4 Limonin and Limonoids
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
Chemistry, Biochemistry, and Juice Bitterness VINCENT P. MAIER, SHIN HASEGAWA, RAYMOND D. BENNETT, and LINDA C. ECHOLS U.S. Department of Agriculture, Science and Education Administration, AR, Fruit and Vegetable Chemistry Laboratory, Pasadena, CA 91106 Limonoids are a group of c h e m i c a l l y r e l a t e d t r i t e r p e n e derivatives found i n the Rutaceae and M e l i a c e a e . L i m o n i n , a b i t t e r member o f the group, occurs widely i n c i t r u s j u i c e s . I t has c o m m e r c i a l s i g n i f i c a n c e because b i t t e r n e s s ( e x c e s s i v e b i t t e r n e s s i n the case of g r a p e f r u i t ) reduces j u i c e q u a l i t y . D r e y e r (1_) a n d C o n n o l l y e t a l . (2) h a v e r e v i e w e d t h e c h e m i s t r y a n d b i o c h e m i s t r y o f l i m o n o i d s . More r e c e n t l y M a i e r e t a l . (3_) p u b l i s h e d a c o m p r e h e n s i v e r e v i e w o f the l i m o n o i d c o n s t i t u e n t s o f C i t r u s and the impact o f l i m o n i n b i t t e r n e s s on j u i c e q u a l i t y . T h i s p a p e r summarizes the c h e m i c a l , b i o c h e m i c a l a n d j u i c e q u a l i t y a s p e c t s o f l i m o n o i d s i n C i t r u s (and r e l a t e d genera) and p r e s e n t s r e l e v a n t advances s i n c e p r e v i o u s r e views . Limonoid S t r u c t u r e s
and R e l e v a n t
Chemistry
L i m o n i n (I) i s a h i g h l y o x y g e n a t e d t r i t e r p e n e d e r i v a t i v e whose s t r u c t u r a l f e a t u r e s i n c l u d e a f u r a n r i n g , two l a c t o n e r i n g s , a f i v e - m e m b e r e d e t h e r r i n g , a n d an e p o x i d e . A l l other c i t r u s l i m o n o i d s a l s o c o n t a i n t h e f u r a n r i n g a n d a t l e a s t one o f t h e l a c tone r i n g s . Compounds I , I I I , V - X I I , a n d X I V - X V I were known as n a t u r a l c i t r u s c o n s t i t u e n t s a t t h e t i m e o f o u r l a s t r e v i e w (_3) · S i n c e t h e n s e v e r a l o t h e r c i t r u s l i m o n o i d s h a v e b e e n i s o l a t e d and t h e i r s t r u c t u r e s d e t e r m i n e d : l i m o n o l ( I I ) , o b a c u n o l ( I V ) , and d e o x y l i m o n o l (XVII) f r o m g r a p e f r u i t s e e d s ( 4 ) , i s o l i m o n i c a c i d (XIII) from s o u r orange and g r a p e f r u i t seeds (5)/ deoxylimonic a c i d ( X V I I I ) f r o m g r a p e f r u i t s e e d s ( 6 ) , and m e t h y l d e a c e t y l n o m i l i n a t e (VIII), calamin (XIX), retrocalamin (XX), cyclocalamin ( X X I ) , a n d m e t h y l i s o o b a c u n o a t e d i o s p h e n o l (XXII) f r o m c a l a m o n d i n s e e d s (7_) . T a b l e I (8) shows t h e c o n c e n t r a t i o n s o f l i m o n o i d s i n s e e d s o f s e v e r a l c i t r u s s p e c i e s , a s w e l l as t h e r e l a t i v e p r o p o r t i o n s o f n e u t r a l and a c i d i c l i m o n o i d s i n e a c h . T a b l e s I I a n d I I I (8) show t h e r e l a t i v e amounts o f t h e m a j o r i n d i v i d u a l n e u t r a l a n d a c i d i c limonoids, respectively, in several species. The c a s e s i n which two d i f f e r e n t s a m p l e s o f t h e same s p e c i e s were a n a l y z e d show t h e
This chapter not subject to U.S. copyright. Published 1980 American Chemical Society In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
CITRUS NUTRITION AND QUALITY
LIMONIN LIMONOL
X
X=0 Χ = α - Ο Η , β~Η
ISOOBACUNOIC ACID
III IV
XI
OBACUNONE X=0 OBACUNOL Χ=α~ΟΗ,
β-Η
EPIISOOBACUNOIC ACID
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
MAIER ET AL.
Limonin
and
Limonoids
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
4.
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
CITRUS NUTRITION AND QUALITY
XIX
CALAMIN
XXIII
XX
RETROCALAMIN
19-HYDROXYDEACETYLNOMILINIC ACID
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MAIER ET
Table
AL.
Limonin
I. Concentrations
Grapefruit V a l e n c i a Orange Lemon Calamondin Kumquat
67
Limonoids
o f Limonoids i n C i t r u s Seeds
% of t o t a l Neutral
T o t a l , % of f r e s h weight
Seeds
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
and
limonoids Acidic
77 84 61 83 55
1.5 1.1 1.1 0.75 0.61
(8)
23 16 39 17 45
Journal of Agricultural and Food Chemistry
r a n g e s o f v a r i a t i o n i n c o m p o s i t i o n w h i c h c a n be e x p e c t e d . The c h e m i c a l r e a c t i o n s o f l i m o n i n h a v e b e e n r e v i e w e d p r e v i o u s l y (_1,_3) . From a p r a c t i c a l s t a n d p o i n t t h e m o s t i m p o r t a n t re a c t i o n s a r e t h e o p e n i n g and c l o s i n g o f t h e l a c t o n e r i n g s . In c i t r u s l e a f and f r u i t t i s s u e t h e n a t u r a l l y o c c u r r i n g f o r m i s a s a l t o f l i m o n o i c a c i d Α-ring l a c t o n e (XIV), i n which the A - r i n g i s c l o s e d and t h e D - r i n g i s o p e n . T h i s t a s t e l e s s compound i s o n l y s t a b l e i n the s a l t form. A t a c i d i c pH's, and more r a p i d l y i n t h e presence o f c i t r u s limonoate D-ring lactone hydrolase, the D-ring c l o s e s t o form the b i t t e r substance l i m o n i n (9). The g r a d u a l c o n v e r s i o n o f XIV t o l i m o n i n o c c u r s w h e n e v e r f r u i t t i s s u e s a r e d i s r u p t e d , s u c h a s , t h r o u g h s e v e r e b r u i s i n g , f r e e z e damage o r d u r i n g j u i c e e x p r e s s i o n (10). L i m o n i n o c c u r s as s u c h , w i t h b o t h l a c t o n e r i n g s c l o s e d , i n c i t r u s seeds. The s e e d s a l s o c o n t a i n s m a l l amounts o f t h e s a l t o f XIV (10,11). S t r u c t u r a l r e l a t i o n s h i p s and
pathways
The c i t r u s l i m o n o i d s may be d i v i d e d i n t o g r o u p s on t h e b a s i s of s t r u c t u r a l s i m i l a r i t i e s . One s u c h c r i t e r i o n i s t h e n a t u r e o f C-19, w h i c h may be e i t h e r m e t h y l , a s i n o b a c u n o n e ( I I I ) , o r o x y m e t h y l e n e , as i n l i m o n i n . Another c h a r a c t e r i s t i c f e a t u r e i s the f i v e - m e m b e r e d e t h e r ( A ) r i n g i n compounds s u c h as l i m o n i n and isoobacunoic a c i d (X). The c a l a m o n d i n l i m o n o i d s X I X - X X I I a r e u n i q u e i n two r e s p e c t s : t h e 3 - c a r b o x y l i s m e t h y l a t e d and C-6 i s oxygenated. While these s t r u c t u r a l groupings are h e l p f u l i n sug g e s t i n g p o s s i b l e b i o s y n t h e t i c p a t h w a y s , t h e y do n o t a l l o w a d e c i s i o n t o be made a s t o t h e a c t u a l p a t h w a y by w h i c h l i m o n i n i s s y n thesized. For i n s t a n c e , X c o n t a i n s a l l o f the s t r u c t u r a l f e a t u r e s o f l i m o n i n e x c e p t f o r 1 9 - o x y g e n a t i o n and l a c t o n i z a t i o n and t h u s c o u l d be c o n s i d e r e d t h e i m m e d i a t e p r e c u r s o r . However, i c h a n g i n (XII) i s a l s o a p o s s i b l e i m m e d i a t e p r e c u r s o r , c o n t a i n i n g the A l a c t o n e r i n g but l a c k i n g the A - r i n g . The t r u e pathway w i l l u l t i m a t e l y h a v e t o be d e t e r m i n e d by i n c o r p o r a t i o n s t u d i e s o f p o s s i b l e p r e c u r s o r s i n r a d i o a c t i v e form. N e v e r t h e l e s s , i t seems h i g h l y p r o b a b l e t h a t d e a c e t y l n o m i l i n i c a c i d ( V I I ) i s a key l i m o noid intermediate. Lactone r i n g c l o s u r e and/or a c e t y l a t i o n 1
1
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
68
CITRUS NUTRITION AND QUALITY
Table I I . R e l a t i v e Concentrations of N e u t r a l Limonoids i n C i t r u s S e e d s (8)
Seeds
Limonin
% Distribution Nomilin Obacunone
Deacetylnomilin
Grapefruit
76 83
15 11
1 5
8 1
V a l e n c i a Orange
50 75
34 10
1 1
15 5
N a v e l Orange
87
10
1
2
a
37 39
26 21
1 1
11 17
39
31
29
1
40
40
20
1
70
28
1
1
Tangelo
43
43
13
1
Tangerine
63
16
1
20
60
18
1
21
Sour O r a n g e
Lemon
Lime
a Also Ichangin
25 22
Journal of Agricultural and Food Chemistry
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
4.
MAIER ET AL.
Limonin
Table I I I . Relative
and
69
Limonoids
Concentrations o f A c i d i c Limonoids i n C i t r u s S e e d s (8)
Nomilinic Acid
Deacetylnomilinic Acid
Isolimonic Acid
Grapefruit
86 85
5 13
8 1
Valencia
83
17
-
6 3
47 64
47 32
95 76 56 33 90
5 15 44 33 10
Seeds
Sour
Orange
Orange
Lemon Lime Tangelo Tangerine N a v e l Orange
9
-
34
a Fruit
tissues Journal of Agricultural and Food Chemistry
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
70
CITRUS NUTRITION AND QUALITY
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
r e a c t i o n s c o u l d convert i t t o d e a c e t y l n o m i l i n (V), n o m i l i n i c a c i d (IX), o r n o m i l i n ( V I ) , and an e l i m i n a t i o n r e a c t i o n c o u l d then p r o d u c e obacunone ( I I I ) from e i t h e r V o r V I . A 1 , 4 - c y c l i z a t i o n o f V I I w o u l d l e a d t o X, w h i c h c o u l d f o r m l i m o n i n b y 1 9 - h y d r o x y l a t i o n and l a c t o n e r i n g c l o s u r e . 19-Hydroxylation o f V I I would form XXIII, which c o u l d undergo 4 , 1 9 - c y c l i z a t i o n t o produce i s o l i m o n i c a c i d (XIII) o r 1 , 4 - c y c l i z a t i o n , f o l l o w e d by l a c t o n e r i n g c l o s u r e to limonin. A l t e r n a t i v e l y , XXIII c o u l d form X I I by l a c t o n e r i n g c l o s u r e and t h e l a t t e r c o u l d then c y c l i z e t o produce l i m o n i n . The b i o s y n t h e t i c p a t h w a y o f t h e c a l a m o n d i n l i m o n o i d s seems straightforward. M e t h y l d e a c e t y l n o m i l i n a t e (VIII) i s an o b v i o u s p r e c u r s o r o f c a l a m i n ( X I X ) , a n d t h e l a t t e r c o u l d t h e n be c o n v e r t e d t o r e t r o c a l a m i n (XX) b y a r e t r o a l d o l - t y p e r e a c t i o n . 1 , 4 - C y c l i z a t i o n o f XIX would produce c y c l o c a l a m i n (XXI), which c o u l d f o r m m e t h y l i s o o b a c u n o a t e d i o s p h e n o l (XXII) b y o x i d a t i o n o f the 7-hydroxyl t o a ketone, f o l l o w e d by e n o l i z a t i o n . Biosynthesis S i n c e t h i s s u b j e c t was r e v i e w e d i n 1977 (_3) i m p o r t a n t pro g r e s s h a s b e e n made i n s t u d i e s o f t h e b i o s y n t h e s i s o f l i m o n o i d s in Citrus. A n a l y s e s o f C i t r u s f o r XIV c o n t e n t a t v a r i o u s matu r i t y s t a g e s a n d r a d i o a c t i v e t r a c e r work showed t h a t l i m o n o i d s a r e a c t i v e l y s y n t h e s i z e d i n c i t r u s l e a v e s , p a r t i c u l a r l y i n young l e a v e s (12) · Hasegawa e t a l . (13.) a t t e m p t e d t o l o c a t e l i m o n o i d s w i t h i n m e s o p h y l l c e l l s and found t h a t limonoids a r e p r e s e n t i n chloroplasts. F u r t h e r f r a c t i o n a t i o n o f t h i s o r g a n e l l e showed t h e presence o f limonoids i n grana. T h e g r a n a i s o l a t e d f r o m lemon l e a v e s c o n t a i n e d a s much a s 1,000 ppm o f X I V . T h e s e f i n d i n g s s u g g e s t e d t h a t l i m o n o i d s a r e most l i k e l y s y n t h e s i z e d i n c h l o r o p l a s t s , a l t h o u g h f u r t h e r work i s n e e d e d t o c o n f i r m t h i s p o i n t . When 5 - g - s i z e n a v e l o r a n g e s w e r e ^ f e d w i t h 44 χ 10^ cpm o f acetate-2C a t t h e r a t e o f 4.4 χ 10 cpm p e r d a y f o r 10 c o n s e c u t i v e days e i t h e r b y i n j e c t i o n o f t h e f r u i t o r by a p p l i c a t i o n on t h e p e e l , n o l a b e l e d X I V was d e t e c t e d i n t h e f r u i t . A l s o , no C was i n c o r p o r a t e d i n t o X I V when 5 - g - s i z e n a v e l o r a n g e was s i m i l a r l y f e d w i t h 20 χ 10^ cpm o f m e v a l o n a t e - 2 - ^ ^ C . When l a b e l e d a c e t a t e was f e d t o l e a v e s a d j a c e n t t o a 5 - g - n a v e l o r a n g e , r a d i o a c t i v i t y was i n c o r p o r a t e d i n t o X I V i n t h e f r u i t (_12) . T h e s e r e s u l t s s u g g e s t t h a t l i m o n o i d s a r e most l i k e l y n o t s y n t h e s i z e d i n the f r u i t t i s s u e s (12). However, t h e y d o n o t r u l e o u t t h e p o s s i b i l i t y t h a t a p r e c u r s o r ( s ) o f l i m o n o i d s b e y o n d a c e t a t e o r meval o n a t e i s s y n t h e s i z e d i n l e a v e s and t r a n s l o c a t e d t o f r u i t and there converted t o limonoids. C i t r u s t r e e s a r e capable o f t r a n s l o c a t i n g l i m o n o i d s from leaves t o f r u i t t i s s u e s (12). When 20,000 cpm o f X I V , r a n d o m l y l a b e l e d , was f e d t o a l e a f a d j a c e n t t o a 5 - g - s i z e l e m o n , a b o u t 13.3% o f t h e t o t a l a c t i v i t y was t r a n s l o c a t e d t o t h e f r u i t d u r i n g 20 h r s . T h e s e f i n d i n g s o f Hasegawa e t a l . (1^/_13) show t h a t l i monoids i n c i t r u s f r u i t t i s s u e s a r e s y n t h e s i z e d i n leaves and translocated t o the f r u i t . 1 4
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
MAIER ET AL.
4.
Limonin
and
Limonoids
71
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
I t has b e e n m e n t i o n e d i n t h e p r e v i o u s s e c t i o n t h a t c i t r u s seeds c o n t a i n h i g h c o n c e n t r a t i o n s of limonoids. D a t t a and N i c h o l a s (14) showed t h e p r e s e n c e o f l i m o n o i d b i o s y n t h e t i c s y s tems i n g e r m i n a t e d V a l e n c i a o r a n g e s e e d s by d e m o n s t r a t i n g t h e i n c o r p o r a t i o n of mevalonate-2C into I. However, Hasegawa e t a l . (8) c o u l d n o t f i n d s u c h s y s t e m s i n lemon s e e d s , immature o r ma ture. S i n c e l i m o n o i d s a r e a c t i v e l y s y n t h e s i z e d i n y o u n g , imma t u r e l e a v e s (12.) , m o s t l i k e l y t h e r a d i o a c t i v e I f o u n d by D a t t a and N i c h o l a s was s y n t h e s i z e d i n t h e c o l e o p t i l e s o f t h e g e r m i n a t e d orange seeds. The c a p a b i l i t y o f C i t r u s t o t r a n s l o c a t e l i m o n o i d s f r o m t h e f r u i t t i s s u e s t o t h e s e e d s was d e m o n s t r a t e d by a d m i n i s t e r i n g 1 χ 10 cpm o f m e t h y l - " ^ C d e a c e t y l n o m i l i n a t e t o t h e stem end o f detached calamondin f r u i t s . A f t e r 16 h r s o f i n c u b a t i o n , 7,500 cpm o f a c t i v i t y w e r e t r a n s l o c a t e d t o t h e s e e d s , and o v e r 90% o f t h e t o t a l a c t i v i t y i n t h e s e e d e x t r a c t was r e c o v e r e d as t h e o r i g i n a l s u b s t r a t e (8_) . T h e s e r e s u l t s show t h a t l i m o n o i d s p r e s e n t i n c i t r u s seeds are t r a n s l o c a t e d through the f r u i t t i s s u e . I n h i b i t i o n of B i o s y n t h e s i s . T r i e t h y l a m i n e d e r i v a t i v e s such as 2 - ( 4 - e t h y l p h e n o x y ) t r i e t h y l a m i n e and 2 - ( 3 , 4 - d i m e t h y l p h e n o x y ) t r i e t h y l a m i n e markedly i n h i b i t the accumulation of limonoids i n c i t r u s l e a v e s (15J. F o r e x a m p l e , y o u n g lemon l e a v e s s p r a y e d w i t h 500 ppm o f 2 - ( 4 - e t h y l p h e n o x y ) t r i e t h y l a m i n e c o n t a i n e d o n l y 27 ppm o f XIV 8 d a y s a f t e r t h e t r e a t m e n t , w h e r e a s t h e c o n t r o l c o n t a i n e d 344 ppm. S i m i l a r l y , t h o s e s p r a y e d w i t h 300 ppm o f t h e compound c o n t a i n e d 0.3 t i m e s as much XIV as t h e c o n t r o l . Metabolism Metabolism i n B a c t e r i a . Three s p e c i e s of b a c t e r i a , which a r e c a p a b l e o f m e t a b o l i z i n g l i m o n o i d s , have b e e n i s o l a t e d f r o m s o i l b y Hasegawa e t a l . ( 1 6 , 1 7 , 1 8 , 1 9 ) , T a b l e IV.
Table
IV.
Limonoid-metabolizing
Bacteria
Major
B a c t e r i a and
Metabolites
Metabolic
a
Pathways
Pathways
Arthrobacter globiformis
17-dehydrolimonoate
17-dehydrolimonoid
Pseudomonas s p .
deoxylimonate deoxylimonin
deoxylimonoid 17-dehydrolimonoid
17-dehydrolimonoate deoxylimonate deoxylimonin
17-dehydrolimonoid deoxylimonoid
No.
a
321-18
342-152-1
When grown on
limonoate
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
72
CITRUS NUTRITION AND QUALITY
Two m e t a b o l i c p a t h w a y s o f l i m o n o i d s h a v e b e e n e s t a b l i s h e d : one v i a 17-dehydrolimonoids and t h e o t h e r v i a d e o x y l i m o n o i d s . A. g l o b i f o r m i s m e t a b o l i z e s limonoids v i a o n l y the 17-dehydrolimonoid p a t h w a y (17_) . Pseudomonas s p . 321-18, on t h e o t h e r h a n d , p r o d u c e s i n i t s g r o w t h m e d i a o n l y XVI and X V I I I , w h i c h a r e m e t a b o l i t e s o f the d e o x y l i m o n o i d pathway, b u t t h i s organism a l s o p o s sesses the 17-dehydrolimonoid p a t h w a y (18_) . T h i s o r g a n i s m und o u b t e d l y m e t a b o l i z e s l i m o n o i d s p r e f e r e n t i a l l y v i a the deoxyl i m o n o i d pathway. B a c t e r i u m No. 342-152-1 p r o d u c e s m e t a b o l i t e s i n v o l v e d i n b o t h p a t h w a y s (19). The r a t i o o f XV t o X V I I I i s a b o u t 3 t o 1, s u g g e s t i n g t h a t t h i s o r g a n i s m m e t a b o l i z e s l i m o n o i d s p r e f e r e n t i a l l y v i a the 17-dehydrolimonoid pathway. Enzymes i n B a c t e r i a . L i m o n o a t e d e h y d r o g e n a s e s , w h i c h c a t a l y z e t h e c o n v e r s i o n o f XIV t o XV, h a v e b e e n i s o l a t e d f r o m t h r e e s p e c i e s o f b a c t e r i a by Hasegawa e t a l . (17,18^, 19) . E a c h d e h y d r o genase has d i f f e r e n t c h a r a c t e r i s t i c s (Table V ) .
T a b l e V.
Bacterial
Limonoate
Dehydrogenases
Bacteria
Cofactors
Arthrobacter globiformis
NAD
Pseudomonas s p .
NAD
No.
342-152-1
321-18
NAD
Optimum
pH
9.5 o r NADP
8.5 7.5
T h e s e enzymes a t t a c k n o t o n l y XIV, b u t o t h e r l i m o n o i d s w h i c h c o n t a i n a f u r a n r i n g and e p o x i d e , p r o v i d e d t h a t t h e D - r i n g i s o p e n . The enzymes r e q u i r e s u l f h y d r y l g r o u p s and Zn for their catalytic activity.
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MAIER ET AL.
Limonin
and
73
Limonoids
Deoxylimonin h y d r o l a s e , which c a t a l y z e s the c o n v e r s i o n o f XVI t o X V I I I , h a s b e e n i s o l a t e d f r o m c e l l - f r e e e x t r a c t s o f Ρ s e u d o m o n a s s p . 321-18 ( 2 0 ) . T h i s enzyme a t t a c k s o n l y t h e c l o s e d D - r i n g o f XVI a n d r e q u i r e s no c o f a c t o r f o r i t s c a t a l y t i c a c t i v ity. U n l i k e o t h e r common h y d r o l a s e s , t h i s enzyme i s i n h i b i t e d by p - c h l o r o m e r c u r i b e n z o a t e and H g C l . 2
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
L i m o n i n D - r i n g l a c t o n e h y d r o l a s e has been i s o l a t e d
from
Pseudomonas s p . 321-18 (21_) . H y d r o l y z i n g a c t i v i t y i s o p t i m a l a t pH 8.0, w h e r e a s l a c t o n i z i n g a c t i v i t y i s o p t i m a l a t pH 6.0. The enzyme a t t a c k s l i m o n o i d s whose s t r u c t u r e s d i f f e r f r o m I i n t h e v i c i n i t y of the A or A - r i n g . The enzyme d o e s n o t a t t a c k XVI a n d XVIII. 1
Metabolism i n C i t r u s . R e c e n t l y , Hasegawa e t a l . (6) h a v e e s t a b l i s h e d t h e p r e s e n c e o f a d e o x y l i m o n o i d pathway i n C i t r u s . M e t h y l - 1 4 c v i l l was m e t a b o l i z e d i n l e a v e s o f c a l a m o n d i n t o f o r m a deoxy d e r i v a t i v e , showing t h e p r e s e n c e o f e p o x i d a s e a c t i v i t y which i s r e q u i r e d f o r t h e f i r s t s t e p o f t h e d e o x y l i m o n o i d pathway. Compound X V I I I , t h e p r o d u c t o f t h e s e c o n d s t e p , was a l s o i s o l a t e d f r o m g r a p e f r u i t s e e d s (6). Furthermore, deoxylimonate A - r i n g l a c t o n e h y d r o l a s e , which i s i n v o l v e d i n the t h i r d step o f the p a t h w a y , was a l s o d e t e c t e d i n g r a p e f r u i t s e e d s {6). T h e s e f i n d i n g s c l e a r l y show t h a t l i m o n o i d s a r e m e t a b o l i z e d i n C i t r u s n o t o n l y v i a t h e 1 7 - d e h y d r o l i m o n o i d pathway as p r e v i o u s l y e s t a b l i s h e d (22), b u t a l s o v i a t h e d e o x y l i m o n o i d pathway. L i m o n i n D - r i n g l a c t o n e h y d r o l a s e i s t h e o n l y l i m o n o i d enzyme w h i c h h a s b e e n i s o l a t e d f r o m C i t r u s a n d c h a r a c t e r i z e d (11)· I t i s o f i n t e r e s t t o n o t e t h a t t h i s enzyme i s e x t r e m e l y h e a t r e s i s t a n t . I t r e q u i r e s 15 m i n o f h e a t i n g a t 1 0 0 ° C t o i n a c t i v a t e i t c o m p l e t e ly. I t s f u n c t i o n a l c h a r a c t e r i s t i c s are very s i m i l a r t o those o f the b a c t e r i a l h y d r o l a s e mentioned p r e v i o u s l y . A c t i v i t i e s o f limonoate dehydrogenase (2_2) , e p o x i d a s e (6) a n d d e o x y l i m o n a t e Α - r i n g l a c t o n e h y d r o l a s e (6) h a v e b e e n demon s t r a t e d i n C i t r u s , b u t t h e y have n o t been i s o l a t e d y e t .
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
74
CITRUS NUTRITION AND QUALITY
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
Organoleptic
Aspects
L i m o n i n h a s b e e n known t o be an i n t e n s e l y b i t t e r s u b s t a n c e s i n c e i t was f i r s t i s o l a t e d i n 1841 by B e r n a y (23). Beginning i n 1966 t h e d e v e l o p m e n t o f a n a l y t i c a l m e t h o d s f o r l i m o n i n a l l o w e d c o r r e l a t i o n s of apparent b i t t e r n e s s with j u i c e limonin content to be u n d e r t a k e n . The v a r i o u s r e p o r t s o f r e l a t i v e b i t t e r n e s s o f s u p r a t h r e s h o l d l i m o n i n l e v e l s h a v e b e e n r e v i e w e d by M a i e r e t a l . (3_) . The g e n e r a l c o n c l u s i o n s r e a c h e d i n t h e s e t e s t s were t h a t l i m o n i n l e v e l s l e s s t h a n a b o u t 6 ppm were g e n e r a l l y n o n b i t t e r and t h a t the b i t t e r n e s s p e r c e i v e d a t higher limonin l e v e l s v a r i e d with t h e s w e e t n e s s , a c i d i t y and o i l l e v e l s o f t h e j u i c e . I n d i v i d u a l v s . Group B i t t e r n e s s T h r e s h o l d s . A comprehensive s t u d y o f l i m o n i n t h r e s h o l d s i n m o d e l s y s t e m s and i n o r a n g e j u i c e was r e p o r t e d by G u a d a g n i e t a l . ( 2 4 ) . Limonin t h r e s h o l d s , the minimum c o n c e n t r a t i o n p e r c e i v e d by human s u b j e c t s , were d e t e r m i n e d u n d e r c l o s e l y c o n t r o l l e d c o n d i t i o n s by a s c r e e n e d p a n e l . A panel o f 27 j u d g e s , c h o s e n f r o m a g r o u p o f 60 f o r t h e i r i n d i v i d u a l c o n s i s t e n c y i n d e t e c t i n g b i t t e r n e s s , showed a w i d e r a n g e o f s e n s i t i v ity. The m o s t s e n s i t i v e i n d i v i d u a l h a d a l i m o n i n t h r e s h o l d i n o r a n g e j u i c e o f 0.5 ppm w h i l e t h a t o f t h e l e a s t s e n s i t i v e was 32 ppm (Table V I ) . T h i r t y p e r c e n t o f t h e p a n e l c o u l d d e t e c t 2 ppm l i m o n i n and 62% c o u l d d e t e c t 4 ppm. The g r o u p t h r e s h o l d f o r t h i s t e s t was 6 ppm i n an o r a n g e j u i c e o f pH 3.8, B r i x / a c i d r a t i o (B/A) of 14.8. M o s t t a s t e s t u d i e s c o n c e n t r a t e on t h e g r o u p t h r e s h o l d r a t h e r than the t h r e s h o l d s o f the i n d i v i d u a l s i n the group. The a b o v e study demonstrates t h a t both are important. The g r o u p t h r e s h o l d
Table
VI.
Thresholds
of I n d i v i d u a l s f o r Limonin B i t t e r n e s s i n Orange J u i c e (3)
Limonin Threshold (ppm) 0.5 1.0 2.0 3.0 4.0 5.0 6.0 10.0 32.0 a
pH
3.8,
B/A
14.8
Cumulative
% of
Panel
8 17 30 49 62 70 75 91 99.5 The AVI Publishing Company, Inc.
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MAIER ET AL.
Limonin
and
Limonoids
75
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
i s u s e f u l t o determine the g e n e r a l i z e d e f f e c t o f a p a r t i c u l a r t a s t e f a c t o r . However, i n d i v i d u a l t h r e s h o l d s a r e h e l p f u l i n s t u d i e s aimed a t d e t e r m i n i n g t h e t a s t e q u a l i t y p a r a m e t e r s o f j u i c e a c c e p t a b l e t o a w i d e r segment o f t h e p o p u l a t i o n , e s p e c i a l l y t h o s e i n d i v i d u a l s most s e n s i t i v e t o b i t t e r n e s s . I n f l u e n c e o f J u i c e Components on B i t t e r n e s s . The e f f e c t s o f a number o f j u i c e v a r i a b l e s were a l s o s t u d i e d ( 2 4 ) . A pH optimum f o r t h e l i m o n i n g r o u p t h r e s h o l d was o b s e r v e d a t pH 3.7 t o 3.9 i n r e c o n s t i t u t e d orange j u i c e concentrate systems. T h e t h r e s h o l d was a maximum o f 6.4 ppm a t pH 3.8 w i t h a t h r e s h o l d o f 3.4 ppm a t pH 3.5 a n d pH 4.1. V a r y i n g t h e pH w h i l e k e e p i n g t h e B/A c o n s t a n t a g a i n showed a maximum t h r e s h o l d o f 6.5 ppm a t pH 3.8. A t a c o n s t a n t pH o f 3.65, i n c r e a s i n g t h e B/A f r o m 10 t o 16 i n c r e a s e d t h e l i m o n i n t h r e s h o l d f r o m 6.2 t o 8.5 ppm. A h i g h e r B/A h a d n o g r e a t er e f f e c t . When j u d g e s were p r e s e n t e d j u i c e s c o n t a i n i n g 4 ppm l i m o n i n w i t h d i f f e r e n t pH a n d B/A v a l u e s , t h e y i n d i c a t e d a d e f i n i t e p r e f e r e n c e f o r t h o s e j u i c e s whose pH a n d B/A l e v e l s r e s u l t e d i n t h r e s h o l d s a b o v e 4 ppm a s p r e d i c t e d f r o m t h e a b o v e d a t a . This c o n f i r m e d t h e c o r r e l a t i o n between h i g h l i m o n i n t h r e s h o l d (low l i m o n i n d e t e c t i o n ) and t a s t e p r e f e r e n c e i n orange j u i c e . Another important i n t e r a c t i o n i s that of limonin with the b i t t e r flavanone glycoside naringin. Both o f these b i t t e r subs t a n c e s a r e p r e s e n t i n g r a p e f r u i t j u i c e a n d G u a d a g n i e t a l . (25) found t h a t t h e y i n t e r a c t a t s u b t h r e s h o l d l e v e l s i n an a d d i t i v e way. L e s s t h a n t h r e s h o l d amounts o f l i m o n i n o r n a r i n g i n c o n t r i b u t e t o t h e b i t t e r n e s s o f a m i x t u r e o f t h e two compounds. T h e b i t t e r n e s s o f t h e m i x t u r e c a n be p r e d i c t e d b y a d d i n g t h e t a s t e u n i t c o n t r i b u t i o n o f e a c h component ( t a s t e u n i t = c o n c e n t r a t i o n / threshold). I n f l u e n c e o f Sweeteners on B i t t e r n e s s . I n model system s t u d i e s , n a t u r a l f r u i t j u i c e s u g a r s were o b s e r v e d t o r a i s e t h e l i m o n i n t h r e s h o l d (24). An e x p a n d e d s t u d y o f n a t u r a l a n d a r t i f i c i a l s w e e t e n e r s (26) d e m o n s t r a t e d t h a t s u c r o s e , n e o h e s p e r i d i n dihydroc h a l c o n e (NHD), h e s p e r e t i n d i h y d r o c h a l c o n e g l u c o s i d e (HDG) a n d a s p a r t y l p h e n y l a l a n i n e m e t h y l e s t e r (AP) a l l r a i s e t h e l i m o n i n threshold. A t l o w s w e e t n e s s l e v e l s HDG was t h e m o s t e f f e c t i v e f o l l o w e d b y AP a n d NHD. S u c r o s e was w i t h o u t e f f e c t u p t o t h e 2% level. A t s w e e t n e s s l e v e l s e q u i v a l e n t t o 1% s u c r o s e , HDG, AP a n d NHD r a i s e d t h e l i m o n i n t h r e s h o l d i n w a t e r f r o m 1.0 ppm t o 3.2, 2.5 and 1.3 ppm, r e s p e c t i v e l y . B e c a u s e o f i t s h i g h s w e e t n e s s i n t e n s i t y , t h e c o n c e n t r a t i o n o f NHD (16 ppm) was c o n s i d e r a b l y l o w e r t h a n HDG (80 ppm) a n d AP (90 ppm). A t 3-10% s u c r o s e s w e e t n e s s e q u i v a l e n c y , t h e e f f e c t i v e n e s s o f NHD i n c r e a s e d s u b s t a n t i a l l y , s u c r o s e m o d e r a t e l y a n d HDG s l i g h t l y , w h i l e t h a t o f AP d e c r e a s e d . T h e r e f o r e , t h e s w e e t e n e r s HDG, AP a n d NHD c a n e f f e c t i v e l y s u p p r e s s l i m o n i n b i t t e r n e s s a t low c o n c e n t r a t i o n s . NHD h a s a l s o b e e n f o u n d t o s u p p r e s s n a r i n g i n b i t t e r n e s s ( 2 6 ) . I t was s u g g e s t e d a s b e i n g e s p e c i a l l y u s e f u l i n u p g r a d i n g t h e f l a v o r o f l o w B/A, e a r l y - s e a s o n g r a p e f r u i t j u i c e ( 2 7 ) .
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
76
CITRUS NUTRITION AND QUALITY
B i t t e r n e s s Suppressors. Limonin b i t t e r n e s s s u p p r e s s i o n has a l s o b e e n r e p o r t e d (28) t o o c c u r when t h e c i t r u s c o n s t i t u e n t n e o d i o s m i n (ΝΕΟ), t h e t a s t e l e s s f l a v o n e analog o f t h e b i t t e r f l a v a n none n e o h e s p e r i d i n ( 2 9 ) , i s p r e s e n t i n s o l u t i o n s o r j u i c e s c o n taining limonin. Low l e v e l s o f Ν Ε Ο were e f f e c t i v e i n r a i s i n g t h e l i m o n i n t h r e s h o l d i n orange j u i c e , r e d u c i n g b i t t e r n e s s o f s u p r a t h r e s h o l d l e v e l s o f l i m o n i n , and even r e d u c i n g t h e b i t t e r n e s s o f very high levels of limonin. Ν Ε Ο i s a l s o an e f f e c t i v e suppressor o f n a r i n g i n b i t t e r n e s s a n d w o u l d , t h e r e f o r e , be e s p e c i a l l y u s e f u l i n b i t t e r g r a p e f r u i t j u i c e w h i c h c o n t a i n s b o t h n a r i n g i n and l i m o nin. On t h e b a s i s o f t h e t a s t e t e s t s a p r o c e s s f o r r e d u c i n g t h e b i t t e r n e s s o f c i t r u s j u i c e s was p r o p o s e d w h i c h c o m p r i s e s a d d i n g 50 t o 150 ppm n e o d i o s m i n ( 3 0 ) . A n o t h e r t a s t e l e s s f l a v o n e g l y c o s i d e t h a t i s p r e s e n t i n g r a p e f r u i t and b i t t e r orange, r h o i f o l i n , has the a b i l i t y t o p a r t i a l l y suppress the b i t t e r n e s s o f n a r i n g i n (29). P r e h a r v e s t , P o s t h a r v e s t and P r o c e s s i n g V a r i a b l e s . These f a c t o r s h a v e a s u b s t a n t i a l i n f l u e n c e on t h e l i m o n i n c o n t e n t o f t h e juice. A d e t a i l e d d i s c u s s i o n o f t h e s e i n f l u e n c e s i s g i v e n by M a i e r e t a l . ( 3 ) . P r e h a r v e s t f a c t o r s such as s p e c i e s and c u l t i v a r , r o o t s t o c k , f e r t i l i z a t i o n and i r r i g a t i o n p r a c t i c e s , and time o f h a r v e s t a l l have an i m p o r t a n t b e a r i n g on t h e l i m o n o i d c o n t e n t of the f r u i t . During the postharvest p e r i o d , limonoid metabolism g r a d u a l l y r e d u c e s t h e X I V c o n t e n t o f t h e f r u i t t i s s u e s . The e x t e n t o f XIV l o s s i n c r e a s e s w i t h h o l d i n g time and t e m p e r a t u r e . The m e t a b o l i s m i s a c c e l e r a t e d by b r i e f exposure t o e t h y l e n e gas o r t o a d i l u t e s o l u t i o n o f e t h y l e n e g e n e r a t i n g s u b s t a n c e s such as 2-chloroethylphosphonic acid (31). Commercial n a v e l orange, Shamouti orange and g r a p e f r u i t j u i c e s , and l a b o r a t o r y samples o f M u r c o t t orange and N a t s u d a i d a i j u i c e s f r o m e a r l y s e a s o n f r u i t c o n t a i n h i g h l e v e l s o f l i m o n i n (3_) U n d e r c e r t a i n c o n d i t i o n s l i m o n i n b i t t e r n e s s c a n be f o u n d i n e s s e n t i a l l y a l l types o f c i t r u s j u i c e s . The r o o t s t o c k h a s b e e n shown t o be a n i m p o r t a n t f a c t o r i n d e t e r m i n i n g t h e t i m e r e q u i r e d a f t e r commercial m a t u r i t y i s reached f o r the f r u i t t o y i e l d j u i c e w i t h low l i m o n i n l e v e l s . The r o o t s t o c k s p r o m o t i n g f a s t e s t a t t a i n m e n t o f low l i m o n i n l e v e l s a r e t r i f o l i t a t e orange, t a n g e l o and C l e o p a t r a m a n d a r i n , w i t h s w e e t o r a n g e b e i n g i n t e r m e d i a t e , a n d r o u g h lemon, sweet l i m e , K u s a i e l i m e and E a s t I n d i a l i m e r e t a r d i n g t h e d i s a p p e a r a n c e o f l i m o n i n (32). The amount o f l i m o n i n i n c o r p o r a t e d i n t o t h e j u i c e i s i n f l u e n c e d b y a number o f j u i c e p r o c e s s i n g v a r i a b l e s . F a c t o r s s u c h a s the m a c e r a t i o n o f albedo, c e n t r a l v a s c u l a r bundle and c a r p e l l a r y membranes, t h e t i m e o f c o n t a c t b e t w e e n t h e r a g a n d t h e j u i c e , a n d t h e amount o f p u l p i n c o r p o r a t e d i n t o t h e f i n a l j u i c e p r o d u c t a r e known t o i n f l u e n c e j u i c e l i m o n i n c o n t e n t . The u n e v e n d i s t r i b u t i o n o f XIV i n t h e v a r i o u s t i s s u e s o f t h e f r u i t (Table V I I ) i s l a r g e l y r e s p o n s i b l e f o r the e f f e c t s o f processing v a r i a b l e s (33).
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MAIER ET AL.
Limonin
and
77
Limonoids
a Table VII.
Limonoid
Distribution
i n Desert Navel
Orange T i s s u e
Limonoic A c i d A-Ring Lactone Content ppm f r e s h w e i g h t mg p e r f r u i t
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
A l b e d o and F l a v e d o C a r p e l l a r y Membranes Juice Vesicles
22 10 1.9
415 305 15
H a r v e s t e d November 12 Determined as l i m o n i n
O n l y a b o u t 6% o f t h e t o t a l XIV c o n t e n t o f t h e f r u i t i s p r e s e n t i n the j u i c e v e s i c l e s . Any s t e p i n j u i c e p r e p a r a t i o n t h a t i n c r e a s e s i n c o r p o r a t i o n o f the other t i s s u e s i n t o the j u i c e or t h a t i n c r e a s e s t h e e x t r a c t i o n o f XIV f r o m t h o s e t i s s u e s w i l l i n c r e a s e t h e l i m o n i n content o f the j u i c e . Consequently, techniques that i n c r e a s e j u i c e y i e l d , such as h a r d v e r s u s s o f t e x t r a c t i o n , t e n d t o i n c r e a s e l i m o n i n content (34). Limonin L e v e l s of C i t r u s J u i c e s . A c o m p i l a t i o n of limonin v a l u e s i n v a r i o u s c i t r u s j u i c e s i s g i v e n i n (3_) · L i m o n i n has b e e n found i n e s s e n t i a l l y a l l v a r i e t i e s o f c i t r u s j u i c e s examined. Although t h e r e i s a c o n s i d e r a b l e range of l i m o n i n values r e p o r t e d , c e r t a i n trends are apparent. L i m o n i n l e v e l s g e n e r a l l y d e c r e a s e as t h e s e a s o n p r o g r e s s e s . T h i s d e c r e a s e w i t h m a t u r i t y o f the f r u i t i s s e e n i n most v a r i e t i e s t e s t e d , a l t h o u g h t h e m a g n i t u d e o f t h e c h a n g e and t h e l e v e l a t any one t i m e o f t h e y e a r o r any p a r t o f t h e h a r v e s t i n g s e a s o n i s v a r iable. Two e x t e n s i v e s t u d i e s o f l i m o n i n c o n t e n t t h r o u g h o u t t h e s e a son were r e c e n t l y c o n d u c t e d by A l b a c h e t a l . ( 3 5 ) . Commercial o r a n g e and g r a p e f r u i t j u i c e s f r o m t h r e e c i t r u s p r o c e s s i n g p l a n t s i n s o u t h T e x a s w e r e s a m p l e d t w i c e e a c h day a t t h r e e - w e e k i n t e r v a l s f r o m e a r l y November t o l a t e J u n e f o r two c o n s e c u t i v e y e a r s . The a v e r a g e l i m o n i n c o n t e n t o f t h e s e j u i c e s i s summarized i n T a b l e VIII. The November o r a n g e j u i c e s a m p l e s were a l l a b o v e t h e g r o u p l i m o n i n t h r e s h o l d d e t e r m i n e d by Guadagni (24). Some o f t h e samp l e s o b t a i n e d t h r o u g h F e b r u a r y were a l s o a b o v e t h e 6 ppm l i m o n i n g r o u p t h r e s h o l d . T h r o u g h o u t t h e s e a s o n a s i g n i f i c a n t number o f j u i c e s c o n t a i n e d e n o u g h l i m o n i n f o r b i t t e r n e s s t o be d e t e c t a b l e by 30-50% o f t h e i n d i v i d u a l s o f G u a d a g n i s t a s t e p a n e l . The l i m o n i n c o n t e n t o f t h e s e o r a n g e j u i c e s w o u l d , t h e r e f o r e , be l i k e l y t o l o w er the t a s t e q u a l i t y of the j u i c e f o r a s u b s t a n t i a l p o r t i o n of the population. 1
A n o t h e r s e t o f t e s t s o f two o r a n g e v a r i e t i e s f r o m 5 l o c a t i o n s i n T e x a s were s a m p l e d a t two-week i n t e r v a l s t h r o u g h o u t t h e i r s e a s o n o f m a t u r i t y a n d j u i c e d i n t h e l a b o r a t o r y on a c o m m e r c i a l t e s t
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
78 Table
CITRUS NUTRITION AND QUALITY V I I I . L i m o n i n C o n t e n t o f C o m m e r c i a l O r a n g e and J u i c e s Throughout the H a r v e s t i n g Season
Limonin Content
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
Processing Date
Source:
(ppm)
Orange
November December January February March April May June
Grapefruit
Grapefruit
Range
Average
6.2-8.2 4.2-7.8 3.3-5.5 2.3-6.8 2.5-3.9 2.1-3.8 1.7-2.1 1.8-2.4
7.2 5.3 4.5 3.8 3.3 2.7 1.9 2.1
Range
Average
11.2-12.2 7.1-11.6 7.4-16.6 5.3-9.7 4.4-7.1 2.2-4.7 2.4-3.8
11.4 10.0 9.1 7.1 5.1 3.8 3.1 2.1
(35)
e x t r a c t o r (36). A g a i n t h e l i m o n i n l e v e l s d e c r e a s e d as t h e s e a s o n p r o g r e s s e d f o r b o t h H a m l i n and M a r r s e a r l y o r a n g e s on T e x a s s o u r orange r o o t s t o c k . The M a r r s v a r i e t y was s u s p e c t e d o f h a v i n g a b i t t e r n e s s p r o b l e m b e c a u s e i t a r o s e as a bud s p o r t f r o m t h e Washington n a v e l . The d a t a show l i t t l e c o n s i s t e n t d i f f e r e n c e i n t h e l i m o n i n l e v e l s o f t h e two v a r i e t i e s i n any one g r o v e . Much more s i g n i f i c a n t d i f f e r e n c e s w e r e s e e n i n f r u i t o f t h e same v a r i e t y f r o m t h e d i f f e r e n t g r o v e l o c a t i o n s , p r o b a b l y due t o d i f f e r e n c e s i n c u l t u r a l p r a c t i c e s , s o i l t y p e and e n v i r o n m e n t a l f a c t o r s . W h i l e most o f the l i m o n o i d s o f C i t r u s have been i s o l a t e d from s e e d s , s e v e r a l o c c u r i n d e t e c t a b l e amounts i n o t h e r p a r t s o f t h e fruit. M i n o r amounts o f d e a c e t y l n o m i l i n , n o m i l i n , o b a c u n o n e , d e a c e t y l n o m i l i n i c a c i d and n o m i l i n i c a c i d were i d e n t i f i e d i n e x t r a c t s o f n a v e l orange p e e l (37). 17-Dehydrolimonoate A - r i n g l a c t o n e was i s o l a t e d f r o m p e e l and j u i c e o f n a v e l o r a n g e s (38) and n o m i l i n h a s b e e n r e p o r t e d t o o c c u r i n g r a p e f r u i t j u i c e and j u i c e v e s i c l e s (39). The o n l y C i t r u s l i m o n o i d s known t o be b i t t e r a r e l i m o n i n , V I , X I I , o b a c u n o i c a c i d and IX (_3) . I n f l u e n c e o f L i m o n i n C o n t e n t on J u i c e Q u a l i t y . Several studi e s h a v e shown t h a t l i m o n i n b i t t e r n e s s d e t r a c t s f r o m j u i c e q u a l ity. The t a s t e t e s t s r e p o r t e d by G u a d a g n i (24) u s i n g screened l a b o r a t o r y p e r s o n n e l i n d i c a t e d t h a t f a c t o r s which r a i s e the limon i n t h r e s h o l d i n o r a n g e j u i c e h a v e a b e n e f i c i a l e f f e c t on p r e f e r ence. F e l l e r s (40) r e p o r t e d r e s u l t s o f t a s t e t e s t s o f g r a p e f r u i t j u i c e w i t h a d d e d l i m o n i n and n a r i n g i n g i v e n t o a W a s h i n g t o n D. C. c o n s u m e r - t y p e t a s t e p a n e l o f 72 p e r s o n s . T h e s e t e s t s showed a h i g h l y s i g n i f i c a n t l i n e a r drop i n preference r a t i n g s with
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4.
MAIER ET AL.
Limonin
and
Limonoids
79
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
s u c c e s s i v e l y h i g h e r l e v e l s o f b i t t e r n e s s w i t h i n e a c h B/A g r o u p . The i n v e r s e r e l a t i o n s h i p b e t w e e n l i m o n i n c o n t e n t and t a s t e p r e f e r e n c e was c o n f i r m e d i n a n o t h e r s t u d y (41) u s i n g a s t e p w i s e m u l t i p l e r e g r e s s i o n a n a l y s i s o f d a t a f r o m 60 s a m p l e s o f c o m m e r c i a l f r o z e n - c o n c e n t r a t e d o r a n g e j u i c e (FCOJ) p a c k e d d u r i n g two s e a s o n s . T h i s and a l a t t e r r e p o r t (42) c o n c l u d e d t h a t l i m o n i n c o n t e n t was h i g h l y c o r r e l a t e d with the f l a v o r q u a l i t y of the j u i c e . J u i c e Q u a l i t y Standards. In r e c e n t years l i m o n i n content has become w i d e l y r e c o g n i z e d as a q u a l i t y f a c t o r i n m o s t c i t r u s juices. P r e v i o u s l y l i m o n i n h a d b e e n c o n s i d e r e d t o be important i n t h e j u i c e q u a l i t y o f o n l y a few h i g h l i m o n i n c u l t i v a r s . Limon i n i s b e i n g u s e d r o u t i n e l y by some p r o c e s s o r s as a q u a l i t y c o n t r o l element. I n a d d i t i o n , l i m o n i n c o n t e n t i s now i n c l u d e d i n t h e F l o r i d a S t a t e G r a d e s f o r c a n n e d and c h i l l e d g r a p e f r u i t j u i c e and f r o z e n c o n c e n t r a t e d g r a p e f r u i t j u i c e ( £ 3 ) . G r a d e "A" juice p a c k e d d u r i n g t h e p e r i o d f r o m A u g u s t 1 t o December 1 must c o n t a i n l e s s t h a n 5 ppm l i m o n i n o r l e s s t h a n 600 ppm n a r i n g i n ( D a v i s t e s t method). G r a d e "B" j u i c e must c o n t a i n l e s s t h a n 7 ppm l i m o n i n o r l e s s t h a n 750 ppm n a r i n g i n . Determination of Limonin Content. A summary o f t h e methods r e p o r t e d t h r o u g h 1976 f o r t h e q u a n t i t a t i v e d e t e r m i n a t i o n o f l i m o n i n i n c i t r u s j u i c e s was p u b l i s h e d p r e v i o u s l y (3_). S i n c e t h e n i m p r o v e m e n t s h a v e b e e n made i n t h e h i g h - p r e s s u r e l i q u i d c h r o m a t o g r a p h i c m e t h o d (44, 45) and a d v a n c e s have b e e n made i n t h e d e v e l o p m e n t o f e n z y m a t i c (46) and immunoassay (47, 48) (see C h a p t e r 15) m e t h o d s . The l a t t e r methods h o l d g r e a t p r o m i s e f o r the f u t u r e . However, i n e a c h c a s e t h e r e q u i r e d enzyme o r a n t i body i s n o t y e t c o m m e r c i a l l y a v a i l a b l e . Thus, w h i l e s u b s t a n t i a l p r o g r e s s i s b e i n g made t h e n e e d s t i l l e x i s t s f o r a s i m p l e , s e n s i t i v e , and r a p i d c o m m e r c i a l l y a v a i l a b l e method f o r r o u t i n e i n d u s t r i a l q u a l i t y c o n t r o l purposes. C o n t r o l o f J u i c e B i t t e r n e s s . A number o f a d v a n c e s h a v e b e e n r e p o r t e d i n t h i s f i e l d s i n c e i t was l a s t r e v i e w e d (.3) . A commerc i a l a p p l i c a t i o n o f the c e l l u l o s e a c e t a t e a d s o r p t i o n technique f o r t h e r e m o v a l o f l i m o n i n f r o m c i t r u s j u i c e s was u n d e r t a k e n ( 4 9 ) . New s o r b e n t g e l f o r m s o f c e l l u l o s e e s t e r s f o r a d s o r p t i o n o f l i m o n i n were d e v e l o p e d ( 5 0 ) . Knowledge was g a i n e d t h a t l i m o n o i d s a r e b i o s y n t h e s i z e d i n c i t r u s l e a v e s and t r a n s l o c a t e d t o t h e f r u i t (12) a n d t h a t s p e c i f i c b i o r e g u l a t o r s c a n i n h i b i t a c c u m u l a t i o n o f XIV i n c i t r u s leaves (15). A d d i t i o n a l s t u d i e s were c a r r i e d o u t on t h e u s e o f n e o d i o s m i n t o s u p p r e s s l i m o n i n and o t h e r t y p e s o f b i t t e r n e s s (30,51). The i n f l u e n c e o f e x t r a c t o r and f i n i s h e r p r e s s u r e s on t h e l e v e l o f l i m o n i n and n a r i n g i n i n g r a p e f r u i t j u i c e was r e p o r t e d ( 3 4 ) . A l s o , f u r t h e r s t u d i e s were c o n d u c t e d on t h e m i c r o b i a l s o u r c e s and p r o p e r t i e s o f l i m o n o a t e d e h y d r o g e n a s e (52_) , t h e enzyme t h a t c o n v e r t s XIV t o XV and c a n be u s e d t o p r e v e n t l i m o n i n from forming i n f r e s h l y e x p r e s s e d c i t r u s j u i c e s (53).
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
80
CITRUS NUTRITION AND QUALITY
As t h e s e new t e c h n i q u e s f o r r e d u c i n g l i m o n i n b i t t e r n e s s a r e d e v e l o p e d a n d come i n t o u s e , t h e y w i l l a f f o r d a d d i t i o n a l a n d more d i r e c t means o f a c h i e v i n g h i g h e r q u a l i t y c i t r u s j u i c e s . This w i l l be e s p e c i a l l y i m p o r t a n t f o r t h a t s i g n i f i c a n t p o r t i o n o f t h e p o p u l a t i o n t h a t has a l i m o n i n b i t t e r n e s s t h r e s h o l d i n t h e v i c i n i t y o f and b e l o w 2 ppm. U n t i l t h e n , much c a n be done t o r e d u c e b i t t e r n e s s b y c a r e f u l management o f f a c t o r s i n f l u e n c i n g j u i c e l i m o n i n l e v e l s ( c h o i c e o f c u l t i v a r , r o o t s t o c k , r i p e n e s s , p o s t h a r v e s t me tabolism, j u i c e e x t r a c t i o n parameters, pulp contact time, blending of j u i c e , etc.) and f a c t o r s i n f l u e n c i n g the p e r c e p t i o n o f b i t t e r n e s s ( j u i c e pH, a c i d i t y , s w e e t n e s s , e t c ) .
Abstract Limonoids are a group of chemically related triterpene deriv atives found in the Rutaceae and Meliaceae families. Limonin is an intensely bitter limonoid that occurs widely in citrus juices where its presence at above threshold levels generally detracts from juice quality. Studies have shown that the metabolically ac tive form of limonin is limonoate Α-ring lactone (LARL) which is nonbitter. LARL is synthesized in the leaves and translocated to the fruit and seeds. It is slowly degraded in the fruit to non -bitter products by at least two metabolic pathways. LARL under goes acid catalyzed lactonization to limonin when the fruit tis sues are disrupted in juice preparation. Group bitterness thresh olds for limonin in orange juice have been reported to be in the 6 ppm range. On the other hand, individual thresholds as low as 0.5 ppm have been reported. In the latter study, 30% of the panel had thresholds of 2 ppm or below. While limonin content tends to be high in the juice from early-season navel, Shamouti, and Murcott oranges, available data indicate that levels of 2 ppm are not uncommon in commercial orange juice. Bitterness is modulated by juice properties including soluble solids, citric acid content and pH. In addition, several tasteless citrus flavonoids specif ically suppress bitterness and increase juice acceptability, as do the flavanone glycoside derived dihydrochalcone sweeteners. The above areas are reviewed in detail and new developments in limonoid biochemistry are discussed. Acknowledgement The a u t h o r s t h a n k R o g e r F . A l b a c h , USDA-SEA-AR, W e s l a c o , T e x a s ; R u s s e l l L . R o u s e f f , D e p a r t m e n t o f C i t r u s , AREC, L a k e A l f r e d , F l o r i d a ; a n d R. L . M a n s e l l , D e p a r t m e n t o f B i o l o g y , U n i v e r s i t y o f S o u t h F l o r i d a , Tampa, F l o r i d a a n d t h e i r c o a u t h o r s for prepublication copies o f t h e i r respective manuscripts.
Literature Cited 1. Dreyer, D. L. Fortschr. Chem. Org. Naturst., 1968, 26, 190-244.
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
4.
MAIER ET AL.
Limonin
and
Limonoids
81
2. Connolly, J. D.; Overton, K. H.; Polonsky, J. In "Progress in Phytochemistry"; Reinhold, L.; Liwschitz, Y., Eds.; John Wiley and Sons: New York, 1970; 2. 3. Maier, V. P.; Bennett, R. D.; Hasegawa, S. In "Citrus Science and Technology"; Nagy, S.; Shaw, P. E.; Veldhuis, M. Κ., Eds.; AVI Publishing Co.: Westport, Conn., 1977; 1, 355-396. 4. Bennett, R. D., unpublished data. 5. Bennett, R. D.; Hasegawa, S. Phytochemistry, in press. 6. Hasegawa, S.; Bennett, R. D.; Verdon, C. P. Phytochemistry, in press. 7. Bennett, R. D.; Hasegawa, S. Tetrahedron, in press. 8. Hasegawa, S.; Bennett, R. D.; Verdon, C. P. J. Agric. Food Chem., in press. 9. Maier, V. P.; Margileth, D. A. Phytochemistry, 1968, 8, 243248. 10. Maier, V. P.; Beverly, G. D. J. Food Sci., 1968, 33, 488-492. 11. Maier, V. P.; Hasegawa, S.; Hera, E. Phytochemistry, 1969, 8, 495-407. 12. Hasegawa, S.; Hoagland, J. E. Phytochemistry, 1977, 16, 469471. 13. Hasegawa, S.; Bennett, R. D.; Verdon, C. P. Abstracts Citrus Research Conference, Pasadena, CA, 1979; 3. 14. Datta, S.; Nicholas, H. J. Phytochemistry, 1968, 7, 955-956. 15. Hasegawa, S.; Yokoyama, H.; Hoagland, J. E. Phytochemistry, 1977, 16, 1083-1085. 16. Hasegawa, S.; Bennett, R. D.; Maier, V. P. J. Agric. Food Chem., 1972, 20, 435-437. 17. Hasegawa, S.; Bennett, R. D.; Maier, V. P.; King, A. D., Jr. J. Agric. Food Chem., 1972, 20, 1031-1034. 18. Hasegawa, S.; Maier, V. P.; King, A. D., Jr. J. Agric. Food Chem., 1974, 22, 523-526. 19. Hasegawa, S.; Kim, K. S. Abstracts Citrus Research Conference, Pasadena, CA, 1975; 16-17. 20. Hasegawa, S.; Maier, V. P., Border, S. N.; Bennett, R. D. J. Agric. Food Chem., 1974, 22, 1093-1096. 21. Hasegawa, S. J. Agric. Food Chem., 1976, 24, 24-26. 22. Hasegawa, S.; Maier, V. P.; Bennett, R. D. Phytochemistry, 1974, 13, 103-105. 23. Bernay, S. Annalen, 1841, 40, 317. 24. Guadagni, D. G.; Maier, V. P.; Turnbaugh, J. G. J. Sci. Food Agric., 1973, 24, 1277-1288. 25. Guadagni, D. G.; Maier, V. P.; Turnbaugh, J. G. J. Sci. Food Agric., 1974, 25, 1349-1354. 26. Guadagni, D. G.; Maier, V. P.; Turnbaugh, J. G. J. Sci. Food Agric., 1974, 25, 1199-1205. 27. Fellers, P. J. 27th Annual Citrus Processors Meeting, Lake Alfred, FL, 1976; 13. 28. Guadagni, D. G., Maier, V. P.; Turnbaugh, J. G. J. Food Sci., 1976, 41, 681-684. 29. Horowitz, R. M. In "Biochemistry of Phenolic Compounds",
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
82
30. 31.
Downloaded by NORTH CAROLINA STATE UNIV on December 29, 2012 | http://pubs.acs.org Publication Date: December 15, 1980 | doi: 10.1021/bk-1980-0143.ch004
32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.
CITRUS NUTRITION AND QUALITY
J. B. Harborne, Ed.; Academic Press: New York, 1964; Chap.14; 545. Guadagni, D. G., Horowitz, R. M.; Gentili, B.; Maier, V. P. U.S. Patent 4,031,265, 1977. Maier, V. P.; Brewster, L. C.; Hsu, A. C. J. Agric. Food Chem., 1973, 21, 490-495. Kefford, J. F.; Chandler, Β. V. In "Advances in Food Research, Supplement 2"; Chichester, C. O.; Mrak, Ε. M.; Stewart, G. F., Eds.; Academic Press: New York, 1970; 150-164. Maier, V. P.; Brewster, L. C., unpublished data. Attaway, J. A. Proc. Int. Soc. Citriculture, 1977, 3, 816-820. Albach, R. F.; Redman, G. H.; Cruse, R. R.; Lime, R. J., un published data. Albach, R. F.; Redman, G. H.; Lime, B. J., unpublished data. Bennett, R. D., unpublished data mentioned in (38). Hsu, A. C.; Hasegawa, S.; Maier, V. P.; Bennett, R. D. Phytochemistry, 1973, 12, 563-567. Rouseff, R. 30th Annual Citrus Processors Meeting, Lake Alfred, FL, 1979; 21. Fellers, P. J. 24th Annual Citrus Processors Meeting, Lake Alfred, FL, 1973; 6. Cornell, J. A. 25th Annual Citrus Processors Meeting, Lake Alfred, FL, 1974; 3. Carter, R. D.; Buslig, B. S.; Cornell, J. A. Proc. Fla. State Hortic. Soc., 1975, 88, 358-370. Florida Department of Citrus, Standards for Processed Citrus Products, 1979; Section 20-64.03, 20-64.09. Fisher, J. F. J. Agric. Food Chem., 1978, 26, 497-499. Rouseff, R. L.; Fisher, J. F., unpublished data. Hasegawa, S.; Verdon, C., unpublished data. Mansell, R. L.; Weiler, Ε. W. Phytochemistry, in press. Weiler, E. W.; Mansell, R. L. J. Agric. Food Chem., in press. Kefford, J. F.; Chandler, Β. V. In "Citrus Science and Technology"; Nagy, S.; Shaw, P. E.; Veldhuis, Μ. Κ., Eds.; AVI Publishing Co.: Westport, Conn., 1977; 2, 609-616. Chandler, Β. V.; Johnson, R. L. J. Sci. Food Agric., 1979, 30, 825-832. Guadagni, D. G.; Horowitz, R. M.; Gentili, B.; Maier, V. P. U.S. Patent 4,154,862, 1979. Hasegawa, S.; Verdon, C. P.; Schroeder, M. F., unpublished data. Hasegawa, S.; Brewster, L. C.; Maier, V. P. J. Food Sci., 1973, 38, 1153-1155.
RECEIVED May 22, 1980.
In Citrus Nutrition and Quality; Nagy, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.