . S., Zh. dnalzt. Khim. 18, 937 (1963). (141) Egorova, K. I., Gurevich, A. E., Zavodsk. Lab. 29, 789 (1963). (142) Einhorn, H. D., Kiewmeyer, H., J . Opt. Soc. Am. 54, 1238 (1964). (143) Elinson, S. T’., ltezova, A. T., Zh. d n a l d Khzm. 19, 1078 (1964). (144) Elliott, W. B., Tanshi, W., ANAL. CHEM.34, 1672 (1962). 1145) Erickion. D. It.. Dunklev, ” , W. L.. ‘ Zbkd., 36, 10;; (1964). (146) Evans, H. B., Hashitani, H., Zbid., 36, 2032 (1964). (117) Faye, G. H., Zbid., 37, 259 (1965). (148) Fergii.qon, .J. W., Richard, J. J., O’Laiighlin, J. W.,Banks, C. V., Ibid., 36, 796 (1964). (149) Fernandez, A. A4., Sobel, C., Jacobs, S. L., Ibid., 35, 1721 (1963). (150) Fernandez, 11. J., Llaguno, C., Garrido, J. >I., Inform. Quim. Anal. 17, 171 (1963). (151) FeT, J . D., Analyst 90, 134 (1965). (152) Filippova, N. A., Koresteleva, T. A., Yurovskaya, S. B., Spektral’n. Khim. d f e t o d y A4nalizaMaterialov, Sb. Metodik 1964, p. 176. (153) Finkelsteinaite, M., Zh. Analit. Khim. 19, 516 (1964). (154) Fischer, R. B., A x . 1 ~ .CHEY. 37, 27ii (1965). (155) Fisel, S., Cracium-Ciobanu, A., Popescn, I., Poni, M.,Rev. Roumaine Chim. 9, 559 (1964). (156) Fishman, 11.J., Skougstad, hI. W., ANAL.CHEJI.36. 1643 (1964). (157) Fitchen, D.’ B., Rev. Sei. Instr. 34, 673 (1963). (158) Florence, T. AI., ANAL. CHEY.37, 704 (1965). (159) Foris, A,, Sweet, T. R., Ibid., p. m,,< /VI.
(160) Forist, A. A.,Zbid., 36, 1338 (1964). (161) Forss, D. A,, Edwards, P. K., Sutherland, B. J., Britwistle, R., J. Chromatog. 16, 460 (1964). 162) Frei, R. W.,Frodyma, 11. ll., Anal. Chim. Acta 32, 501 (1965). 163) Frei, R. W., Zeitlin, H., Zbid., p. 32. 164) Frin’gs, C.’ S., Pardue, HI L., ASAL. CHEY.36, 2477 (1964). 165) Fritz, J. S., Abbink, J. E., Campbell, P. A., Zbid., p. 2123.
(166) Fujinaga, T., Kuwamoto, T., Kuwabara, K., Ikezawa, S., Bunseki Kagaku 13,1213 (1964). (167) Fujinaga, T., Kuwamoto, T., Tsurubo, S., Kuwabava, K., Zbid., p. 129. (168) Fujiwara, S., Narasaki, H., ANAL. CHEM.36, 206 (1964). (169) Gagliardi, E., Presinger, P., Mikrochim. Ichnoanal. Acta 1964, p. 1175. (170) Gaponenkov, T. K., Shatsman, L. I., Ph. Prikl. Khim. 37, 462 (1964). (171) Gardner Laboratory, Inc., Bethesda, &Id., technical bulletin. (172) Gazo, J., Trnchly, J., Chem. Zvesti 18, 655 (1964). (173) Gibalo, I. hI., Alimarin, I. P., Davaadorzh, P., Zh. Analit. Khim. 18, 835 (1963). (174) Gilford Instrument Laboratories, Inc., Oberlin, Ohio, technical bulletin. (175) Glasner, A., Skurnik, S., Israel J. Chem. 2, 363 (1965). 76) Glick, D., Fell, B. F., Sjolin, K., ASAL.CHEM.36, 1119 (1964). 77) Goeminne, A., Herman, M., Elckhaut, Z., Anal. Chim. Acta 28, 512 (1963). 78) Gololobov, A. D., Pochvovedenie 1965, p. 89. 79) Good. 11. L.. Srivastava. S. C.. Tulanta 1 2 . 181 11965). 8 0 ) Gorbeiko, F. P.,‘ Sachko, T’. V., Zh. Analit. Khim. 20, 309 (1965). 81) Gorbenko, F. P., Tselinski, Y. K., Krrasuskaya, T. A., S o v y e Metody Analiza nu M e t . i Metalloobrabatgvaushchikh Zavodakh. Sou. Sur. Khoz. Pridnepruvsk. Ekon. Adm. Raiona 1964, p. 62. (182) Gorenc, B., Kosta, L., Z. Anal. Chem. 206,321 (1964). 1183) Gorican. H.. Grdenic., D.., ANAL. CHEM.36, 330 (1964). (184) Goto, H., Kakita, Y., Atsuya, I., Bunseki Kagaku 12, 727 (1963). (185) Gottschalk, G., Dehmel, P., Tech.Wiss. Abhandl. Osram-Ges. 8 , 37 (1963). 86) Goward. G. W.. Wiederkehr.’ T. R.. ANAL. C H E 35, ~ 1542 (1963). 87) Grzhegorzhevskii, A. S., hlukhina, I. V., LYovye Metody Analiza nu Met. i Metallo-Obrabotyraguschchikh. Zavodakh. Sou. iYar. Khoz. Pridneprovsk. Ekon. Adm. Raiona 1964, p. 114. 881 Guernet. 31.. Bull. SOC. Chim. France 1964;p. 478. 89) Guilbault, G. G., Kramer, D. S., ANAL.CHEM.36, 2494 (1964). (190) Gulyaeva, L. I., Khyanina, A. P., Zavodsk. Lab. 30, 417 (1964). 11911 Gunders. E.. Kadan. B.. J . Oat. Sic. Am. 55,‘1094 (1965). (192) Gusev, S. I., Pesis, A . S., Sokolova, E. V.,Sh. Analzt. Khim. 20, 67 (1965). (193) Gustin, 5’. K., Sweet, T. R., ANAL. CHEM.35,‘1395 (1963). 1194’1 Zbid.. 36. 1674 (1964). (195) Guyon, J. C., $nul. Chim. Acta 30, 395 (1964). (196) Guyon, J., llurmann, R. K., - 4 s ~ ~ CHEM.36, 1058 (1964). (197) Haas, C. S., Pellin, R. A., Zbid., p. 246. (198) Hall, J. R., Litzlow, hl. R., Plowman, R. A.,Zbid., 35, 2124 (1963). (199) Hamaguchi, H., Kuroda, R., Sugisita, It., Onuma, S., Shimizu, T., Anal. Chim. Acta 28, 61 (1963). (200) Hansen, W. K.,’ ANAL.CHEM.37, 1142 (1965). (201) Hansen. W. N.. Horton. J. 4.. Zbh.. 36. 7d3 (1964).’ ~, (202) Ha&, S., Bunseki Kagaku 14, 162 (1965). (203) Hargis, L. G., Boltz, D. F., ANAL. CHEM.37, 240 (1965). (204) Harrick, N. J., Zbid., 36, 188 (1964). (205) Harrison, F. H., Metallurgia 70, 251 (1964). ~
I
~
/
(206) Hartel, J., Pleumeekers, A. J. G., ANAL.CHEM.36, 1021 (1964). (207) . . Hashmi, M. H.. Ahmad. H.. Rashid. A.; Avaz. A.. Ayaz, A‘. A.. A., Ibid.. Ibid., Dp.. 2028.‘ 2028. (208j Hashmi, >I. >I.”., H., Ahhad, Ahmad, H., Rashid, (208) A., Azam, F., Ibid., p. 2471. (209) Hashmi, M. H., Rashid, A., Ahmad, H., Ayaz, A. A., Azam, F., Ibid., 37, 1027 (1965). (210) Herrero-Lancina. Herrero-Lancina, M.. M.,’ West. West, T. S., S.. . ZZbid.. b k . 35. 2131 (1963). (211) Heriies, D.‘ G.,’Richards, F. M., Ibid., 36, 1155 (1964). (212) Hiiro, K., Bunseki Kagaku 12, 703 (1963). (213) Hirano. Y.. Tamura. T.. ANAL. CHEM.36. ’800 i1964). ‘ (214) Hluchan, E., hiayer, J., Chem. Zvesti 17, 569 (1963). (215) Holbrook, W. B., Rein, J. E., ANAL.CHEM.36, 2451 (1964). (216) Hosain, lf., West, T. S., Anal. Chim. Acta 33, 164 (1965). (217) Hoseney, R. C., Finney, K. F., A N A L . CHEM. 36, 2141 (1964). (218) Howard, J. RI., Jr., Ibid., 37, 596 (1965). (219) Howard, J. M., Spauschus, H. O., Ibid., 35, 1016 (1963). (220) Huang, T. C., Wefler, V.,Raftery, A., Ibid., p. 1757. (221) Huitt, H. A., Lodge, J. P., Jr., Zbzd., 36, 1305 (1964). (222) Hull, D. A., Shepp, J. hl., Weaver, W. J., Reschke, R. F., Bomstein, J., Zbad., p. 599. (223) Hultquist, A. E., Ibid., p. 149. (224) Hung, S., Teng, H., Liang, S., Hua Hsueh Hsueh Pao 30, 452 (1964). (225) Hunter Associates Laboratory, Inc., McLean, T’a., technical bulletin. (226) Iida, Y., hlizuike, A., Hirano, S., Kozyo Kayaku Zasshi 67, 2042 (1964). (227) Instrument Development Laborabulletin.Inc., Attleboro, Mass., technical tories, I
-
I
(228) Ishibashi, K.,Kobara, H., Bunseki Kagaku 13,239 (1964). (229) Ishutchenko, E. I., Shipunova, V. G., Spektral’n i Khzm. Metody Analiza Materialoo, Sb. Metodik 1964,p. 164. (230) Ito, S., Bunseki Kagaku 14, 15 (1965). (231) Iihak, I. G., Zavodsk. Lab. 29, 1060 (1963). (232) Jain, B. D., Kumar, R., Proc. Indian Acad. Sci., Sect. A 60,265 (1964). (233) Janota, H. F., Ayres, G. H., ANAL. CHEM.36, 138 (1964). (234) Janssens, A. A., van de Capella, G. L., Herman, M. A., Anal. Chim. Acta 31, 325 (1964). (235) Jeffery, P. G., Gregory, G. R. E. C., Analyst 90, 177 (1965). (236) Jenkins, D., hIedsker, L. L., ANAL. CHEM.36, 611 (1964). (237) Jensen, K. J., Ibid., 37, 1430 (1965). (238) Jensen, R. E., Pflaum, R. T., . Anal. Chim. Acta 32, 235 (1965). (239) Jewell, J. P., hlorris, 31.J., Sublett, R. L., ANAL.CHEM.37, 1034 (1965). (240) Johnson, W. C., Jr., Campbell, h1. H., Zbid., p. 1440. (241) Johnston, I-. D., Porcaro, P. J., Ibid., 36, 124 (1964). (242) Jordan, D. E., Veatch, F. C., Zbid., v. 120. (243) Joun, H. U., Kim, B. C., Chosun Kwahakwon Tongbo 1 , 3 3 (1964). (244) Judd, D. B., Nimeroff, I., “Specification and Debignation of Color,” p. 2873-2942, T’ol. 5, Part I, “Treatise on Analytical Chemistry,” I. h1. Kolthoff, P. J; Elving, eds., -Interscience, New York, 1964. (245) Jungnickel, H. E., Klinger, W., 2. Anal. Chem. 202, 107 (1964). (246) Ibid., 206, 275 (1964). VOL. 38, NO. 5 , APRIL 1966
327 R
(247) Kajiwara, hl., Goto, K., Nippon Kagaku Zasshi 85, 539 (1964). (248) Kallman, S., Oberthin, H. K., ANAL. CHEM.37, 480 (1965). (249) Kamata, E., Bull. Chem. SOC. Japan 37, 1674 (1964). (250) Kamentseva, L. G., Stolyarova, I. A., Tr. Vses. Nauchn-Zssled. Geol. Znst. 117, 41 (1964). (251) Kammori, O., Taguchi, I., Komiya, R., Bunseki Kagaku 14, 106 (1965). (252) Katakis, D., ANAL.CHEM.37, 876 (1965). (253) Kawabuchi, K., Bunseki Kagaku 14, 52 (1965). (254) Kawahata, AI., Mochizuki, H., Kaiivama. R.. Ichihashi,. K.., Zbid.. p. 848. (255) Kawamura, M., Sakagami, O., Oyagi, T., Ryusan 17, 148 (1964). (256) Kawase, A,, Bunseki Kagatu 1 2 , 904 (1963). (257) Kawase, A., Talanta 12, 195 (1965). (258) Kaya, A., Kakita, Y., h’ippon Kinzoku Gakkaishi 26, 522 (1962). (259) Ke, B., Treharne, B. W., McKibben, C., Rev. Sci. Znstr. 35, 296 (1964). (260) Keegan, H. J., Schleter, J. C., Belkamp, hl. O., J . Opt. SOC.Am. 54, 69 (1964). (261) Kemula, IT.,Rosolowski, S., Chem. Anal. 5, 419 (1960). (262) Kenna, B. T., Conrad, F. J., ANAL.CHEY.35, 1255 (1963). (263) Kieruczenkowa, A,, Hejwowski, J., Acta Polon. Pharm. 20, 387 (1963). (264) Kish, P. P., IYauk. Zap. Uzhgorodsk. Univ. 49, 70 (1962). (265) Klassova, N. S., Leonova, L. L., Zh. Analit. Khim. 19,131 (1964). (266) Kodama, K., Sagoyashi Kogyo Kenkyusho Kenkyo Hokoku 27, 29 (1962). (267) Kokorin, A. I., Radenko, S. K., Uch. Zap. Kishinevsk Gos. Unav. 68, 45 (i963j. (268) Kolbezen, hl. J., Eckert, J.’ W., MYhon, C. W., ANAL.CHEM.36, 593 I
,
___
( 1 964) -,_ ~
(269) Kolling, 0. W Zbid., 37,436 (1965). (270) Komatsu, S., ,?ippon Kagaku Zasshi 84, 858 (1963). (271) Kontnik, B., Chem. Anal. 9 , 717, 857 (1964). (272) Korkisch, J., Arrhenius, G., Kharkar, U. P., Anal. Chim. Acta 28, 270 (l(363). (273) Kutauji, K., Bull. Chem. SOC.Japan 38, 402 (1965). (274) Kovacs, E., Guyer, H., 2. Anal. Chem. 208, 255 (1965). (275) Zbid., 209, 388 (1965). (276) Kovacs, E., Guyer, H., Luescher, \V., Ibzd., 208, 321 (1965). (277) Kratochvil, B., Nhite, M. C., AXAL.CHEM.37, 111 (1965). (278) Kristaleva, L. B., Kristalev, P. V., Sb. A‘auchn. Tr. Permsk. Politekhn. Znst. 1963, p. 68. (279) Kroeller, E., Z. Anal. Chem. 210, 34 (1965). (280) K’u, T. L., Sudakov, F. P., Shakhova, 2. F., Zh. Analit. Khim. 19, 968 (1964). (281) K’u, T. L., Sudakov, F. P., Shakhova, Z. F., Zbid., 19, 734 (1964). (282) Kulichenco, L. B., Espinosa, E. Z., A . Anal. Chem. 206, 248 (1964). (283) Kurbatova, 1’.I., Peredovye Metody Khim. Tekhnol. i Kontrolya Proizv. Sb. 1964, p. 218. (284) Kusakul, P., West, T. S., Anal. Chim. Acta 32. 301 (1965). . . (285) Kuznetsova, T‘. K., Zh. Analit. Khim. 18, 1326 (1963). (286) Lamkin, E. G., Williams, hl. B., ANAL.CHEM.37, 1029 (1965). (287) Lancaster, W. A., Everingham, 11. R., Zbid., 36,246 (1964).
328 R
ANALYTICAL CHEMISTRY
(288) Lange, B., “Kolorimetrische Analyze,” 6th ed., Verlag Chemie, Weinheim, 1964. (289) Langmyhr, F. J., Arnesen, R. T., Anal. Chim. Acta 29, 419 (1963). (290) Langmyhr, F. J., Dahl, I., Zbid., p. 377. (291) Larrick, R. A., ANAL. CHEM.35, 1760 (1963). (292) La Rue, T. A., Zbid., 37, 246 (1965). (293) La Rue, T. A., Blakley, E. R., Anal. Chim. Acta 31, 400 (1964). (294) Legradi, L., Pungor, E., Szabadka, O., Acta Chim. Acad. Sci. Hung. 42, 89 (1964). (295) Lew, R. B., Oyung, W., ANAL. CHEM.36, 1857 (1964). (296) Licht, S., Rev. Sci. Znstr. 35, 1027 (1964). (297j-Liebman, K. C., Hindman, J. D., ANAL.CHEM.36, 348 (1964). (298) Lindstrom,. F.,. Milliaan, - . C. W., Zbid., p. 1334. (299’1 Liteanu. C.. Luka’cs. I.. Strusievici. C., Anal. Ckim.’ Acta., 29, 574 (1963). ’ (300) Lothian, G. F., Analyst 88, 678 (1965). (301) Lounamaa, N., Fugmann, W.,Z . Anal. Chem. 199, 352 (1964). (302) Lugg, J. W. H., J . Chromatog. 10, 272 (1963). (303) LiG,’ C. L., ANAL. CHEK 36, 1327 (1964). (304) Zbid., p. 2036. (305) Luke, C. L.. Anal. Chim. Acta 32, ‘ 221 (1965). (306) Zbid., p. 286. (307) Lukin, A. AI., Petrova, G. S., Smirnova, K. A., U.S.S.R. Patent 166,843 (Cl. Golh), Ilec. 1, 1964. Appl. Dee. 26, 1963. (308) Lukin, A. hl., Zelichenek, S. L., Chernysheva, T. V., Zh. Analzt. Khim. 19, 1513 (1964). (309) hlcAloren, J. T., Reynolds, G. F., Anal. Chem. Acta 32, 227 (1965). (310) blcClellan, B. E., Benson, V. hl., ANAL.CHEM.36. 1985.(1964). (311) McCowan, J. J., Kudera, D. E., Zbid., 35, 1545 (1963). (312) MacDonald, J. C., Yoe, J. H., Anal. Chim. Acta 28, 264 (1963). (313) Rlaeck, W. J., Kussy, 11. E., Rein, J. E., ANAL.CHEM.37, 103 (1965). (314) hlaekawa, S., Kato, K., Bunseki Kagaku 14,433 (1965). (315) Rlagee, R. J., Khattak, hl. A., Microchem. U . 8, 285 (1964). (316) hlagee, R. J., Witwit, A. S., Anal. Chim. Acta 29. 27 (1963’1. (317) Majumdar, A. K., Chaterjee, A. B., Z. Anal. Chem. 202, 323 (1964). (318) hlajumdar, A. K., Das, G., J . Indian %hem. SOC.42, 189 (1965). (319) Malat, S. M., Hrachovcova, M., Collection Czech. Chem. Commun. 29. 2484 (1964). (320) Mann, L. T., Jr., ANAL.CHEM.35, 2179 (1963). (321) Mantel, M., Molco, hl., Stiller, AI., Zbid.. I). 1737. (322) kiarhenke, E. R. R., Sandell, E. B., Anal. Chim. Acta 28, 259 (1963). (323) hlarinari, P. I. C., Chimica 38, 129 (1962). (324) hlarshall, T. K., Dahlby, J. W., Waterbury, G. R., U . S. At. Energy Comm. Rept. LA-3124, 16 pp., 1964. (325) Martin, F., Floret, A,, Bull. SOC. Chim. France 1965, p. 404. (326) hlartinez, F. B., Rlourino, XI. C. AI., Inform. Quim. Anal. 1 8 , 7 (1964). (327) Rlaslennikov, A. S., Poryvaeva, G. N., Zh. Analit. Khim. 19, 1412 (1964). (328) Masui, hl., Hotta, K., Sunseki Kagaku 13, 1138 (1964). (329) Matrka, M., Verisova, E., Navratil, F., Chem. Listy 58, 1329 (1964). ~I
(330) M attrosova, T. V., Zavodsk. Lab. 31,38 ( 1965). (331) Ma,tulis, .. R. ! !.,,-Guyon, J. C., ANAL.CHEM.36, 118 (1Yti4). (332) Zbid., 37, 1391 (1965). (333) Matveev, L. O., Kampol’skii, ill. Z., Mustafin, I. S., Peredovya Metody Khim. Tekhnol i Kontrolya Proizv. Sb. 1964, p . 182 (334) Meditsch, J., Eng. 17, 15 - Quim. . (1964). (335) Meehan, E. J., “Optical Methods of Analysis,’’ Interscience, New York, 1964. (336) Xelian, &I., Perez, F. P., Inform. Quim.Anal. 18, 109 (1964). (337) Mellon, M. G., ANAL.CHEM.21, 3 (1949); 22, 2 (1950); 23, 2 11951): 24. 2 (1952): 2~(1984). ~,~ . ~ 26. ,,~ ~ ~ , . . (338) Mellon, hl. G., Boltz, D. F., Zbid., 28, 559 R (1956); 30, 354 R (1958); 32, 194 R (1960); 34, 232 R (1962). (339) Melton, S. L.. Amis, E. S., Ibid.. 35, 1626 (1963). ’ (340) Metcalfe, J., Analyst 90,409 (1965). (341) Meyer, R. J., Oldham, R. D., Larsen, R. P., ANAL. CHEM.36, 1975 (1964). (342) hlika, V., Novak, K., Chem. Prumysl 14, 487 (1964). (343) Miketukova. V..Kohlicek. J.. Z . Anal. Chem. 208, 7 (1965). (344) Alikosza, H., Kowalski, hl., Acfa IMEKO 4, 398 (1961). (345) Miller, D. J., Srivastava, S. C., Good, RI. L., ANAL. CHEM. 37, 739 1965). (346) hlinczewski, J., Rozycki, C., Chem. Anal. 9, 601 (1964). (347) Alitsui, T., Miyatake, Y. R., Rikaaaku Kenkuusho Hokoku 38, 434 (1962). (348) lliyamoto, ll., Bull. Chem. SOC. Japan 36, 1208 (1963). (349) Miyajima, T., Bunseki Kagaku 13, 1042 (1964). (350) Mottola, H. A., Talanta 11, 715 (1964). (351) llomose, T., Tomita, J., Yano, Y., Bunseki Kagaku 13, 877 (1964). (352) Momose, T., Ueda, Y., Yamamoto, K., Rlasurnura, T., Ohta, K., ANAL. CHEM.35, 1751 (1963). (353) Xlonnier. D.. Chaliounnhi. Y.. Saba,’ R.’. Anal. Chim.’ Acta 28.-30 (1963). (354j ilorrey, J. R., Nadsen, A. Rev. Sci. Znstr. 32, 799 (1961) (355) Rlorris, A. W.,Riley, J. P., Anal. Chim. Acta 29, 272 (1963). (356) Morrow. J. J.. Markham. J. J., AXAL.CHEM. 36, 1159 (1964). (357) hlunshi, K. N., Dey, A. K., Zbid., p. 2003. (358) hlunshi, K. N., De , A . K., ChemistAnalyst 53, 105 (19643: (359) Llunshi, K. N., Saxena, K. K., Dev. A. K.. J . Prakt. Chem. 26. 113 (1G64). (360) Murashova, V. I., Sushkova, S. G., Zh. Analit. Khim. 19, 1503 (1964). (361) Namba, A., hlatsuo, Y., Hakko Kyokaishi 21, 105 (1963). (362) Nazarenko, V. A., Shustova, ?VI. B., Spektral’n i Khim. Metody Analzza Materialov, Sb. Metodik 1964, p. 150. (363) Kazarenko, Tr. A., Vinarova, L. I., Zh. Analit. Khim. 18. 1217 (1963). (364) Nebesar, B., ANAL. CHEM. 36, 1961 (1964). (365) Nemirovskaya, A. F., Tr. Xovochert. Politekhn. Znst. 143, 45 (1963). (366) Ni. C.. Liann. S.. Hua Hsueh Hsva Pao 30,540 (rQ64).’ (367) Nickerson, T. A., Moore, E. E., Zimmer, A. A., ANAL. CHEM.36, 1676 (1964). (368) Niesel, W., Lubbers, D. W., SchneenTolf, D., Richter, J., Botticher, W., Rev. Sci. Znstr. 35, 578 (1964). ~~
I
,
~
~
~
w.,
(369) Nikolaeva, G. V., Stolyarova, I. A., Tr. Vses. Kauchn. Issled. Geol. Inst. 117, 89 (1964). (3701 Noll. C. A.. Stefanelli.’ L. J.. ANAL. CHEM.35, 1914 (1963). (371) Norwitz, G., Cohen, J., Everett, M. E., Ibid., 36, 142 (1964). (372) Norwitz, G., Gordon, H., Ibid., 37, 417 (1965). (373) Noskov, V. V., Semukhina, G. V., Khim. Produkty Koksovaniga Uglei Vostoka SSSR, Poluchence, Obrabatka, Ispol’z, Metody Analizev, Vost. Nauchn. Issled. Uglekhim. Inst., Sb. Statei 2, 64 (1964). (374)‘0ffner, G. H., ANAL. CHEM.,37, 370 (1965). (375) Ogiolda, K.,Zeszyly Jvauk. Politech. Slask., Chem. 24, 107 (1964). (376) Ogiolda, K., Kulik, J., Pukas, T., Zeszutu iVauk. Politech. Slask.. Chem. 24. if5 (1964’1. ~
937 (1963): ’ (380) O’Laughlin, J. W., Sealock, F. W., Banks, C. V., ANAL.CHEM. 36, 224 (1964). (381) Ondrejcin, R. S., Ibid., p. 937. (382) Onishi, H., Banks, C. V., Ibid., 35, 1887 (1963). (383) Onishi, H.,Banks, C. V., Anal. Chim. Acta 29, 240 (1963). (384) Onishi, I., Hara, T., Bull. Chem. SOC.Japan 27, 1314 (1964). (385) Onishi. H.. Toita. Y.. ANAL.CHEM. ‘ 36; 1867 (1964). (386) Onuki, S., Watanuki, K., Yoshino, Y., Bunseki Kagaku 14, 339 (1965); (387) Ota, K., Xippon Kinzoku Gakkazshi 28, 330 (1964). (388) Otomo, XI., Bull. Chem. SOC.Japan 38, 730 (1965). (389) Otomo, RI., Bunseki Kagaku 14, 229 (1965). (390) Otsuki, A., Hirayama, M., Hanya, T., Utsumi, S., LVippon Kagaku Zasshi 85, 335 (1964). (391) Ott, W. L., XacMillan, H. R., Hatch, W. R., ANAL. CHEM. 36, 363 ~
I
,
(1964). \ - - - - 1 .
(392) Pakalns, P., Anal. Chim. Acta 31, 576 (1964). (393) Ibid., 32,57(1965). (394) Pakalns. P.. Florence. T. M.. Ibid., ‘ 30, 353 (1964).’ (395) Pakalns, P., Flynn, W. W., Analyst 90, 300 (1965). (396) Papariello, G. J., Janish, M. A. AI., AXAL. CHEM.37, 899 (1965). (397) Parker, C. J., Jr., Ibid., 36, 236 f 1964 ). (398) Pate, J. B., Amnions, B. E., Swanson, G. A,, Lodge, J. P., Jr., Ibid., 37, 943 (1965). (399) Patrovsky, Y.,C h m . Listy 57, 961 ( 1963). (400) Patrovsky, V., Rudy 12, 207 (1964). (401) Paul, A., ANAL. CHEM. 35, 2119 (1963). (402) Paul, A. D., Gibson, J. A., Jr., Ibid., 36, 2321 (1964). (403) Pearse, G. A., Jr., Ibid., 35, 1964 (1963). (404) Peng, P. Y., Sandell, E. B., Anal. Chim. Acta 29, 325 (1963). (405) Perkin - Elmer Corp., Norwalk, Conn. (406) Pesez, M.,Bartos, J., Ann. Pharm. France 22, 609 (1964). (407) Peters, E., Byerley, J. J., Rev. Sci. Instr. 34. 819 (1964). . , (408) Peterson,‘I). R., Hayes, J. R., ANAL. CHEM.37, 305 (1965). (409) Phoenix Precision Instrument Co., Philadelphia, Pa. \ - -
~
(410) Phototronic, Inc., Philadelphia, Pa., technical bulletin. (411) Photovolt Corp., New York, N. Y., technical bulletin. (412) Pike, L., Yoe, J. H., Talanta 12,657 (\-l-l,. 1 96.5).
(413) Pilipenko, A. T., Shpak, E. A., Boiko, Y. P., Zavodsk. Lab. 31, 151 (1965). (414) Poddar, S. N., Indian J. Appl. Chem. 27, 132 (1964). (415) Poddar, S. N., Sarkar, A. K., J. Indian Chem. SOC.41, 549 (1964). (416) Poddar, S. K., Sengupta, N. R., Adhva. J. N.. Indian J. Chem. 3. 135 (1965 ).’ (417) Pollock, E. N., Zopatti, L. P., ANAL. CHEM.37, 290 (1965). (418) Pollock, E. N., Zopatti, L. P., Anal. Chim. Acta 32, 418 (1965). (419) Polvak. L. Y.. Zh. Analit. Khim. 19. 1468 (i964j. (420) Popa, G., Albert, F. N., RadulescuGrigore, E., 2. Anal. Chem. 207, 346 (1965). (421) Popa, G., Baiulescu, G., Paralescu, I., RIircea, D., Analele Univ. “C. I . Parhon” Bucuresti Ser. Stiint S a t . Chim. 11, 77 (1962). (422) Popa, G., Baiulescu, G., Stoichitoiu, L., Studii Cercetari Chim. 13, 601 (1964). (423) Popa, I., Star, T., Voicu, A,, Ioanid, N., Farmacia (Bucharest)12,559 (1964). (424) Popela, B., Chem. Listy, 57, 1062 (1963). (425) Popper, E., Chiorean, L., Pitea, I., Rev. Roumaine Chim. 9,663 (1964). (426) Poulson, R. E., Applied Optics 3, 99 (1964). (427) Prince, L. A,, ANAL.CHEM. 36, 613 (1964). (428) Prochazkova, L., Ibid., p. 865. (429) Przeszlakowski, S., Xaksmundzki, A.,Cheni. Anal. 9, 919 (1964). (430) Pueschel, R., Lassner, E., Mikrochim. Ichnoanal. Acta 1965, p. 17. (431) Pytlewski, L. L., hlarchesani, V., ANAL. CHEM.37, 618 (1965). (432) Qureshi, M., Husain, F., Rawat, J. P., Zbid., 35, 1592 (1963). (433) Raby, B. A., Banks, C. V.,Anal. Chim. Acta 29, 532 (1963). (434) Ramaley, L., Enke, C. G., AXAL. CHEM.37, 1073 (1965). (435) Rao, G. G., hlurty, K. S., Rao, P. V. K., Talanta 11, 955 (1964). (436) Reilley, C. N., ANAL. CHEM. 37, 1298 (1965). (437) Reilley, C. S . , Flaschka, H. A., Laurent, S., Laurent, B., Ibid., 32, 1218 (1960). (438) Reznik, B. E., Ganzburg, G. X, .Torye Metody Analzza na Met. i. Metalloobrabatyrayushchzkh Zarodakh, Sou. Sur. Khoz. Przdneprovsk. Ekon. Adniin. RaLona 1964, p. 59. (439) Rikmenspoel, R., Rev. Sei. Znstr. 36, 497 (1965). (440) Rinkis, G., “Determination of Macro Elements and Trace Elements in Plants, Soil, Water and Animals by Rapid Colorimetric Methods,” Latgosizdat, Rigia, 1964. (441) Rowe, R. D., ANAL. CHEM. 37, 368 (1965). (442) Rowland, R., Rleloan, C. E., Ibid., 36, 1997 (1964). (443) Rozovskis, G., Butkevicius, J., Prokopcikas, A., Lielovos T S R Motslu Akad. Davbaz, Ser. B 1964, p. 25. (444) Ryabchikov, D. I., Borisova, L. V., Zavodsk. Lab. 29, 785 (1963). (445) Ryabchikov, I). I., Savvin, S. B., Dedkov, Y. RI., Ibid., 31, 154 (1965). (446) Ryabchikov, I). I., Savvin, , S. B., Dedkov, Y. RI., Zh. Analit. Khzm. 19, 1210 (1964). (447) Sakaki, T., S i p p o n Kagaku Zasshi 86, 217 (1965).
(448) Sakaki, T., Nippon Kinzoku Gakkaishi 28, 222 (1964). (449) Saliman, P. RI., AKAL.CHEM.36, 112 (1964). ’ (450) Saltzman, B. E., Mendenhall, A. L., Jr., Ibid., p. 1300. (451) Salvage, T., Dixon, J . P., Analyst 90, 24 (1965). (452) Saneal. S . P.. Chim. Anal. 46, 492 (1964). (453) Ibid., Microchem. J . 8 , 313 (1964). (454) Ibid., J. Prakt. Chem. 25, 326 (1964). (455) Ibid., 29, 76 (1965). (456) Sarma, P. L., ANAL.CHEM. 36, 1684 f 1964 ). (457) Ibid., p. 1076. (458) Satyanavayana, D., Kurmajah, N., Rao, T‘. P. R., Chemist-Analyst 54, 4 (1965). (459) Savvin, S. B., Talanta 11, 1 (1964). (460) Sawicki, E., Johnson, H., Stanley, T. W.. ANAL.CHEM.35. 1934 11963’1. (461) Sawicki, E., Stanley, T. *.,Pfaff, J., Johnson, A,, Ibid., p. 2183. (462) Schenk, G. H., Vance, P. W‘., Pietrandrea., J.,, bioizis, ~. C., Ibid., 37, 372 (1965). (4631 Schilt. A. A,. Jaselskis. B.. “Ultra‘ violet and Yisible Spectrophotometry,” p. 2943-3055, Vol. 5, Part f,., I. AI. Kolthoff, P. J. Elving, eds., Treatise on Analytical ChemisGy,” Interscience, Sew York. 1964. (464) Schlotzer, G., Rev. Sci. Instr. 36, 1350 (1965). (465) Schoeffel Instrument Co., Westwood, K.J. (466) Scholes, I. R., Waterman, W. R., Analyst 8 8 , 374 (1963). (467) Seco. J. L. J.. Palacios. 31. A.. Sistiaga,’JI RI., Metales LTOFerreos 5; 63 (1964). (468) Seiffarth, K., Ardelt, H. W.,2. Chem. 3, 430 (1963). (469) Serdyuk, L. S., Smirnaya, T’. S., Zh. Analit. Khim. 20, 161 (1965). (470) Shanina, T. \I., Gel’man, N. E., Kiparenko, L. >I.,
-
~
Trerd Splavov 1964,p. 281. (472) Shepp, J. AI., Neiserly, J. P., Bomstein, J , Anal. Bzochem. 8 , 112 ( 1 964’1 - -,_
(473) Shijo, Y., Takeuchi, T., Bunseki Kagaku 14, 115 (1965). (474) Shink. D. R..AKAL. CHEM. 37, 764 i1965i. (475) Shkaravskii, Y. F., Zh. Analit. Khim. 19, 514 (1964). (476) Shustova, 31. B., Kazarenko, T’. A., Zbid., 18, 964 (1963). (477) Skaar. 0. B.. Anal. Chim. Acta 32’;508 (1965). (478j dkujinq, J. J., A N ~ L CHEY. . 36, 240 (1964). (479) Smith, A. J., Ibzd., 36, 944 (1964). (480) Sokolova, L. D., Bagdasarov, K. N.. Peredovue Aletodu Khzm. Tekhnol. i. Kcmtro1ya”Proizv. S g . 1964, p. 253. (481) Soldstova, L. A., Kilina, Z. G., Kataev, G. A., Zh. Analit. Khzm. 19, 1267 (1964). (482) Sono, K., IVatanabe, H., Nitsutami, Y., Kakaihima, T., Bunseki Kagaku 14, 213 (1965). (483) Sousa, J. A., Weinstein, J., Rev. Sei. Instr. 34. 150 (1963). (484) Srivastava, T. N., Singh, X., Indian J . Appl. Chem. 27, 150 (1964). 1485) Stanton. R. E.. McDonald. A. J.. Analyst 89, 767 (1964). (486) Stephens, B. G., Lindstrom, F., ANAL.CHEM.36, 1308 (1964). (487) Stobart, J. A., Analyst 90, 278 (1965). (488) Stoffyn, P., Keane, FV,, ANAL. CHEM.36, 397 (1964). ~
VOL. 38,
NO. 5 , APRIL 1966
329 R
(489) Stolarczyk, U., Minczewski, J., Chim. Anal. 9, 151, 161 (1964). (490) Stone, J. C., ANAL.CHEM.35, 1552 (1963). (491) Sturton, J. M.,Anal. Chim. Acta 32, 394 (1965). (492) Sugawara, K. F., AEC Accession No. 4064, Rept. RTD-TDR-63-4082, Available OTS, 17 pp. (1963). (493) Sugawara, K. F., ANAL. CHEM. 36, 1373 (1964). (494) Sutton, N. Y., ANAL. CHEM.36, 2120 (1964). (495) Takahashi, A., Nishikawa, A., Takeuchi, K., Yoshida, N., Kozyo Kaoaku Zasshi 67. 1820 (1964). (496)“Takahashl K., Bunseki‘ Kagaku 13, 343 (1964). (497) Takahashi, K., Hashimoto, Y., Suisan Zoshok 8,7 (1960). (498) Takama. H.. Ando. T.. Ueno., K.., Bunseki Kagaku’l3, 346 (1964). (499) Takeuchi, T., Furuawa, AI., Kozyo Kagaku Zasshi 67, 2052 (1964). (500) Talipov, S. T., Dzhiyanbaeva, R. K., Asamov, K. A., Gorlkovava, G. P., Uzbeksk. Khim. Zh. I, 18 (1963). (501) Talipov, 8. T., Dzhiyanbaeva, R. K., Chaprasova, L. T., Gutnikova, R. I., .Yauchn. Tr. Tashkentsk. Gos. Univ. 263, 72 (1964). (502) Talipov, S. T., Khadeeva, L. A., Zh. Analit. Khim. 19, 1471 (1964). (503) Talipov, S. T., Nigai, K. G., Abramova, E. L., Kauchn. Tr. Tashkontsk. Gos. Univ. 263, 58 (1964). (504) Tanaka, T., Hiiro, K., Bunseki 1Yagaku 12, 914 (1963). (505) Tanaka, A l . , Kawashima, T., Talanta 12, 211 (1965). (506) Tananaiko, RI. Rl., Tsarenko, G. F., Ukr. Khim. Zh. 30, 1213 (1964). (507) Tananaiko, 11. AI., S‘inokurova, G. N., Zh. .Inalit. Khim. 19, 316 (1964). (508) Tataev, 0. A., Bagdasarov, K. N., Perodovye Metody Khim. Tekhnol. i Kontrolya Proizv. Sb. 1964, p. 249. (509) Thompson, R. J., Gore, R. H., Trussell, F., Anal. Chim. Acta 31, 590 i1964). (510) Tikhonov, V. X., Zh. Analit. Khim. 19, 1204 (1964). (511) Tikhonov, V. K.,hlustafin, I. S., Zh. Analit. Khim. 20, 390 (1965). (512) Tkach. E. F.. Uch. Z a n Kishinevsk. Gos. Univ.’68, 61 (1963). ’ (513) Technicon Controls, Inc., Chauncey, X, Y., technical bulletin. (514) Tonosaki, K., Sakai, K., Bunseki Kagaku 14, 495 (1965). (515) Toy, C. H., Van Santen, R. T., AXAL.CHEM.36, 151 (1964).
330 R
ANALYTICAL CHEMISTRY
(516) Tribalat, S., Caldero, J. AI., Bull. SOC.Chim. France 1964, p. 3187. (517) Trussell, F., Thompson, R. J. ANAL.CHEM.36, 1870 (1964). (518) Tselinskii, Y. K., Gorbenko, F. P., Krosusskawa, T. A., Tr. Vises. -YauchnIssled. Inst. Khim. Reaktivov 25, 329 (1963). (519) Tserkasavich, K. V., Poluetkov, N. S., Zh. Analit. Khzm. 19, 1309 (1964). (520) Ueda, H., Deguchi, AI., Hiroshima Daigaku Kogahubu Kenkyu Hokoku 13, 67 (1965). (521) Uesugi, K., Bull. Chem. SOC.Japan 38, 337 (1965). (522) Ugngachev, N. Y., Oleinik, T. V., Vestn. Tekhn. i Ekon Inform. SauchnIssled. Inst. Tekhn.-Ekon. Issled. Gos. Kom. Khim. Prom. pro Gosplane SSSR 1964. a. 27. (523) Ulhemann, E., Rleissner, G., Butler, E., Weinelt, H., J . Prakt. Chem. 25, 272 (1964). (524) Umeda, >I., Yakugaku Zasshi 84, 1171 (1964). (525) Unicam Instruments, Ltd., Cambridge, England. (526) Urbanski, J., Kainz, G., Mzkrochim. Ichnanal. Acta 1965, p. 60. (527) U>atenko, Y. L., Arishkevich, A. M.,Akhmetzhiri, A . G.. Zh. Analit. Khim. 20. 462 (1965) (528) Utsumi, S., Okutani, T., Sippon Sagaku Zmshi 85, 543 (1964). (529) Tandalen, E., Xellon, AI. G., ASAL. CHEX 36, 1068 (1964). (530) S’asil’eva, X. L., Ermakova, 11. I., Zh. Analit. Khim. 19. 1305 11964). (531) Villegas, E., Pomkranz, Y., Shellenberger, J. H., Anal. Chim. Acta 29, 145 (1963). (532) Tinogradova, N. B., Dubovskaya, L. T., Zhukovsti, Y. G., Zh. Analit. Khim. 19, 997 (1964). (533) Tozisova, V. F., Podchainova, V. N., Spektral’n z Khzm. Metody Analaza Materialov, Sb. Metodzk 1964, p. 179. (534) Tozisov, 5’. F., Podchainova, S’. N.. Zh. Analit. Khzm. 19. 640 (1964). (535) T’ydra, F., Markova, V., Chem. Listy 57, 958 (1963). (536) Waclawik, J., Waszak, S., Chem. Anal. 8, 633 (1963). (537) Wade, 31. A., Yamamura, S. S., - 4 s ~CHEM. ~ . 37, 1276 (1965). (538) Waksmundzki, A,, Przeszlakowski, Y.,Chem. Anal. 9, 69 (1964). (539) Rang, S., Nou, S., Liang, S., Sci. Sinica (Peking) 13, 522 (1964). (540) Watts, H. L., AXAL.CHEM.36, 364 (1964).
(541) West, T. S., Analyst. 89,439 (1964). (542) White, J. C., U . S. At. Energy Comm. Rept. CF-59-4-106, 9 pp. (1959). (543) White, G., Scholes, P. H., Metallurgia 70, 197 (1964). (544) Widtman, V.,Chem. Listy 58, 211 (1964). (545) %’ilks Scientific Coro.. South Yorwalk, Comi., “Internal Reflection Spectroscopy” manual (1965). (546) Williams, J. L., Graham, H. D., AN.AL.CHEM.36, 1345 (1964). (547) IViluoii, A. X, IIcFarland, 0. K., Ibid., p. 2488. (548) Willis, D. E., Cave, W,T., Ibid., p. 1821. (549) Wood, D. F., Jones, J. T., Analyst. 90, (1965). (550) Wright, W. D., “The Measurement of Colour,” 3rd ed., Van Nostrand, Princeton, S . J., 1964. (551) Wyszecki, G., J . Opt. Soc. Am. 55, 1319 (1965). (552) Yakovlev, P. Y., Razumova, G. P., Itybina, T. F., Sb. Tr. Tsentr. SauchnIssled. Inst. Chern. Met. 37. 9 11964). (553) Yamamoto, Y., Kotsdji, ~ K . ,Bull. Chem. Soc. Japan 37, 594 (1964). (554) Ibzd., p. 785. (555) Yamamoto, Y., Kotwji, K., Kiriuwaki, S., Sawamura, H., ippon Kagaku Zasshi 85, 869 (1964). (556) Yamamoto, Y., Okamoto, K.,Tao, E., Bunseki Kagaku 14, 343 (1965). (557) Yamamoto, Y., Uchikawa, S., Akabori, K., Bull. Chem. SOC.Japan 37, 1718 (1964). (558) Yin, T., T u Jang Tung Pao 1962, DD. 70. 85. (5hQ) Yoshida, H., Bunseki Kagaku 13, 203 (1964). (560) Young, J. P., ASAL. CHEM. 36, 390 (1964). (561) Yu, K., Koltuseh T’ung Pao 9, 810 (1964). (562) Zaboeva, RI. I., Barkovskii, V. F., Peredovye Metody Khim. Tekhnol i Kontrolya Proiz v. Sb. 1964, p. 514. (563) Zagorchev, B., Danova, E., Balushev, B., Godishnik Khzm.-Teckhnol. Inst. 9, 199 (1962). (564) Zhukovskii, Y. G., Zh. Analit. hhim. 19, 1361 (1964). (565) Ziegler, AI., Pape, G., 2. Anal. Chem. 197, 354 (1963). (566) Zitomer, F., Lambert, J. L., ANAL. CHEM.35, 1731 (1963). (567) Zolotavin, V. L., Fedorova, N. D., Peredorye Metody Khim. Tekhnol. Kontrolya Proizv Sb. 1964, p. 223. (568) Zommer, S., Lipiec, T., Chem. Anal. 9 , 871 (1964). A\